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Aspergillus fungi contain a-1,3-glucan with a low proportion of a-1,4-glucan as

a major cell wall polysaccharide. Glycosylphosphatidylinositol (GPI)-anchored

a-amylases are conserved in Aspergillus fungi. The GPI-anchored a-amylase

AmyD in Aspergillus nidulans has been reported to directly suppress

the biosynthesis of cell wall a-1,3-glucan but not to degrade it in vivo.

However, the detailed mechanism of cell wall a-1,3-glucan biosynthesis

regulation by AmyD remains unclear. Here we focused on AoAgtA, which is

encoded by the Aspergillus oryzae agtA gene, an ortholog of the A. nidulans

amyD gene. Similar to findings in A. nidulans, agtA overexpression in A. oryzae

grown in submerged culture decreased the amount of cell wall a-1,3-glucan
and led to the formation of smaller hyphal pellets in comparison with the wild-

type strain. We analyzed the enzymatic properties of recombinant (r)AoAgtA

produced in Pichia pastoris and found that it degraded soluble starch, but

not linear bacterial a-1,3-glucan. Furthermore, rAoAgtA cleaved 3-a-
maltotetraosylglucose with a structure similar to the predicted boundary
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structure between the a-1,3-glucan main chain and a short spacer composed

of a-1,4-linked glucose residues in cell wall a-1,3-glucan. Interestingly,

rAoAgtA randomly cleaved only the a-1,4-glycosidic bonds of 3-a-
maltotetraosylglucose, indicating that AoAgtA may cleave the spacer in cell

wall a-1,3-glucan. Consistent with this hypothesis, heterologous

overexpression of agtA in A. nidulans decreased the molecular weight of cell

wall a-1,3-glucan. These in vitro and in vivo properties of AoAgtA suggest that

GPI-anchored a-amylases can degrade the spacer a-1,4-glycosidic linkages in

cell wall a-1,3-glucan before its insolubilization, and this spacer cleavage

decreases the molecular weight of cell wall a-1,3-glucan in vivo.
KEYWORDS

a-amylase, cell wall, a-1,3-glucan, glycosylphosphatidylinositol-anchored protein,
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Introduction

The cell wall of fungi is composed mainly of polysaccharides;

it protects cells from stresses and maintains cell morphology

(Latgé, 2010; Yoshimi et al., 2016). Aspergillus cell wall is

composed of a-1,3-glucan (with a low proportion of a-1,4-
glucan), b-1,3-glucan (with b-1,6-branches), galactomannan

and chitin (Latgé, 2010; Yoshimi et al., 2016). In pathogenic

fungi, a-1,3-glucan conceals cell wall b-1,3-glucan and chitin

and consequently prevents recognition by the host immune

system (Rappleye et al., 2004; Rappleye et al., 2007; Fujikawa

et al., 2009; Fujikawa et al., 2012; Beauvais et al., 2013). a-1,3-
Glucan is also an adhesion factor in hyphal aggregation

(Yoshimi et al., 2013; Miyazawa et al., 2016; Zhang et al., 2017;

Miyazawa et al., 2018).

Two a-1,3-glucan synthase genes (agsA, agsB) are known in

the model fungus Aspergillus nidulans, with agsB functioning

mainly during vegetative hyphal growth (Yoshimi et al., 2013).

In A. nidulans, the amyD and amyG genes are located

near the agsB locus and are predicted to encode

glycosylphosphatidylinositol (GPI)-anchored a-amylase and

intracellular a-amylase, respectively (He et al., 2014). The cluster

of these three genes (agsB–amyD–amyG) is conserved among

Aspergillus fungi except for Aspergillus fumigatus (He et al., 2014).

The mechanism of cell wall a-1,3-glucan biosynthesis was

first predicted in the fission yeast Schizosaccharomyces pombe

(Grün et al., 2005). In the cytoplasm, an a-1,3-glucan synthase

Ags1 transfers glucose units from uridine diphosphate glucose to

the non-reducing end of the primer maltooligosaccharide and

thus forms an a-1,3-glucan subunit, which is then exported by

the same enzyme to the extracellular space (Grün et al., 2005).

The extracellular domain of Ags1 is thought to connect two
02
exported a-1,3-glucan subunits by transglycosylation (Grün

et al., 2005). In S. pombe, a spacer oligosaccharide (≈12

residues), which is derived from the primer oligosaccharide, is

present between two a-1,3-glucan chains (≈120 residues each)

(Grün et al., 2005). We previously estimated the mechanism of

cell wall a-1,3-glucan biosynthesis in A. nidulans with reference

to the speculative mechanism in S. pombe (Yoshimi et al., 2017;

Miyazawa et al., 2018; Miyazawa et al., 2020; Figure 1). Cell wall

a-1,3-glucan is mainly synthesized by AgsB, which is composed

of the extracellular, intracellular, and multitransmembrane

domains (Yoshimi et al., 2017; Miyazawa et al., 2020). The

primer maltooligosaccharides, which are likely required for a-
1,3-glucan biosynthesis, are predicted to be produced by AmyG

(He et al., 2014; Miyazawa et al., 2018; Miyazawa et al., 2020).

Kazim et al. (2021) reported that, under submerged culture

conditions, amyG disruption in A. nidulans causes the formation

of dispersed hyphae and decreases pellet size and a-1,3-glucan
content in the cell wall in comparison with the parental strain;

these changes can be reverted by adding maltose or maltotriose

to the culture media, suggesting that AmyG provides

maltooligosaccharides for a-1,3-glucan biosynthesis. Chemical

analyses of cell wall a-1,3-glucan in A. nidulans (Miyazawa et al.,

2018) and Aspergillus wentii (Choma et al., 2013) revealed

concatenation of a subunit consisting of about 200 a-1,3-
linked glucose residues and a spacer of several 1,4-linked

glucose residues. The anomer of the glucose residues of the

spacer in Aspergillus fungi has not been analyzed, but it is

presumed to be a-type (Latgé, 2010).
AgtA of Aspergillus oryzae (AoAgtA) and proteins that are

encoded by the orthologues of A. oryzae agtA, which are defined

here as “Agt proteins”, are expected to be a-amylases of the

glycoside hydrolase family 13 (GH13) and contain a C-terminal
frontiersin.org
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GPI-anchor site. He et al. (2014) reported that overexpression of

A. nidulans amyD, orthologous to A. oryzae agtA, decreases the

amount of cell wall a-1,3-glucan, whereas amyD disruption

increases it, suggesting that amyD suppresses a-1,3-glucan
biosynthesis. He et al. (2017) showed that the amount of cell

wall a-1,3-glucan was lower in the amyD-overexpressing strain

than in the parental A. nidulans strain at all time points

examined, whereas in the a-1,3-glucanase overexpressing

strains it was similar to that in the parental strain at the

beginning of the time course and became lower from

the middle of the culture. These results suggest that the

mechanism of the decrease in the amount of cell wall a-1,3-
glucan by AmyD differs from that by a-1,3-glucanase. We

recently performed in vivo functional analysis of amyD in A.

nidulans and found that not only the amount but also the

molecular weight (MW) of cell wall a-1,3-glucan was

decreased by amyD overexpression (Miyazawa et al., 2022).

