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Grapevine trunk diseases (GTDs) are one of the most important phytosanitary

problems that affect grapevines (Vitis vinifera) worldwide. In Chile,

Phaeomoniella chlamydospora is the major fungal trunk pathogen

associated with GTDs. In the vineyards, the natural infections by P.

chlamydospora are associated with air-borne conidia dispersed onto fresh

pruning wounds from pycnidia. These pruning wounds are considered an

important entrance for fungal trunk pathogens such as P. chlamydospora in

the host in the field. However, the duration of the susceptibility of grapevine

annual pruning wounds to P. chlamydospora is still unknown in Chile.

Therefore, this study aimed to evaluate the period of susceptibility of

pruning wounds of different ages to artificial infection of P. chlamydospora

on grapevine cv. Cabernet Sauvignon, Central Chile. Artificial inoculations of a

conidial suspension (105 conidia/mL) of P. chlamydospora were used to

determine the susceptibility of pruning wounds of different ages, from 1, 15,

30, and 45 days after pruning. The experiments were conducted on lignified

cuttings in a greenhouse, and on vine spurs in two vineyards (Buin and

Nancagua, Central Chile) during two consecutive seasons. The results

indicated that the pruning wounds of grapevine cv. Cabernet Sauvignon

were very susceptible to infections by P. chlamydospora, with a percentage

of pruning wounds infected from 97 to 71% for cuttings, and 96% to 60% for

spurs, during the first 15 days after pruning. However, the susceptibility of

pruning wounds of different ages in cuttings and spurs of grapevine, generally

decreased as the time from pruning to inoculation increased. Moreover, the

pruning wounds the pruning wounds remained susceptible to artificial

inoculation by P. chlamydospora for up 45 days after pruning with percent

of wounds infected from 8.0 to 12.2, and 8.3 to 18.8% on cuttings and spurs of
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grapevine, respectively. Finally, this study constitutes study constitutes the

first research focalized on the susceptibility of pruning wounds of various

ages of grapevine cv. Cabernet Sauvignon to artificial inoculations by P.

chlamydospora in Central Chile.
KEYWORDS

fungal trunk pathogen, chilean vineyards, grapevine trunk diseases (GTDs), pruning
wound infection, age of pruning wound
Introduction

Grapevine (Vitis vinifera L.) is a crucial fruit crop that is

cultivated in several countries in both hemispheres (Food and

Agriculture Organization of the United Nations, 2022; www.fao.

org/faostat). Chile is one of the leading exporters of wines with

over 136,166 ha dedicated to wine production, which are

concentrated in the central zone between the Metropolitana (33°

42’S; 70°39’W) and Maule regions (35°25’S; 71°40’W). The export

of wine reached 908 million liters during the 2021 growing season,

representing an important agricultural activity for the economy in

terms of productivity and employment creation, and accounting

for USD$ 2,037 million (Odepa, 2022; www.odepa.cl). The main

cultivars planted were Cabernet Sauvignon and Sauvignon Blanc,

representing 29.4% and 11.2% of total grapevines, respectively

(Odepa, 2022; www.odepa.cl). Central Chile is characterized by a

Mediterranean climate (Csb) with a warm and dry summer and

cold, wet winters with main annual rainfall between 342 and 676

mm (Sarricolea et al., 2017). Under these weather conditions,

Cabernet Sauvignon is the most planted cultivar, mainly under

irrigation and trained as a bi-lateral cordon trellis (Gil and

Pszczólkowski, 2015).

Grapevine trunk diseases (GTDs) such as Botryosphaeria

dieback, Eutypa dieback, Petri disease, Esca disease, and Esca-

like disease, which are caused by fungal pathogens, are one of the

most important phytosanitary problems that affect V. vinifera in

Chile (Dı́ az et al., 2013; Larach et al., 2020; Lolas et al., 2021) and

worldwide (Mugnai et al., 1999; Cloete et al., 2015; Gramaje

et al., 2018; Kenfaoui et al., 2022). GTDs cause a gradual dieback

of arms and trunks, reducing plant longevity, the overall yields,

quality, and eventually the death of the entire plant (Úrbez-

Torres et al., 2006; Úrbez-Torres et al., 2014; Gramaje et al.,

2018; Larach et al., 2020). Several fungal trunk pathogens have

been isolated and described from symptomatic grapevines with

GTDs, including Phaeomoniella chlamydospora (W. Gams,

Crous, M. J. Wingf. & Mugnai) Crous & W. Gams,

Phaeoacremonium spp., and species belonging to families of

Botryosphaeriaceae as Diplodia seriata De Not. and

Neofusicoccum parvum (Pennycook & Samuels) Crous,
02
Slippers & A.J.L. Phillips., and Diatrypaceae such as Eutypa

lata (Pers.) Tul. & C. Tul., and Cryptovalsa ampelina (Nitschke)

Fuckel., among others (Mugnai et al., 1999; Aroca et al., 2010;

Gramaje et al., 2018; Kenfaoui et al., 2022).

In Chile, P. chlamydospora is one of the main fungal trunk

pathogens associated with Petri and Esca-like diseases. It is

consistently involved with black-wood streaking symptoms

and characterized by the presence of dark-brown to black

discoloration of xylem tissue in the wood (Dı́ az et al., 2013;

Dı́ az and Latorre, 2014). However, other fungal trunk pathogens,

such as the species Botryosphaeriaceae and Diatrypaceae have

also been reported in Chile and are associated with GTDs (Dı́ az
et al., 2011; Morales et al., 2012; Dı́ az et al., 2013; Dı́ az and

Latorre, 2014; Lolas et al., 2020; Gaı́ nza-Cortés et al., 2020).
The fungus P. chlamydospora is a trunk pathogen that is

characterized by slow mycelial growth in vitro, initially

producing a yeast-like colony of whitish and shiny, turned to

dark olivaceous with sparse aerial mycelium with age (Mugnai

et al., 1999; Crous and Gams, 2000; Pascoe and Cottral, 2000).

Conidiophores are erect, branched, smooth, and septated, where

the base is subcylindrical, green-brown, but hyaline toward the

tip (Figure 1). The conidia are unicellular, slightly pigmented,

smooth, oblong to ellipsoidal, produced in aggregates from the

conidiophore apex (Crous and Gams, 2000; Pascoe and Cottral,

2000; Dı́ az and Latorre, 2014). In laboratory conditions, conidia

of P. chlamydospora are produced by conidiophores and phialide

from aerial mycelia and pycnidia on cultures (pine needle or

chip woods of grapevine), and pycnidia developed on the surface

of plantlets, shoots, and vines inoculated with P. chlamydospora

(Mugnai et al., 1999; Pascoe and Cottral, 2000; Dı́ az and Latorre,
2014). Furthermore, various studies conducted in vineyards in

Australia, California, and South Africa have found the pycnidia

state of P. chlamydospora on the surface of pruning debris

(ground) and diseased tissues (cordons and old spurs) in the

vine (Edwards and Pascoe, 2001; Eskalen et al., 2002; Baloyi

et al., 2016). Although Edwards and Pascoe (2001) found

pycnidia of P. chlamydospora in vineyards, the viability of

conidia was insignificant and considered as spermatia.

However, studies by Eskalen et al. (2002; 2004) and Baloyi
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et al. (2016) in vineyards in California and South Africa

demonstrated that conidia obtained from pycnidia on the

surface of diseased tissues were viable and pathogenic.

Therefore, these diseased tissues, including pruning debris left

in the ground, cordons, and old spurs attached to the grapevine,

are considered important inoculum sources in commercial

vineyards (Baloyi et al., 2016; Gramaje et al., 2018). However,

knowledge about the epidemiology of Petri and Esca diseases

and the role of P. chlamydospora is still limited.