Aspergillus niger AgtA (AnAgtA) cannot use a-1,3-glucan
derived from A. nidulans as a substrate and shows remarkable

transglycosylation activity to produce maltooligosaccharides

with a degree of polymerization (DP) of at least 28 (van der

Kaaij et al., 2007). Overall, the mechanisms underlying the

decrease in the amount and MW of a-1,3-glucan by Agt

proteins are still unknown.
Frontiers in Fungal Biology 03
We have been developing A. oryzae strains with dispersed

hyphae and high levels of enzyme production, which lack a-1,3-
glucan and extracellular matrix galactosaminogalactan

(Miyazawa et al., 2016; Miyazawa et al., 2019; Ichikawa et al.,

2022). Although hyphal pellet formation of filamentous fungi

under submerged culture conditions has been controlled by

genetic approaches and culture conditions (Miyazawa et al.,

2020), the options for controlling it could be expanded by adding

approaches based on the catalytic properties of enzymes

involved in cell wall a-1,3-glucan biosynthesis. Therefore,

understanding the mechanism how AoAgtA regulates a-1,3-
glucan biosynthesis would contribute to further development of

phenotype control of A. oryzae from the viewpoint of hyphal

pellet formation. There are three a-1,3-glucan synthase genes in

A. oryzae (agsA, agsB, agsC), and agsB deletion leads to the loss

of cell wall a-1,3-glucan (Zhang et al., 2017).

The aim of the present study was to understand the function

of AoAgtA, which is involved in cell wall a-1,3-glucan
biosynthesis and influences hyphal pellet formation in A.

oryzae. We characterized an agtA-overexpressing (agtAOE)

strain of A. oryzae and analyzed the enzymatic properties of

recombinant (r)AoAgtA for maltooligosaccharides and their

derivatives. By in vivo analysis of A. nidulans strains

heterologously overexpressing agtA, we showed that AoAgtA
FIGURE 1

Speculative model for biosynthesis of cell wall a-1,3-glucan in A. nidulans and A. oryzae. Cell wall a-1,3-glucan is mainly synthesized by AgsB,
which is composed of extracellular, intracellular, and multitransmembrane domains. Maltooligosaccharide is likely required as a primer for a-
1,3-glucan biosynthesis and may be produced by intracellular a-amylase AmyG. The a-1,3-glucan chains may be synthesized by the intracellular
domain of AgsB, and the resulting a-1,3-glucan subunits may be exported extracellularly by the multitransmembrane domain. The a-1,3-glucan
subunits may be linked by transglycosylation catalyzed by the extracellular domain of AgsB to complete a-1,3-glucan maturation.
Glycosylphosphatidylinositol-anchored a-amylase AmyD/AoAgtA regulates cell wall a-1,3-glucan biosynthesis, but the underlying mechanism
remains unclear. Question marks indicate steps that are not firmly established.
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decreases the MW of cell wall a-1,3-glucan. We discussed the

enzymatic properties and the involvement of AoAgtA in cell wall

a-1,3-glucan biosynthesis.
Materials and methods

Bioinformatics tools

The signal peptide sequence was predicted by SignalP-5.0

Server (https://services.healthtech.dtu.dk/service.php?SignalP-5.

0). The GPI anchor site was predicted by GPI Modification Site

Prediction (https://mendel.imp.ac.at/gpi/gpi_server.html). The

structure of AoAgtA was predicted using AlphaFold2 (Jumper

et al., 2021; Tunyasuvunakool et al., 2021).
Materials

p-Nitrophenyl a-maltopentaoside (Mal5-a-pNP) was

synthesized in our laboratory (Usui and Murata, 1988).

Maltooligosaccharides were kindly supplied by Kikkoman

Corporation (Noda, Japan). Nigerooligosaccharides were

prepared by two methods: (i) partial acid degradation of linear

a-1,3-glucan produced by GtfJ, a glucosyltransferase from

Streptococcus salivarius ATCC 25975 (Puanglek et al., 2016),

according to Czerwonka et al. (2019). Briefly, bacterial a-1,3-
glucan (250 mg) was suspended in 1 mL of 0.1 M H2SO4 and

incubated at 100°C for 1 h; (ii) enzymatic synthesis using a-1,3-
glucoside phosphorylase (Nihira et al., 2014). Dextran from

Leuconostoc mesenteroides (average MW 9,000–11,000) was

purchased from Merck (Darmstadt, Germany). Pullulan was

kindly supplied by Dr. Tasuku Nakajima (Tohoku University)

and nigeran by Dr. Keiko Uechi (University of the Ryukyus).
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Pustulan was purchased from Calbiochem (San Diego, CA,

United States) and treated with alcohol as in Hattori et al.

(2013). Laminaran from Eisenia bicyclis was purchased from

Tokyo Chemical Industry (Tokyo, Japan). All other commonly

used chemicals were obtained from commercial sources.
Strains

The A. oryzae and A. nidulans strains are listed in Table 1.

Escherichia coli DH5a was used for plasmid amplification.

Pichia pastoris SMD1168H (Thermo Fisher Scientific,

Waltham, MA, United States) was used for protein expression.
Construction of an agtA-overexpressing
strain and an agtA gene disruptant in
Aspergillus oryzae

Primers are listed in Supplementary Table 1. An agtA

overexpression plasmid, pNEN142-agtA, was constructed as

follows. The agtA gene was amplified by polymerase chain

reaction (PCR) with the agtA-Fw-NotI and agtA-Rv-NotI

primers (designed with a NotI restriction site each) and wild-

type A. oryzae genomic deoxyribonucleic acid (DNA) as a

template (Supplementary Figure 1A). The PCR product was

ligated into the NotI site of the pNEN142 vector (Minetoki et al.,

2003) with an In-Fusion HD Cloning Kit (Takara Bio, Kusatsu,

Japan); this vector contains the improved promoter of the A.

oryzae enoA gene. The pNEN142-agtA plasmid was transformed

into wild-type A. oryzae (Supplementary Figure 1B). The agtAOE

transformants were selected on standard Czapek–Dox (CD)

medium (Miyazawa et al., 2019); the niaD gene was used as a

selectable marker. The transformants were subjected to single
TABLE 1 Aspergillus strains used in this study.

Species and strain Genotype Reference

Aspergillus oryzae

Wild-type DligD::sC, DadeA::ptrA, niaD-, adeA+ Mizutani et al., 2008

agtAOE DligD::sC, DadeA::ptrA, niaD-, adeA+, PenoA142-agtA::niaD This study

DagtA DligD::sC, DadeA::ptrA, niaD-, agtA::adeA This study

DagsADagsBDagsC (DAG) DligD::sC, DadeA::ptrA, niaD-, adeA+, agsA::loxP, agsB::loxP, agsC::loxP Miyazawa et al., 2016

Aspergillus nidulans

DamyD biA1, pyrG89, wA3, argB2, pyroA4, veA1, ligD::ptrA, AoargB+, amyD::pyrG Miyazawa et al., 2022

DamyD-agtAOE biA1, pyrG89, wA3, argB2, pyroA4, veA1, ligD::ptrA, AoargB+, amyD::pyrG, Ptef1-agtA::hph, pyrG- This study

DamyD-amyDOE biA1, pyrG89, wA3, argB2, pyroA4, veA1, ligD::ptrA, AoargB+, amyD::pyrG, Ptef1-amyD::hph, pyrG- Miyazawa et al., 2022

agsBOEDamyD biA1, pyrG89, wA3, argB2, pyroA4, veA1, ligD::ptrA, AoargB+, agsA::loxP, Ptef1-agsB::pyroA, amyD::pyrG Miyazawa et al., 2022

agsBOEDamyD-agtAOE biA1, pyrG89, wA3, argB2, pyroA4, veA1, ligD::ptrA, AoargB+, agsA::loxP, Ptef1-agsB::pyroA, amyD::pyrG, Ptef1-
agtA::hph, pyrG-

This study

agsBOEDamyD-amyDOE biA1, pyrG89, wA3, argB2, pyroA4, veA1, ligD::ptrA, AoargB+, agsA::loxP, Ptef1-agsB::pyroA, amyD::pyrG, Ptef1-
amyD::hph, pyrG-

Miyazawa et al., 2022
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sporing as described previously (Hara et al., 2002). Integration of

the agtA overexpression cassette was confirmed by PCR

(Supplementary Figure 1C).