Natural infection has been associated with air-borne conidia

of fungal trunk pathogens, which are dispersed on fresh pruning

wounds during rainy periods during winter months (Eskalen

and Gubler, 2001; Eskalen et al., 2002; van Niekerk et al., 2010;

Úrbez-Torres et al., 2010). In this sense, conidia of P.

chlamydospora have been detected and quantified in the field,

being correlational with the occurrence of rainfall or high

relative humidity, especially during winter months in

California (Eskalen et al., 2004) and South Africa (van Niekerk

et al., 2010). Natural infections by P. chlamydospora on pruning

wounds were detected in a diseased vineyard (30 years old) and

healthy vineyards (10 years old), with 21 and 0% of grapevines

showing GTDs symptoms, respectively, in Catalonia, Spain
Frontiers in Fungal Biology 03
(Luque et al., 2014). Therefore, it has been hypothesized that

the major entrance for fungal trunk pathogens in the host is the

pruning wound. Several inoculation studies have revealed that P.

chlamydospora can cause black wood streaking from pruning

wound infections (Eskalen et al., 2007; Serra et al., 2008; Elena

and Luque, 2016). Previous studies performed in vineyards with

inoculation of fungal trunk pathogens, including Eutypa lata,

Botryosphaeriaceae, and P. chlamydospora on pruning wounds,

have shown that the susceptibility was highest to infection when

the inoculation was done on fresh pruning wounds (the first two

weeks), but the susceptibility decreased on the wounds when the

time between pruning wounds and inoculation increased (van

Niekerk et al., 2011; Úrbez-Torres and Gubler, 2011; Elena and

Luque, 2016). Moreover, according to studies on the grapevine,

the pruning wounds inoculated with P. chlamydospora can be

susceptible for a period extended up to 4 to 16 weeks after

pruning from vineyards in California (Eskalen et al., 2007),

France (Chapuis et al., 1998), Italy (Serra et al., 2008), South

Africa (van Niekerk et al., 2011) and Spain (Elena and Luque,

2016). For the development of a strategy in the management of

the GTDs, studies about the duration of pruning wounds are

important to elucidate aspects such as time for protection with
FIGURE 1

Characteristics of isolate Pach 3 of Phaeomoniella chlamydospora studied as fungal trunk pathogen on the susceptibility of pruning wound of
different ages of Cabernet Sauvignon in central Chile. Colony of P. chlamydospora after 21 days incubated at 25°C on PDA media (A).
Morphological characteristics of P. chlamydospora as conidiophores and conidia (B). Inoculum of pycnidia of P. chlamydospora induced on
autoclaved grapevine wood chips on WA media (C, D). All bars = 10 um, except C and D with bars of 200 um and 1000 um, respectively.
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fungicides and biological agents according to the susceptibility of

pruning wounds. However, the duration of the susceptibility of

grapevine pruning wounds is still unknown in Chile. Therefore,

this study aimed to evaluate the period of susceptibility of

pruning wounds of different ages to artificial infection of P.

chlamydospora on grapevine cv. Cabernet Sauvignon in

Central Chile.
Material and methods

Fungal isolate and inoculum

This study used P. chlamydospora isolate Pach-3, obtained

from vascular discoloration developed in grapevines showing

Esca-like symptoms. This isolate was identified morphologically

and molecularly (Dı́ az and Latorre, 2014) (Figure 1), and was

kept in the fungal collection at the Plant Pathology Laboratory,

Faculty of Agricultural Science, University of Talca, Chile. The

isolate Pach-3 was recovered and maintained on 2% potato

dextrose agar (PDA) at 25°C for further study (Figure 1).

The inoculum consisted of a conidial suspension obtained

from pycnidia induced on autoclaved grapevine wood chips (1

cm2) that were aseptically placed onto 2% water agar (WA).

Mycelium plug (5-mm diameter) of 15 days-old culture of Pach-

3 was placed in both extremes of wood chips on WA and

incubated for 21 days at 25°C under near UV light with a

regime of 12 h of photoperiod, and then another 21 days

incubated at 10°C (Dı́ az and Latorre, 2014) (Figure 1).

Pycnidia were collected and crushed in 1 mL of sterile distilled

water with 0.05% Tween 80 (polysorbate surfactant; Sigma-

Aldrich; Missouri, USA) to release the conidia. The conidial

suspensions used were adjusted to a concentration of 105

conidia/mL of P. chlamydospora using a hemocytometer (Serra

et al., 2008; Dı́ az and Latorre, 2014) and stored at 4°C until

inoculation to avoid early spore germination. The conidial

viability of each inoculum suspension was tested after

incubating 100 uL of each conidial suspension on 2% WA at

25°C (Úrbez-Torres and Gubler, 2011). Percent germination was

determined after 12 h of incubation, and at least 100 conidia

were observed. A spore was considered germinated if the length

of the germ tube was at least twice the length of the spore.
Effect of the age of pruning wounds on
infection of P. chlamydospora in
grapevine cuttings

Healthy lignified dormant canes (50 cm long) of one-year-

old of grapevine (V. vinifera) cv. Cabernet Sauvignon were

collected during the second week of June (dormant seasons

2014 and 2015) from an apparently healthy commercial

vineyard located in Buin (33°43´S; 70°41´W), Central Chile.
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Cuttings were transported to the laboratory and maintained at

5°C. The dormant cuttings were washed with sterile distilled

water, and then 10 dormant cuttings were placed at a 90° angle at

10 cm in depth in a polyethylene box (35 x 30 x 15 cm)

containing humid perlite (75% relative humidity, RH).

The tips of the cuttings were pruned off at a 45° angle with

the aid of a manual disinfested pruning shear. Wounds were

inoculated at 1, 15, 30, and 45 days after pruning with a 40 uL

drop of a conidial suspension placed with a micropipette on top

of each wound (Serra et al., 2008). An equal number of grapevine

cuttings treated with 40 uL of sterile distilled water were left as

negative controls. All cuttings were incubated for 4 months in a

greenhouse (18-25°C, 70-80% RH), before determining the

length of the vascular discoloration (mm) developed

downward s f rom the p run ing wounds u s ing an

electronic caliper.

To determine the proportion of infected pruning wounds,

small fragments (5 mm) of necrotic tissues from inoculated

cuttings were surface disinfected, sprayed with ethanol (75°),

dried under a flow hood, and placed on Petri dishes containing

modified PDA (2%) with 0.005% tetracycline, 0.01%

streptomycin, and 0.1% Igepal CO-630 (Sigma-Aldrich) (Dı́ az
and Latorre, 2014). Plates were incubated at 25°C with a 12 h

photoperiod. The pathogen reisolated was identified by colony

characteristics, growth rate, and conidia morphology (Crous and

Gams, 2000; Dı́ az and Latorre, 2014). This experiment was

repeated two times.
Effect of the age of the pruning
on infection of P. chlamydospora
in the vineyard

Field studies were performed in the 2014 and 2015 dormant

seasons in two irrigated commercial vineyards of 12- and 15-

year -old cv. Cabernet Sauvignon located in Maipo Valley and

Cachapoal Valley, in Central Chile, respectively. Vines were

trained as bi-lateral cordons and spur prune during the

experiments. Both vineyards were considered of low

prevalence, with values estimated between 3 and 7% of

grapevines with symptoms of Esca-like disease (Dı́ az and

Latorre, 2014). The detection of P. chlamydospora was positive

in 0.4 and 2.1% of grapevine showing symptoms of Esca-like in

vineyards located in Maipo and Cachapoal, respectively.

One-year-old canes were spur-pruned to three buds during

dormancy in the last week of June. The pruning wounds were

made with disinfested pruning shears at an angle of 45° and 2-3

cm above the third bud in each spur (Elena and Luque, 2016).

Based on Petzoldt et al. (1981), 2 h before inoculation, all

pruning wounds were slightly wetted by spraying 3 mL of

sterile distilled water, in order to simulate rain and to assure

an even distribution of the spores over the wound surface.

Pruning wounds were directly inoculated at various ages of
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pruning wounds, with a 40 uL drop of a conidial suspension (105

conidia/mL) placed with a micropipette on each pruning wound

(Serra et al., 2008). Pruning wounds were inoculated at 1, 15, 30,

and 45 days after pruning (age of pruning wound). Control

pruned canes were treated with 40 uL of sterile distilled water.

Eight months after, the spurs were excised about 15 cm below

the point of inoculations and brought to the laboratory for

measurement of the extent of vascular discoloration (mm). The

percentage of infected wounds (reisolation, %) was determined

by taking small fragments (5 mm) from the margins of necrotic

tissues of inoculated spurs, disinfecting them, and placing them

on Petri dished with PDA modified (Dı́ az and Latorre, 2014).