The agtA-disruption (DagtA) strain was created as described

previously (Tamano et al., 2007). The agtA gene disruption

cassette was generated by fusion PCR using an Expand High

Fidelity PCR System (F. Hoffmann-La Roche, Basel,

Switzerland). The 5′- and 3′-arms of agtA were amplified from

wild-type A. oryzae genomic DNA with the primers agtA-LU

and agtA-LL+adeA for the 5′-arm, and agtA-RU+adeA and

agtA-RL for the 3′-arm (Supplementary Figure 2A). adeA was

amplified with the primer pair agtA-AU and agtA-AL

(Supplementary Figure 2A). A mixture of the 5′-flanking
amplicon:adeA:3′-flanking amplicon at a 1:3:1 molar ratio was

used as a template. The PCR products were used for a second

PCR round with the primer pair agtA-LU and agtA-RL to fuse

the 5′ and 3′ regions of the target gene at each end of the adeA

gene (Supplementary Figure 2A). The amplified fragment was

transformed into wild-type A. oryzae (Supplementary

Figure 2B). The transformants were subjected to two

consecutive rounds of single sporing. Replacement of the agtA

gene was confirmed by PCR (Supplementary Figure 2C).
Analysis of growth characteristics of
Aspergillus oryzae and Aspergillus
nidulans in submerged culture

Conidia (final concentration, 1 × 105/mL) of A. oryzae

strains were inoculated into 50 mL of YPD medium (1% yeast

extract, 2% peptone, and 2% glucose) in 200-mL Erlenmeyer

flasks and rotated at 120 rpm at 30°C for 24 h. The mean

diameter of hyphal pellets was determined by measuring 10

randomly selected pellets under a stereomicroscope (M125;

Leica Microsystems, Wetzlar, Germany). Conidia (final

concentration, 5 × 105/mL) of A. nidulans strains were

inoculated into 50 mL of CD medium (Miyazawa et al., 2018)

in 200-mL Erlenmeyer flasks and rotated at 160 rpm at 37°C for

24 h.
a-1,3-Glucan quantification in Aspergillus
oryzae and Aspergillus nidulans mycelia

Strains of A. oryzae were inoculated into YPD medium and

cultured as described in the Analysis of growth characteristics

subsection. Strains of A. nidulans were inoculated into 200 mL of

CD medium in 500-mL Erlenmeyer flasks and rotated at 160

rpm at 37°C for 24 h. Mycelia were collected by filtration

through Miracloth (Merck), washed with distilled water,

lyophilized, and pulverized in a Mixer Mill MM 400 (Retsch,

Haan, Germany). The resulting A. nidulans powder (0.5 g) was

suspended in chloroform–methanol (3:1 vol/vol) and delipidized
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as described previously (Miyazawa et al., 2022). The pulverized

A. oryzae mycelia (0.25–1 g) or delipidized A. nidulans mycelia

were suspended in 0.1 M sodium phosphate buffer (pH 7.0). Cell

wall components were fractionated by hot-water and alkali

treatment (Yoshimi et al., 2013); the fractionation resulted in

hot-water-soluble, alkali-soluble (AS), and alkali-insoluble

fractions. The AS fraction was further separated into a fraction

soluble in water at neutral pH (AS1) and an insoluble fraction

(AS2). The AS2 fraction was used as a-1,3-glucan; this fraction
was hydrolyzed and its glucose content was quantified as

described previously (Yoshimi et al., 2013).
Construction of a recombinant AoAgtA-
expressing strain in Pichia pastoris

An agtA-expression plasmid, pPICZa B-agtA, was

constructed as follows. The gene encoding AoAgtA without the

C-terminus (amino acids (aa) 1–518; whole protein, 549 aa) to

prevent GPI-anchoring was amplified with the primers agtA-Fw-

NdeI (designed with a NdeI restriction site) and agtA-Rv-SmaI

(designed with a SmaI restriction site) from wild-type A. oryzae

complementary DNA (cDNA) as a template. The PCR product

was digested with NdeI and SmaI and ligated into the NdeI–SmaI

site of the pIVEX 2.3d vector (F. Hoffmann-La Roche). Then the

AoAgtA coding region without the 1st–23th aa (putative signal

peptide) and with a PGGGS linker and a (His)6 tag at the C-

terminus was amplified with the primers agtA-Fw-PstI (designed

with a PstI restriction site) and agtA-Rv-XbaI (designed with a

XbaI restriction site); pIVEX 2.3d-agtA was used as a template.

The PCR product was digested with PstI and XbaI and ligated

into the PstI–XbaI site of the pPICZa B vector (Thermo Fisher

Scientific), which encodes a secretion signal of Saccharomyces

cerevisiae a-factor. The pPICZa B-agtA plasmid was linearized

by SacI and integrated into the chromosomal DNA of P. pastoris

SMD1168H competent cells with an EasySelect Pichia Expression

Kit (Thermo Fisher Scientific) according to the manufacturer’s

instructions. The agtA-expressing transformants were cultured

on YPDS (1% yeast extract, 2% peptone, 2% glucose, and 1 M

sorbitol) agar plates containing zeocin (100 µg/mL) at 30°C for

2 days.
Expression and purification of
recombinant AoAgtA

Buffered glycerol-complex (BMGY) medium and buffered

methanol-complex (BMMY) medium were prepared according

to the instructions of the EasySelect Pichia Expression Kit. The

rAoAgtA-expressing P. pastoris strain was inoculated into 25 mL

of BMGY medium in a 100-mL Erlenmeyer flask and rotated at

160 rpm at 30°C until OD600 4–6. The culture broth was

centrifuged at 3,000 × g for 5 min. The collected cells were
frontiersin.org
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resuspended into 100 mL BMMY medium in a 500-mL

Erlenmeyer flask and rotated at 200 rpm at 30°C for 6 days. To

induce and maintain the expression of rAoAgtA, methanol (final

concentration, 0.5% vol/vol) was added to culture broth every 24

h. The culture broth was centrifuged at 3,000 × g for 5 min, and

the supernatant was dialyzed against 10 mM Tris-HCl buffer (pH

8.0). The supernatant (25 mL) was applied to a Ni Sepharose 6

Fast Flow column (1.8 × 5 cm; Cytiva, Marlborough, MA, United

States) equilibrated in 20 mM Tris-HCl buffer (pH 8.0). The

column was washed with the same buffer, and bound enzyme was

eluted with 250 mM imidazole in the same buffer with pH

readjusted to 8.0. The eluant was concentrated and buffer was

replaced with 10 mM Tris-HCl buffer (pH 8.0) in Amicon Ultra-

15 (nominal MW limit, 10,000) (Merck); the enzyme was stored

in this buffer at -80°C for future reactions. At each stage, protein

content was determined by Bradford method with bovine serum

albumin as a standard, and rAoAgtA activity was determined as in

the Recombinant AoAgtA activity measurement subsection. To

check protein purity and determine the MW of the purified

protein, it was subjected to sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) (Laemmli,