They were then incubated at 25°C. The pathogen reisolated was

identified by colony characteristics, rate of growth, and spore

morphology (Crous and Gams, 2000; Dı́ az and Latorre, 2014).
Data analysis

Control treatments in both experiments were excluded from

statistical data analysis. This information was only used to

estimate the potential natural infection from the natural

inoculum in each vineyard.

The experiments of dormant cuttings were arranged using a

completely randomized design. Vascular discoloration (mm)

data and percent of infection (%) were analyzed separately as a

two x four factorial (years x age of pruning wounds), with four

replicates and ten dormant canes as the experimental units.

Percent of wounds infected (%) data were transformed using the

arcsine of the square root of the proportion prior to analyses.

Data were studied for an analysis of variance (ANOVA), and

means were subjected to a pairwise multiple comparison test of

Tukey (P < 0.05) using SigmaStat 12.0 (Systat Software Inc., San

José , CA, USA).
In the vineyard experiments, the inoculation treatments

were arranged as a randomized complete block design, where

each year was analyzed separately. Vascular discoloration (mm)

and percent of wounds infected (%) data were analyzed

independently, as a two x four factorial (locations x age of

pruning wounds), with eight replicates and eight spurs in two

consecutive vines as the experimental units. Percent of wounds

infected (%) data were transformed using the arcsine of the

square root of the proportion before analysis. Data were studied

for an analysis of variance (ANOVA), and means were subjected

to a pairwise multiple comparison test of Tukey (P < 0.05) using

SigmaStat 12.0 (Systat Software Inc., San José , CA, USA).
Weather data

The daily average temperature and accumulated rainfall data

were obtained from an automatic weather station placed in Buin

and Nancagua, about 200 m from both vineyards. Weather data
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for the whole study were obtained from the weather service of

the vineyards during two consecutive seasons (January to

December 2014 and 2015).
Results

Effect of the age of pruning wounds on
infection by P. chlamydospora in
grapevine cuttings

All grapevine cuttings were viable and developed roots and

shoots under greenhouse conditions (Figures 2A, B). Cuttings

developed vascular discoloration (Figure 2C) after pruning wound

inoculations with a conidial suspension of P. chlamydospora (Pach-

3). The analysis of the variance of vascular discoloration data

showed no significant year x age of pruning wound interaction

(P=0.06; F=2.82). The extent of vascular discoloration was

significant according to the age of the pruning wound (Table 1),

where the length of vascular discolorations significantly decreased

from 62.1 mm to 8.6 mm after 1 day to 45 days of pruning,

respectively (Table 1). The year of the experiment of cutting

inoculated showed significant vascular discoloration (P=0.006;

F=9.08), with an extent of vascular discolorations of 31.6 and 25.9

mm for 2014 and 2015, respectively (Table 1).

The effect of the age of pruning wounds on the percent of

wounds infected was significant (P=0.001; F=26.97), with the

mean percentage of wounds infected decreasing from 96.9 to

18.8%. However, the year factor (P=0.83; F=0.04) and the

interaction between year x age of pruning wounds (P=0.841;

F=0.27) had no significant effect on the percentage of wounds

infected (Table 1).

The cutting susceptibility estimated by the percentage of

wounds infected generally declined when the age of the pruning

wound increased during the two years of experiments (Figure 3).

Differences in the mean percent of wounds infected between

inoculations were measured 1 and 15 days after pruning, and

inoculations performed 30 and 45 days after pruning were

significant (Table 1).
Effect of age of pruning wound of
grapevine spurs on infections by P.
chlamydospora in vineyards

All pruning wounds on artificially inoculated spurs

developed vascular discolorations after 8 months in the

vineyards localized in Buin and Nancagua in 2014 and 2015

(Figure 4). The mean length of vascular discoloration varied

from 34.9 to 41.6 mm for the experiments conducted in Buin

and Nancagua, respectively, in 2014 and from 23.8 to 29.1 mm

for Buin and Nancagua, in 2015 respectively (Table 2). No

natural infection of P. chlamydospora was detected in both
frontiersin.org
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vineyards from the control treatment spurs during the 2014 and

2015 growing seasons.

Independent of the year studied, the length of the vascular

discoloration that developed on the spurs was significantly

affected by the locality and the age of the pruning wound
Frontiers in Fungal Biology 06
(Table 2). The interaction age x locality was also significant

(P<0.001; F=7.63) (Table 2).

In 2014, the P. chlamydospora inoculated at 1 and 15 days

after pruning developed a vascular discoloration of 77.9 mm

(Nancagua) and 47.2 mm (Buin), with significantly more
FIGURE 2

Rooted cuttings of one-year-old of grapevine cv. Cabernet Sauvignon inoculated with a conidial suspension of isolate Pach-3 of Phaeomoniella
chlamydospora under greenhouse conditions (with temperature between 15-24°C and 70-85% HR) for four months. General view of part of
grapevine cuttings after four months (A). Apparently healthy grapevine cuttings inoculated with P. chlamydospora showed green shoots and
root system (B). Grapevine cutting shows vascular discoloration, which was inoculated one day after pruning (C).
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extensive lesions than the other ages of pruning wounds

(Table 2; Figure 5). In 2015, inoculation of P. chlamydospora

on fresh pruning wounds (one day of age of pruning wounds)

produced significantly more extensive vascular discoloration,

with values of 58.2 mm (Nancagua) and 49.1 mm (Buin), than

the vascular discoloration obtained from spurs inoculated at 15,

30, and 45 days after pruning, with values of 34.4 mm

(Nancagua) to 8.1 mm (Buin) (Figure 5).

The analysis of the variance of the percentage of wounds

infected showed an insignificant interaction between locality x

age of pruning wounds (P=0.179; F=1.69) in 2014 and (P=0.397;

F=1.07) in 2015 (Table 3). However, in 2014, the factor locality

and age of pruning wounds had a significant effect of P=0.011

(F=6.91) and P<0.001 (F=49.31) on the % infected pruning
Frontiers in Fungal Biology 07
wounds, respectively (Table 3), where the age of pruning

wounds showed a significant reduction in recovery of P.

chlamydospora according to the increase of the age of pruning

wound (Figure 6). The spurs with an age of pruning wounds of 1

and 15 days were significantly more susceptible to infection by P.

chlamydospora than those with age pruning wounds of 30 and 45

days, showing values of 95.8 to 70.8% of recovery compared with

22.9% and 8.3% (Table 3; Figure 6A).

In 2015, only the factor age of the pruning wound affected

the recovery (%) of P. chlamydospora from inoculated spurs. In

both the localities of Buin and Nancagua, the pruning wounds

aged 1 and 15 days were significantly more susceptible to

infection of P. chlamydospore, with values of 91.7 to 75.1%

and 87.5% to 60.4% for 1 and 15 days after pruning, for Buin and
TABLE 1 Vascular discoloration (mm) caused by artificial inoculations of Phaeomoniella chlamydospora (Pach-3) on pruning wound of rooted
cutting (one-year-old) inoculated at different times after pruning (1, 15, 30, and 45 days), under greenhouse conditions (with temperature
between 15-24°C and 70-85% HR) during four months.

Age of pruning wound (days) Vascular discoloration (mm) Percent of grapevine pruning wounds infected (%)

2014 2015 Meana 2014 2015 Meana

1 66.0 58.1 62.1 d 93.8 100 96.9 b

15 33.7 20.4 27.1 c 75.0 68.8 71.9 b

30 19.0 15.6 17.3 b 25.0 37.5 31.3 a

45 7.7 9.4 8.6 a 12.5 25.0 18.8 a

Mean1 31.6 B 25.9 A 51.6 57.8

ANOVA df P SEDb df P SEDb

Year (Y) 1 0.006 3.9 1 0.838 4.8

Age (A) 3 < 0.001 2.7 3 < 0.001 2.2

Y x A 3 0.060 6.9 3 0.847 7.1
aMeans of vascular discoloration (mm) and percent of wounds infected (%) followed by the different upper case letter in each row or lower case letter in each column differ significantly
according to Tukey´s pairwise multiple comparison test. bSED: Standard error of the difference.
FIGURE 3

Percent of grapevine pruning wounds infected expressed as mean (%) ± standard deviation of rooted cutting of one-year-old cv. Cabernet
Sauvignon by artificial inoculation of 40 uL of a conidial suspension (105 conidia/mL) of Phaeomoniella chlamydospora on pruning wounds of
different ages (1, 15, 30, and 45 days after pruning) under greenhouse conditions (with temperature between 15-24°C and 70-85% HR) during
four months in dormant seasons 2014 (line) and 2015 (segmented line).
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FIGURE 4