1970), and the gels were stained with Coomassie Brilliant Blue

R-250; the MW standards (10,000–250,000) were Precision Plus

Protein Kaleidoscope Standards (Bio-Rad Laboratories, Hercules,

CA, United States). Purified protein (4 mg) was deglycosylated

with 500 U of Endoglycosidase H (Endo H) (New England

Biolabs, Ipswich, MA, United States) according to the

manufacturer’s instructions.
Analytical high-performance liquid
chromatography

The high-performance liquid chromatography (HPLC)

analysis was carried out with a Jasco Intelligent System Liquid

Chromatograph (Jasco, Hachioji, Japan) under Conditions 1 and

2. Under Condition 1, a Unison UK-C18 column (4.6 × 250 mm;

Imtakt, Kyoto, Japan) was used and p-nitrophenyl a-
maltooligoside (PNM) was detected at 300 nm. The bound

material was eluted with 20% methanol at a flow rate of 1.0

mL/min at 40°C. Under Condition 2, a Shodex HILICpak VG-50

4E column (4.6 × 250 mm; Showa Denko, Tokyo, Japan) was

used and maltooligosaccharide was detected with a refractive

index detector. The bound material was eluted with 65%

acetonitrile at a flow rate of 0.7 mL/min at 40°C. 3-a-
Maltooligosylglucose that presents at low level was analyzed

under Condition 3: the HPLC analysis was carried out with a

Hitachi Elite LaChrom HPLC System (Hitachi, Tokyo, Japan) on

the same column as under Condition 2, and the detection was

performed with an Alltech 3300 ELSD (Buchi Labortechnik,

Flawil, Switzerland), an evaporative light scattering detector

that is more sensitive than a refractive index detector. The

bound material was eluted with 65% acetonitrile at a flow rate
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of 0.5 mL/min at 40°C. When the products of substrate

degradation by rAoAgtA were analyzed by HPLC, data analysis

was performed as follows. Products formed from the initial

substrate at an early stage (up to approximately 15%

degradation) were analyzed. Under Condition 1, the amount of

each p-nitrophenylated product was calculated by multiplying

the ratio of each peak area to the total peak area in the

chromatogram by the concentration of the initial substrate.

Under Conditions 2 and 3, the amount of each product was

calculated from each peak area on the chromatogram and the

calibration curve for each oligosaccharide.
Recombinant AoAgtA activity
measurement

A mixture (20 mL) containing 1 mM Mal5-a-pNP and an

appropriate amount of rAoAgtA in 50 mM sodium acetate (Na-

Ac) buffer (pH 5.5) was incubated at 40°C for 10 min. Aliquots

(2 mL) were taken at 2-min intervals, and the reaction was

immediately stopped with 40 mL of methanol. Then H2O (158

µL) was added to each aliquot, and the samples were subjected to

HPLC analysis under Condition 1. The release velocity of p-

nitrophenyl a-maltoside (Mal2-a-pNP) was determined as the

slope of the time-course plot of Mal2-a-pNP amount. One unit

of rAoAgtA activity was defined as the amount of enzyme

required to liberate 1 mmol of Mal2-a-pNP from Mal5-a-pNP
per minute.
Substrate specificity of recombinant
AoAgtA

Corn starch, potato starch, soluble starch, dextran, pullulan,

bacterial a-1,3-glucan, nigeran, cellulose, pustulan, and

laminaran were tested as rAoAgtA substrates. A mixture (12

mL) containing 2 mg/mL (0.2%) each substrate and 24 mU/mL

purified rAoAgtA in 50 mM Na-Ac buffer (pH 5.5) was

incubated at 40°C for 4 h. Then, H2O (138 mL) was added,

and the reaction was immediately stopped by boiling for 5 min.

The amount of reducing sugar generated from each substrate

was measured by bicinchoninic acid method (Doner and Irwin,

1992; Utsumi et al., 2009). The bicinchoninic acid working

reagent was prepared according to Utsumi et al. (2009), and

100 mL was added to a 100-mL aliquot of each boiled reaction

mixture. The sample was incubated at 80°C for 40 min and then

at room temperature for 15 min, and the absorbance at 560 nm

was measured with a Multiscan Spectrum spectrophotometer

(Thermo Fisher Scientific). One unit of enzyme activity was

defined as the amount of enzyme required to liberate 1 mmol of

reducing sugars (D-glucose conversion) from the substrate per

minute. The detection limit was 1 mU/mL.
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Analysis of the modes of bond cleavage
in maltooligosaccharides and their p-
nitrophenyl derivatives

Maltooligosaccharides (DP 2–8, Mal2–8) and PNMs (DP 2–

8, Mal2–8-a-pNP) were used to determine the modes of

enzymatic bond cleavage by rAoAgtA. PNMs were synthesized

from Mal5-a-pNP by transglycosylation catalyzed by rAoAgtA

as described in Supplementary Material, and their structures

were evaluated by 1H nuclear magnetic resonance (NMR)

analysis in D2O (Supplementary Figure 3). To test

maltooligosaccharides, a mixture (40 mL) containing 25 mM

each substrate and 9.5 mU/mL purified rAoAgtA in 50 mM Na-

Ac buffer (pH 5.5) was incubated at 40°C for 20 min. An aliquot

(10 mL) was taken, and the reaction was immediately stopped

with 65 mL of acetonitrile. Then H2O (25 µL) was added to the

aliquot, and the sample was subjected to HPLC analysis under

Condition 2. The frequency of rAoAgtA-catalyzed cleavages of

glycosidic linkages was calculated from the amount of

each product.

To test PNMs, a mixture (20 mL) containing 1.6 mM each

substrate and 9.5 mU/mL purified rAoAgtA in 50 mM Na-Ac

buffer (pH 5.5) was incubated at 40°C for 5 min. Aliquots (2

mL) were taken at 1-min intervals, and the reaction was

immediately stopped with 40 mL of methanol. Then H2O

(158 µL) was added to each aliquot, and the samples were

subjected to HPLC analysis under Condition 1. The release

velocity of each PNM from the initial substrate was

determined as the slope of the time-course plot of the

amount of that PNM. The frequency of rAoAgtA-catalyzed

cleavages of glycosidic linkages was calculated from the release

velocities of different PNMs.
Kinetic studies

Seven substrate concentrations ([S]) for Mal5-a-pNP (1.6–

100 mM), six each for Mal6-a-pNP and Mal7-a-pNP (1.6–50

mM), and five for Mal8-a-pNP (1.6–25 mM) were used. The

degradation reactions of these PNMs, including hydrolysis and

transglycosylation, catalyzed by rAoAgtA and HPLC analyses

were performed as described in the Analysis of the modes of bond

cleavage subsection. The initial velocity (v) of substrate

degradation was determined as the slope of the time-course

plot of the total amount of all PNMs liberated from each initial

substrate. The kinetic parameters of the Michaelis–Menten

equation were evaluated by Hanes–Woolf plots ([S]/v versus

[S]) and the least-squares method. The initial concentration of

rAoAgtA in the reaction solution was 1.83 × 10-4 mM.
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Effects of nigerooligosaccharides on
recombinant AoAgtA catalytic activity

Mal5-a-pNP and various sugars (nigerose, nigerotriose, and

glucose) were prepared at a final concentration of 1.6 mM and 16

mM, respectively. The reactions and HPLC analyses were

performed as described in the Analysis of the modes of bond

cleavage subsection, and the release velocity of Mal2-a-pNP
was calculated.
Enzymatic synthesis of
3-a-maltooligosylglucose

A mixture (530 mL) containing Mal5-a-pNP (50 mg, 100

mM), nigerose (100 mg, 560 mM), and 180 mU/mL rAoAgtA in

dialyzed culture supernatant in 50 mM Na-Ac buffer (pH 5.5)

was incubated at 40°C for 24 h. The reaction was stopped by

adding 11 mL of methanol. The reaction mixture was

concentrated, lyophilized, dissolved in a small amount of H2O,

and then applied to an ODS column (1.3 × 50 cm; Yamazen,

Osaka, Japan) equilibrated with H2O at a flow rate of 3.0 mL/

min to remove PNMs. The eluate (800 mL) was collected as a

single fraction, concentrated, and lyophilized. The partially

purified products were dissolved in a small amount of H2O,

and then applied to a Toyopearl HW-40S column (3.5 × 62 cm;

Tosoh, Tokyo, Japan) equilibrated with H2O at a flow rate of 0.5

mL/min. The eluate was collected in 2-mL fractions (300 mL in

total). Each fraction was analyzed by HPLC under Condition 3,

and the fractions containing 3-a-maltotetraosylglucose

(Mal4a1,3Glc), 3-a-maltotriosylglucose (Mal3a1,3Glc), 3-a-
maltosylglucose (Mal2a1,3Glc) , and nigerose were

concentrated and then lyophilized. Fractions containing

products of insufficient purification were rechromatographed

under the same conditions. Finally, Mal4a1,3Glc (7.3 mg, yield

16.7% based on Mal5-a-pNP), Mal3a1,3Glc (3.1 mg, 8.8%),

Mal2a1,3Glc (10.8 mg, 40.7%), and nigerose (65.7 mg)

were obtained.

The structures of the synthesized products were evaluated by
1H and 13CNMR analysis in D2O (Supplementary Tables 2, 3); 500

MHz 1H NMR spectra and 125 MHz 13C NMR spectra were

recorded using a Bruker Avance Neo-500 NMR spectrometer

(Bruker, Billerica, MA, United States). Matrix assisted laser

desorption/ionization-time of flight (MALDI-TOF) mass spectra

were acquired using an Autoflex Speed spectrometer (Bruker).

MALDI-TOF mass analysis of 3-a-maltooligosylglucose showed

m/z 527.167 [M + Na]+ (calcd for C18H32NaO16, 527.159), 689.210

[M + Na]+ (calcd for C24H42NaO21, 689.212), and 851.392 [M +

Na]+ (calcd for C30H52NaO26, 851.264).
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Behavior analysis of recombinant AoAgtA
for 3-a-maltotetraosylglucose

A mixture (12 mL) containing 25 mM Mal4a1,3Glc and 180

mU/mL purified rAoAgtA in 50 mM Na-Ac buffer (pH 5.5) was

incubated at 40°C for 30 min. An aliquot (3 µL) was taken, and

the reaction was immediately stopped with 44 µL of acetonitrile.

Then H2O (21 µL) was added to the aliquot, and the sample was

subjected to HPLC analysis under Condition 3. The substrate-

degradation velocity and the frequency of rAoAgtA-catalyzed

cleavages of glycosidic linkages were determined from the

amounts of degradation products. The substrates Mal5 and

nigeropentaose were used for comparison. For Mal5, the

reaction time was set to 8 min and degradation velocity was

determined from the amount of Mal2 liberated.
Construction of agtA-overexpressing
strains in Aspergillus nidulans

The agtAOE strains were constructed by inserting the agtA

overexpression cassette into the disrupted amyD locus. The

pNEN142-agtA(-intron) and pAHdPT-agtA plasmids were

first constructed (Supplementary Figure 4A). To remove the

intron in the open reading frame of agtA, PCR was performed

using PrimeSTAR Max DNA Polymerase (Takara Bio) and the

pNEN142-agtA plasmid as a template. The product was

transformed into E. coli to obtain the pNEN142-agtA(-intron)

plasmid. To construct pAHdPT-agtA, a fragment containing the

agtA open reading frame and agdA terminator was amplified

from pNEN142-agtA(-intron). Primers AopyrG-IF-Right-Fw

and Ptef1-tail-Rv were used in PCR with pAHdPT-amyD

(Miyazawa et al., 2022) as a template. The two fragments were

fused using the In-Fusion HD Cloning Kit according to the

manufacturer’s instructions. The resulting plasmid pAHdPT-

agtA was digested with SacI and transformed into the DamyD

and agsBOEDamyD strains (Supplementary Figure 4B).

Candidate strains were selected on CD medium containing

uridine, uracil, and 1.3 mg/mL 5-fluoroorotic acid and then

cultured on CD medium containing uridine, uracil, and 800 µg/

mL hygromycin. Correct insertion of the cassette was confirmed

by PCR (Supplementary Figure 4C).
Determination of the average molecular
weight of alkali-soluble glucan

The MW of glucan in the AS2 fraction was determined by

gel permeation chromatography according to Miyazawa et al.

(2022). Polystyrene (MW, 13,900–3,850,000; Showa Denko) was

used as a standard to calibrate the column.
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Statistical analysis

The t-test or Welch’s test was used to compare paired

samples, and Tukey’s test was used to compare multiple samples.
Results

Sequence analysis of AoAgtA

According to the NCBI database, the agtA (AO090003001498)

gene in A. oryzae consists of 1,711 base pairs and encodes a 549-aa

protein with a putative MW of 60,400. A comparison of the cDNA

and genome sequence revealed one intron. The predicted signal

peptide (1–23 aa) and a GPI anchor site (w site, Ser 530) suggested

that AoAgtA is a cell membrane and/more cell wall-bound protein.

The aa sequence of AoAgtA showed 44% identity with that

of Taka-amylase A of A. oryzae (encoded by amyA, amyB, and

amyC; hereinafter TAA) belonging to GH13. A comparison

between the AlphaFold2-predicted model of AoAgtA and the

TAA crystal structure (PDB, 2GVY) (Vujičić-Žagar and

Dijkstra, 2006) showed that the overall structure, catalytic

residues, and Ca2+-binding residues were highly conserved

(Supplementary Figure 5).
The agtA-overexpressing strain of
Aspergillus oryzae

We constructed the agtAOE and DagtA strains from wild-

type A. oryzae (Supplementary Figures 1, 2). In submerged

culture, the size of the hyphal pellets of the agtAOE strain was

as small as that of the DagsADagsBDagsC (DAG) strain lacking

cell wall a-1,3-glucan (Figures 2A, B). We quantified the amount

of glucose in the AS2 fraction obtained from lyophilized mycelia

of each strain; this fraction contains mainly a-1,3-glucan. The
proportion of glucose in the AS2 fraction from the agtAOE strain

was reduced to 24% of that from the wild-type (Figure 2C; P <

0.01), whereas the size of hyphal pellets and the a-1,3-glucan
content of DagtA strain were similar to those of the wild-type

(Figure 2). These results suggest that AoAgtA negatively

regulates cell wall a-1,3-glucan biosynthesis in A. oryzae.
Recombinant AoAgtA production in
Pichia pastoris

Because agtA overexpression in A. oryzae led to a decrease in

the amount of cell wall a-1,3-glucan and consequently to the

formation of small hyphal pellets, we purified and characterized

rAoAgtA produced in P. pastoris. In a single-step purification of

(His)6-tagged rAoAgtA, 22% of enzymatic activity was recovered
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from culture supernatant on day 6 of culture; 5.2-fold

purification was achieved (Table 2). Purified rAoAgtA showed

a smeared band on SDS-PAGE with a MW of 73,200 (Figure 3).

Removal of N-glycosylation by Endo H treatment decreased the

apparent protein MW to 51,700 (Figure 3); the expected MW of

rAoAgtA without the signal peptide and GPI anchor site but

with the linker and the (His)6 tag at the C-terminus is 56,800.

Therefore, the Endo H treatment revealed N-glycosylation

of rAoAgtA.

Biochemical characterization of
recombinant AoAgtA

To characterize the biochemical properties of rAoAgtA, we

investigated optimal conditions and stability as described in
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Supplementary Material. The optimal temperature of rAoAgtA

was 40°C (Supplementary Figure 6A). After 30-min incubation

at 10–70°C, the protein retained >80% of enzymatic activity (i.e.,

was stable) at up to 30°C (Supplementary Figure 6B). The

optimal pH of rAoAgtA was 5.5 (Supplementary Figure 6C).

After 30-min incubation in each buffer at 4°C, the protein

retained >80% enzymatic activity (i.e., was stable) at pH 4–9

(Supplementary Figure 6D).

Cu2+ and ethylenediaminetetraacetic acid (EDTA) reduced

rAoAgtA activity to undetectable and 21 ± 6%, respectively

(Supplementary Table 4). rAoAgtA activity was restored by

adding Ca2+ after EDTA treatment (Supplementary Table 5).

The predicted conservation of the Ca2+-binding residues

between AoAgtA and TAA (Supplementary Figure 5E) is

consistent with these results.
TABLE 2 Purification of rAoAgtA from the culture supernatant of the rAoAgtA-expressing P. pastoris strain.