Vascular discoloration caused by artificial inoculation of a conidial suspension (105 conidia/mL) of Phaeomoniella chlamydospora (Pach-3) on
pruning wounds of different ages of spurs cv. Cabernet Sauvignon after eight months in Central Chile. Vascular discoloration on spur inoculated
15 days after pruning in a vineyard located in Buin (A). Necrotic lesion on spur inoculated 1 day after pruning in a vineyard located in Buin (B).
Necrotic lesion on spur inoculated 1 day after pruning in a vineyard located in Nancagua (C). Healthy spur of non-inoculated pruning wound in
natural conditions of commercial vineyard located in Nancagua (D).
TABLE 2 Vascular discoloration (mm) caused by artificial inoculation of Phaeomoniella chlamydospora at different ages of pruning wounds (1, 15,
30, and 45 days after pruning) in the commercial vineyards cv. Cabernet Sauvignon during eight months in two localities (Buin and Nancagua),
Central Chile.

Age of pruning wound (days) Vascular discoloration (mm)

Locality, 2014a Locality, 2015a

Buin Nancagua Mean Buin Nancagua Mean

1 57.5 d 77.9 e 67.7 49.1 e 58.2 e 53.7

15 47.2 d 48.3 d 47.8 19.7 c 34.4 d 27.1

30 22.6 bc 32.4 c 27.5 18.4 bc 14.9 abc 16.7

45 12.2 ab 8.0 a 10.1 8.1 a 9.0 ab 8.6

Mean 34.9 41.6 23.8 29.1

ANOVA df P SEDb df P SEDb

Age (A) 3 < 0.001 1.9 3 < 0.001 1.5

Locality (L) 1 < 0.001 1.3 1 0.002 1.1

A x L 3 < 0.001 2.7 3 < 0.001 2.2
Frontiers in Fungal Biology
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aMeans of vascular streaking (mm) followed by the different lower case letters in each row and column differ significantly according to Tukey´s pairwise multiple comparison test. bSED:
Standard error of the difference.
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Nancagua, respectively, compared with pruning wounds

infected at 30 and 45 days after pruning (Table 1; Figure 6B).

The susceptibility of wounds on spurs generally declined as the

age of the pruning wound increased (Figure 6).
Weather data

As shown in Figure 7, the weather conditions of the

vineyards located in Central Chile were general ly

correspondent to the Mediterranean climate, with warmer and

dry summer months from December to March. During this

period, the average medium temperatures were 19°C (2014) and

18°C (2015) for Buin (Maipo Valley), and 22°C (2014) and 20°C

(2015) for Nancagua (Cachapoal Valley). From May to August,
Frontiers in Fungal Biology 09
the accumulated rainfall was 193 mm and 179 mm for Buin, and

455 mm and 364 mm for Nancagua in the seasons 2014 and

2015, respectively.
Discussion

This study examined the susceptibility of different aged

pruning wounds on grapevine cv. Cabernet Sauvignon to

conidial inoculations of P. chlamydospore by evaluating rooted

cuttings and spurs in two vineyards in Central Chile. Data

obtained from two consecutive seasons of artificial

inoculations showed that pruning wounds remained

susceptible to P. chlamydospora for up 45 days after pruning.

Natural infection was not detected in the non-inoculated
A

B

FIGURE 5

Lesions of vascular discoloration expressed as mean (mm) ± standard deviation caused by artificial inoculation of 40 uL of a conidial suspension
(105 conidia/mL) of Phaeomoniella chlamydospora on pruning wound of different ages of spurs cv. Cabernet Sauvignon at 1, 15, 30, and 45 days
after pruning in the commercial vineyards located in Buin (line) and Nancagua (segmented line), during eight months from the dormant season
of 2014 (A) and 2015 (B) in Central Chile.
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A