Step Total activity (U) Protein (mg) Specific activity (U/mg) Yield (%) Purification (fold)

Culture supernatant 0.17 1.6 0.11 100 1

Ni Sepharose 6 Fast Flow eluate 0.039 0.069 0.56 22 5.2
A B

C

FIGURE 2

Analysis of the agtAOE strain of A. oryzae. (A) Growth characteristics of A. oryzae wild-type (WT), agtAOE, DagtA, and DAG strains in submerged
culture. Conidia (1 × 105/mL) of each strain were inoculated into 50 mL of YPD medium and rotated at 120 rpm at 30°C for 24 h. Upper images,
cultures in Erlenmeyer flasks; lower images, representative hyphal pellets under a stereomicroscope (scale = 1 mm). (B) The mean diameter of
hyphal pellets. Error bars represent the standard error of the mean calculated from three replicates. Different letters above bars indicate
significant difference by Tukey’s test (P < 0.01). (C) Amount of glucose in the alkali-soluble water-insoluble (AS2) fraction. Error bars represent
the standard error of the mean calculated from three replicates. Different letters above bars indicate significant difference by Tukey’s test (P <
0.01).
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Substrate specificity of recombinant
AoAgtA

We assessed the ability of purified rAoAgtA to catalyze the

degradation of various natural glucans by measuring the

amounts of reducing sugars produced from the substrates.

rAoAgtA showed a weak degradation activity (3.23 ± 0.28

mU/mL) only for soluble starch among glucans (corn starch,

potato starch, soluble starch, dextran, pullulan, and nigeran)

containing a-1,4-glycosidic bonds (Supplementary Table 6).

Furthermore, rAoAgtA was unable to degrade bacterial a-1,3-
glucan that contained only a-1,3-glycosidic bonds, as well as

cellulose, pustulan, and laminaran (Supplementary Table 6).

Since rAoAgtA did not degrade bacterial a-1,3-glucan and

nigeran, which also contains a-1,3-glycosidic bonds, AoAgtA

appears not to cleave the a-1,3-glycosidic bonds in cell wall a-
1,3-glucan.
Analysis of the modes of bond cleavage
in maltooligosaccharides and their p-
nitrophenyl derivatives

Since rAoAgtA degraded soluble starch, we evaluated its

degradation activity and the modes of bond cleavage for 25 mM

maltooligosaccharides (Mal2–8) and 1.6 mM their pNP-

derivatives (Mal2–8-a-pNP). The cleavage positions and

frequencies of glycosidic bonds degraded by rAoAgtA in each

oligosaccharide substrate are shown in Figure 4. rAoAgtA

showed degradation activity against maltooligosaccharide

substrates with a DP of at least 5 (Mal5–8 and Mal5–8-a-pNP).
HPLC chromatograms of the substrates and products of Mal5–8-
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a-pNP degradation by rAoAgtA are shown in Supplementary

Figure 7. rAoAgtA catalyzed not only hydrolysis but also

transglycosylation. For example, when the substrate was Mal5,

the degradation products Mal2 and Mal3 , and the

transglycosylation product Mal8 were observed. Since the

molar concentration of Mal2 was equal to the sum of molar

concentrations of Mal3 and Mal8 (data not shown), we

concluded that the cleavage position in Mal5 was the third

glycosidic bond from the non-reducing end (Figure 4). In

maltooligosaccharide substrates (DP of at least 5) other than

Mal5 and Mal5-a-pNP, rAoAgtA randomly cleaved the internal

a-1,4-glycosidic bonds (Figure 4). The mode of bond cleavage by

rAoAgtA in maltooligosaccharide substrates with a DP of at least

5 was similar to that of TAA, which is a typical a-amylase (Nitta

et al., 1971; Suganuma, 1983). On the other hand, a major

difference was observed in that TAA can hydrolyze Mal2–4 (Nitta

et al., 1971; Suganuma, 1983), whereas rAoAgtA cannot.
FIGURE 3

SDS-PAGE analysis of rAoAgtA produced in P. pastoris. Lanes M,
Molecular weight markers; Lane 1, rAoAgtA purified on a Ni
Sepharose 6 Fast Flow column; Lane 2, The same rAoAgtA
deglycosylated with Endo H. Arrowheads indicate rAoAgtA
bands. The band at 29,000 in lane 2 is Endo H.
FIGURE 4

Frequency of site-specific cleavage during rAoAgtA-catalyzed
degradation of maltooligosaccharides and their derivatives. The
values in bold are the cleavage frequencies of glycosidic linkages.
The cleavage positions that could not be distinguished are indicated
as “a and A” or “b or B”. G, glucose residue; pNP, p-nitrophenly
group; G*, glucose residue with a reducing end.
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Kinetic studies

We conducted kinetic studies of the degradation of PNMs

(Mal5–8-a-pNP) by rAoAgtA to further investigate its properties

(Table 3 and Supplementary Figure 8). Ideally, the kinetics

should be analyzed in the absence of transglycosylation, but

we could not prevent transglycosylation. Therefore, we analyzed

the kinetics in the presence of PNM hydrolysis and

transglycosylation to the initial substrate, and obtained the

apparent kinetic parameter values. The Km value of rAoAgtA

was the lowest for Mal8-a-pNP (25.1 mM), and the kcat/Km value

was the highest for Mal6-a-pNP (1.42 s-1mM-1). Other known

a-amylases often have Km values of at most several mM and

larger k c a t /Km values than those of rAoAgtA for

maltooligosaccharide substrates with a DP at least 5 (Nitta

et al., 1971; Suganuma, 1983; Usui et al., 1992; Okada et al.,

2000). Thus, the affinity and catalytic efficiency of rAoAgtA for

maltooligosaccharide substrates were lower than those of other

known a-amylases.
Effects of nigerooligosaccharides on
recombinant AoAgtA catalytic activity

Nigerooligosaccharides can be considered as part of the

structure of cell wall a-1,3-glucan of Aspergillus fungi. In the

presence of rAoAgtA, 1.6 mM Mal5-a-pNP as a substrate, and

16mMnigerose or nigerotriose, the release velocity ofMal2-a-pNP
was 1.2 times and 1.4 times, respectively, that in the control

without nigerooligosaccharides (Supplementary Figure 9; P <

0.01). Addition of glucose instead of nigerooligosaccharides had

no effect (Supplementary Figure 9). This may be a result of

substrate degradation due to the occurrence of transglycosylation

with nigerooligosaccharides as acceptors. Therefore, we

synthesized transglycosylation products using Mal5-a-pNP as a

donor, nigerose as an acceptor, and an excess of rAoAgtA in

dialyzed culture supernatant and obtained Mal4a1,3Glc,
Mal3a1,3Glc, and Mal2a1,3Glc, in which maltooligosaccharide

or glucose was transferred to the non-reducing end of nigerose

with a formation of an a-1,4-glycosidic bond (Supplementary

Tables 2, 3).
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3-a-Maltooligosylglucose is a substrate
of recombinant AoAgtA

The 3-a-maltooligosylglucose motifs are present as part of

the speculative cell wall a-1,3-glucan structure. We evaluated the

behavior of rAoAgtA with 25 mMMal4a1,3Glc and found that it
cleaved Mal4a1,3Glc at the first, second, and third glycosidic

bonds from the non-reducing end at the 19:49:33 ratio

(Figure 4). The rAoAgtA substrate-degradation velocity for

Mal4a1,3Glc was 0.133 ± 0.008 mM/min (mean ± standard

deviation of three replicates), whereas rAoAgtA scarcely

degraded nigeropentaose, which contains only a-1,3-glycosidic
bonds. In Mal5, the third glycosidic bond from the non-reducing

end was mainly cleaved by rAoAgtA, as described in the Analysis

of the modes of bond cleavage subsection (Figure 4). The

rAoAgtA substrate-degradation velocity for Mal5 was 0.320 ±

0.027 mM/min, and it was slower for Mal4a1,3Glc (0.42-fold, P
< 0.01 in t-test) than for Mal5. The rAoAgtA activity for

Mal4a1,3Glc showed two interesting characteristics: (i) a

random cleavage mode of a-1,4-glycosidic bonds for

Mal4a1,3Glc but not for Mal5; (ii) rAoAgtA catalyzed

hydrolysis and self-transglycosylation with Mal5 but almost

exclusively self-transglycosylation with Mal4a1,3Glc (data not

shown). We found that rAoAgtA randomly cleaves the a-1,4-
glycosidic bonds of Mal4a1,3Glc. Its structure can be considered

as part of the structure of cell wall a-1,3-glucan in Aspergillus

fungi (Miyazawa et al., 2018).
The agtA-overexpressing strains of
Aspergillus nidulans

Since we have not established a method to measure the MW

of the alkali-soluble glucan in the AS2 fractions derived from any

A. oryzae strains, we introduced the agtA overexpression cassette

into the DamyD and agsBOEDamyD strains of A. nidulans to

obtain the DamyD-agtAOE and agsBOEDamyD-agtAOE strains

(Supplementary Figure 4). In submerged culture, the DamyD

strain formed tightly aggregated hyphal pellets, but the hyphae

of the DamyD-agtAOE strain were almost fully dispersed

(Figure 5). The latter result is consistent with that for the

DamyD-amyDOE strain (Figure 5) reported by Miyazawa et al.
TABLE 3 Kinetic parameters of rAoAgtA for the degradation of Mal5–8-a-pNP.

Substrate Km (mM) Vmax (mM/min) kcat (1/s) kcat/Km(1/(s·mM)) Relative kcat/Km

Mal5-a-pNP 61.8 0.659 60.0 0.97 0.69

Mal6-a-pNP 45.6 0.710 64.6 1.42 1

Mal7-a-pNP 28.9 0.402 36.7 1.27 0.90

Mal8-a-pNP 25.1 0.344 31.3 1.25 0.88
The relative kcat/Km values were calculated by dividing the kcat/Km values by that for Mal6-a-pNP, which was the largest among those determined.
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(2022). The flask culture of the agsBOEDamyD-agtAOE strain

seemed cloudier than those of agsBOEDamyD and

agsBOEDamyD-amyDOE strains, but there was only a slight

difference in the hyphal pellets they formed (Figure 5).

Overexpression of agtA had no marked effect on the

phenotype of the agsBOEDamyD strain.

We determined the amount of glucose and MW of glucan in

the AS2 fractions from the agsBOEDamyD and agsBOEDamyD-

agtAOE strains. The proportion of glucose in the AS2 fraction

seemed to be slightly lower in agsBOEDamyD-agtAOE than in

agsBOEDamyD (Figure 6A), but the difference was not

statistically significant, presumably due to the masking effect

of agsB overexpression. On the other hand, the number-average

MW of glucan in the AS2 fraction from agsBOEDamyD-agtAOE

(95,700 ± 1,300) was significantly lower than that from

agsBOEDamyD (462,000 ± 38,000; Figure 6B; Table 4, P < 0.01

in Welch’s test). These results indicate that AoAgtA decreases

the MW of cell wall a-1,3-glucan, similar to A. nidulans AmyD

(Miyazawa et al., 2022).
Discussion

Although Agt proteins encoded by the orthologous agtA

genes in Aspergillus fungi are thought to be GPI-anchored a-
Frontiers in Fungal Biology 12
amylases, their function may be related to the biosynthesis of cell

wall a-1,3-glucan rather than to starch catabolism (van der Kaaij

et al., 2007; He et al., 2014; He et al., 2017; Miyazawa et al., 2022).

In the present study, similarly to amyD in A. nidulans (He et al.,

2014; He et al., 2017; Miyazawa et al., 2022), agtA overexpression

in A. oryzae decreased the amount of a-1,3-glucan in the cell
FIGURE 5

Growth characteristics of agtAOE strains of A. nidulans in
submerged culture. Conidia (5 × 105/mL) of each strain were
inoculated into 50 mL of standard Czapex–Dox (CD) medium
and rotated at 160 rpm at 37°C for 24 h. Upper images, cultures
in Erlenmeyer flasks; lower images, representative hyphae under
a stereomicroscope. Scale bars, 1 mm.
A

B

FIGURE 6

(A) Glucose content and (B) gel permeation chromatography
elution profile of the AS2 fraction in the agsBOEDamyD-agtAOE

strain of A. nidulans. (A) Conidia (5 × 105/mL) of each strain were
inoculated into CD medium and rotated at 160 rpm at 37°C for
24 h. Error bars represent the standard error of the mean
calculated from three replicates. n.s., not significant in t-test (P ≥

0.05). (B) The AS2 fraction from 24-h-cultured mycelia of each
strain was dissolved in 20 mM LiCl/N,N-dimethylacetamide.
The elution profile was monitored with a refractive index
detector. Molecular weights of the glucan peaks were
determined from a calibration curve of polystyrene (PS)
standards (♦). Mw, weight-average molecular weight; Mn,
number-average molecular weight.
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wall (Figure 2), suggesting that AoAgtA suppresses cell wall a-
1,3-glucan biosynthesis in A. oryzae. We also investigated the

enzymatic properties of rAoAgtA to further understand its

contribution to cell wall a-1,3-glucan biosynthesis.

Among several types of glucans, rAoAgtA degraded only

soluble starch (Supplementary Table 6). Therefore, AoAgtA

appeared to act on a-1,4-glycosidic linkages and may degrade

the spacer composed of a-1,4-linked glucose residues that is

thought to be incorporated into cell wall a-1,3-glucan (Figure 1)

during its biosynthesis. We analyzed the modes of bond cleavage

by rAoAgtA, including hydrolysis and transglycosylation, using

maltooligosaccharide substrates. rAoAgtA showed an endo-type

cleavage mode for substrates with a DP at least 5 (Figure 4). The

weak activity of rAoAgtA on soluble starch and its substrate

specificity for maltooligosaccharide substrates were consistent

with the properties of AnAgtA of A. niger, which also has 4-a-
glucanotransferase activity and is expected to belong to a new

subgroup of GH13 (van der Kaaij et al., 2007). Although the

length (DP) of the spacer has not been clarified, if AoAgtA cleaves

the spacer, its DP should be at least 5, as suggested by the failure of

rAoAgtA to degrade nigeran, a polysaccharide consisting of

alternating a-1,3- and a-1,4-linked glucose residues

(Supplementary Table 6), and by the modes of bond cleavage in

maltooligosaccharide substrates (Figure 4). However, the kinetic

studies of PNM degradation (Table 3) demonstrated an extremely

low rAoAgtA activity for maltooligosaccharide substrates

compared with other known a-amylases. The reason for such

low activity may be a replacement of a His residue in Region I of

the Agt proteins, which was also mentioned in the case of AnAgtA

by van der Kaaij et al. (2007) (Supplementary Table 7). This

residue is particularly conserved among the members of the a-
amylase family (Svensson, 1994; Kuriki et al., 2006), and its

mutation reportedly decreases enzyme activity and alters the

type of reaction catalyzed by the enzyme (Nakamura et al.,

1993; Svensson, 1994; Chang et al., 2003; Leemhuis et al., 2004).

This His residue is changed to Asn in AoAgtA (Supplementary

Table 7). The enzymatic characteristics of rAoAgtA might reflect

the evolutionary divergence of the functions of Agt proteins from

those of a-amylases highly active on starch.

We consider that Agt proteins are specialized in cleaving a-
1,4-linked oligosaccharides or glucan with a-1,3-glycosidic bonds
on the side of the reducing end or both sides in vivo. As
Frontiers in Fungal Biology 13
preparation of such predicted substrates is currently difficult, we

examined the effect of nigerooligosaccharides on rAoAgtA catalytic

activity and found that they increased Mal5-a-pNP-degradation
(Supplementary Figure 9). AnAgtA can use nigerooligosaccharides

with a small DP as acceptors for transglycosylation (van der Kaaij

et al., 2007). We predicted that rAoAgtA also conducts

transglycosylation with nigerooligosaccharides as acceptors. In

fact, 3-a-maltooligosylglucose was synthesized by rAoAgtA

transglycosylation activity with Mal5-a-pNP as a donor and

nigerose as an acceptor (Supplementary Tables 2, 3). The

transfer of maltooligosaccharide to nigerooligosaccharide with a

formation of an a-1,4-glycosidic bond, which is catalyzed by

rAoAgtA, has not been known for other a-amylases. The study

of AnAgtA has not elucidated the chemical structures of the

transglycosylation products with nigerooligosaccharides as

acceptors (van der Kaaij et al., 2007). The degradation of Mal5-

a-pNP catalyzed by rAoAgtA likely proceeds via a covalent

glycosyl (mainly Mal3)–enzyme intermediate. We expect that

such an intermediate would be more vulnerable to nucleophilic

attack with oligosaccharides than with H2O.

The structure of 3-a-maltooligosylglucose containing both

nigerooligosaccharide and maltooligosaccharide components is

present as parts of the structure in the speculative cell wall a-1,3-
glucan structure. In fact, rAoAgtA was able to cleave Mal4a1,3Glc
(Figure 4). The activity of rAoAgtA with Mal4a1,3Glc was weak,
with a slower substrate-degradation velocity than that for Mal5.

The length of the maltooligosaccharide moiety of theMal4a1,3Glc
might be insufficient for the maximum activity of rAoAgtA, as

mentioned above. Interestingly, we found that the rAoAgtAmode

of bond cleavage in Mal4a1,3Glc clearly differed from that in

Mal5 (Figure 4).

We here propose a hypothetical role of AoAgtA in cell wall

a-1,3-glucan biosynthesis. rAoAgtA randomly cleaved only the

a-1,4-glycosidic bonds of Mal4a1,3Glc (Figure 4), and the

structure of Mal4a1,3Glc is similar to the predicted boundary

structure between a-1,3-glucan main chain and the spacer in cell

wall a-1,3-glucan synthesized by AgsB (Figure 7A). Miyazawa

et al. (2022) suggested that AmyD of A. nidulans requires a GPI

anchor to act on a-1,3-glucan in vivo and that AmyD reacts with

cell wall a-1,3-glucan shortly after it is synthesized by a-1,3-
glucan synthase on the plasma membrane. Therefore, we

speculate that AoAgtA cleaves some of the spacers of cell wall
TABLE 4 Molecular weight of alkali-soluble glucan from the cell wall.

Sample Mp
b Mw

c Mn
d Mw/Mn

agsBOEDamyD AS2a 771 000 ± 106 000 1 330 000 ± 80 000 462 000 ± 38 000 2.88 ± 0.07

agsBOEDamyD-agtAOE AS2 90 700 ± 4 300 285 000 ± 14 000 95 700 ± 1 300 2.97 ± 0.11
fron
aAS2, insoluble components after dialysis of the alkali-soluble fraction.
bPeak molecular weight.
cWeight-average molecular weight.
dNumber-average molecular weight.
data are mean ± standard deviation of three replicates.
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FIGURE 7

Predicted role of AoAgtA in cell wall a-1,3-glucan biosynthesis in A. oryzae. (A) During biosynthesis, a-1,3-glucan subunits may be
interconnected by transglycosylation catalyzed by the extracellular domain of AgsB; the structure of 3-a-maltotetraosylglucose is consistent
with the structure in which a-1,3-glucan subunits are linked. (B) We speculate that AoAgtA cleaves the spacers composed of a-1,4-linked
glucose residues in cell wall a-1,3-glucan before its insolubilization.
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a-1,3-glucan in the process of synthesis in vivo (Figure 7B). The

random mode of a-1,4-glycosidic bond cleavage in Mal4a1,3Glc
by rAoAgtA (Figure 4) supports the possibility that AoAgtA

cleaves spacers in cell wall a-1,3-glucan. In fact, the MW of

glucan in the AS2 fraction derived from the agtAOE strain of A.

nidulans was significantly lower than in that from the parental

stain (Figure 6B; Table 4). Thus, similar to AmyD (Miyazawa

et al., 2022), AoAgtA decreased the MW of cell wall a-1,3-glucan
in vivo. The MW of glucan in the AS2 fraction extracted from

agsBOEDamyD was not affected by purified rAoAgtA (data not

shown), perhaps because mature cell wall a-1,3-glucan is packed

by hydrogen bonds, and its spacers cannot be accessed by the

enzyme. To prove that AoAgtA acts on cell wall a-1,3-glucan in

vitro, it is necessary to establish a new evaluation system.

In the present study, we showed that overexpression of the

agtA gene in A. oryzae decreased the amount of a-1,3-glucan in

the cell wall, suggesting that AoAgtA suppresses cell wall a-1,3-
glucan biosynthesis. Analysis using the agtAOE strain of A.

nidulans showed that AoAgtA decreases the MW of cell wall

a-1,3-glucan. Purified rAoAgtA randomly cleaved the a-1,4-
glycosidic bonds of Mal4a1,3Glc, which can be considered as

part of the structure of cell wall a-1,3-glucan. We conclude that

AoAgtA likely cleaves the spacers composed of a-1,4-linked
glucose residues in cell wall a-1,3-glucan before its

insolubilization. Taken together with the results of in vivo
Frontiers in Fungal Biology 14
functional analysis of the amyD gene of A. nidulans

(Miyazawa et al., 2022), the present study suggests that

AoAgtA plays an important role in the biosynthesis of cell

wall a-1,3-glucan.
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Szczodrak, J. (2013). Chemical characterization of a water insoluble (1 ! 3)-a-D-
glucan from an alkaline extract of Aspergillus wentii. Carbohydr. Polym. 91, 603–
608. doi: 10.1016/j.carbpol.2012.08.060

Czerwonka, A., Wiater, A., Komaniecka, I., Adamczyk, P., Rzeski, W., and
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(2021). Highly accurate protein structure prediction for the human proteome.
Nature 596, 590–596. doi: 10.1038/s41586-021-03828-1

Usui, T., and Murata, T. (1988). Enzymatic synthesis of p-nitrophenyl a-
maltopentaoside in an aqueous-methanol solvent system by maltotetraose-
forming amylase: a substrate for human amylase in serum. J. Biochem. 103, 969–
972. doi: 10.1093/oxfordjournals.jbchem.a122395

Usui, T., Ogawa, K., Nagai, H., and Matsui, H. (1992). Enzymatic synthesis of p-
nitrophenyl 45-O-b-D-galactosyl-a-maltopentaoside as a substrate for human a-
amylases. Anal. Biochem. 202, 61–67. doi: 10.1016/0003-2697(92)90206-m

Utsumi, Y., Yoshida, M., Francisco, P. B. J., Sawada, T., Kitamura, S., and
Nakamura, Y. (2009). Quantitative assay method for starch branching enzyme with
bicinchoninic acid by measuring the reducing terminals of glucans. J. Appl.
Glycosci. 56, 215–222. doi: 10.5458/jag.56.215

van der Kaaij, R. M., Yuan, X. L., Franken, A., Ram, A. F. J., Punt, P. J., van der
Maarel, M. J. E. C., et al. (2007). Two novel, putatively cell wall-associated and
glycosylphosphatidylinositol-anchored a-glucanotransferase enzymes of
Aspergillus niger. Eukaryot. Cell 6, 1178–1188. doi: 10.1128/EC.00354-06
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