B

FIGURE 6

Percent of grapevine pruning wounds infected expressed as mean (%) ± standard deviation caused by artificial inoculation of 40 uL of a conidial
suspension (105 conidia/mL) of Phaeomoniella chlamydospora on pruning wound of different ages of spurs cv. Cabernet Sauvignon at 1, 15, 30,
and 45 days after pruning in the commercial vineyards located in Buin (line) and Nancagua (segmented line), during eight months from the
dormant season of 2014 (A) and 2015 (B) in Central Chile.
TABLE 3 Percent of pruning wound infected (%) by artificial inoculation of Phaeomoniella chlamydospora at different ages of pruning wounds (1,
15, 30, and 45 days after pruning) in commercial vineyards cv. Cabernet Sauvignon during eight months in two localities (Buin and Nancagua),
Central Chile.

Age of pruning wound (days) Percent of pruning wounds infected (%)

Locality, 2014a Locality, 2015a

Buin Nancagua Mean Buina Nancaguaa Mean

1 83.3 bc 95.8 c 89.6 91.7 b 87.5 b 89.6

15 70.8 bc 72.9 bc 71.9 75.1 b 60.4 b 67.8

30 22.9 a 54.2 b 38.6 14.6 a 19.8 a 17.2

45 8.3 a 14.6 a 11.5 18.8 a 12.5 a 15.7

Mean 46.3 59.4 50.1 45.1

ANOVA df P SEDb df P SEDb

Age (A) 3 0.011 4.9 3 < 0.001 3.8

Locality (L) 1 < 0.001 3.5 1 0.180 2.7

A x L 3 0.179 7.0 3 0.397 5.4
Frontiers in Fungal Biology
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aMeans of percent of pruning wounds infected (%) followed by the different lower case letters in each row and column differ significantly according to Tukey´s pairwise multiple comparison
test. bSED: Standard error of the difference.
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controls. However, this pathogen was detected in very low

prevalence at the sites of experimentation from previous work

(Dı́ az and Latorre, 2014). This result was consistent with those

obtained by Luque et al. (2014), where P. chlamydospora was

isolated in only 12% of a diseased vineyard with over 20%

prevalence of symptoms of GTDs compared with the healthy

vineyard (0% of prevalence). The absence of P. chlamydospora

from non-inoculated pruning wounds in the present work may

possibly be due to their low prevalence in these vineyards, and to

there being fewer opportunities for this low level inoculum to

infect non-inoculated spurs in both vineyards. To determine the

presence of conidia of P. chlamydospora, it is necessary to

monitor these airborne spores using spore traps in the

vineyards during the season and find the presence of pycnidia

on the diseased vines (Edwards and Pascoe, 2001; Eskalen and

Gubler, 2001; Eskalen et al., 2002; Eskalen et al., 2004).

Moreover, studies performed in Australia by Edwards and

Pascoe (2001), in California by Eskalen et al. (2002), and in

South Africa by Baloyi et al. (2016) found pycnidia of P.

chlamydospora on the surface of pruning debris left in the
Frontiers in Fungal Biology 11
ground, as well as diseased cordons and old spurs.

Epidemiologically, studies conducted in vineyards in California

(Eskalen et al., 2002; Eskalen et al., 2004) and South Africa

(Baloyi et al., 2016) have demonstrated that airborne conidia

from pycnidia are viable and pathogenic. Therefore, pruning

debris left in the ground, cordons, and old spurs attached to the

grapevine are important inoculum sources in commercial

vineyards (Dı́ az and Latorre, 2014; Baloyi et al., 2016; Gramaje

et al., 2018).

In the Mediterranean weather conditions of Central Chile,

wound susceptibility considerably decreased as the time between

pruning and inoculation increased, reflecting the results of

studies of P. chlamydospora carried out in vineyards in

California (Eskalen et al., 2007), Italy (Serra et al., 2008), and

South Africa (van Niekerk et al., 2011). In contrast, Elena and

Luque (2016) found no seasonal variations in the susceptibility

of pruning wound ages to P. chlamydospora in Spain. These

differences may be attributed to differences in weather

conditions and the grapevine cultivar evaluated. The

temperature obtained in this study was not limiting for P.
A

B

FIGURE 7

Weather conditions in the commercial vineyards cv. Cabernet Sauvignon showing the mean month of temperature (segmented line, °C) and
month accumulated rainfall (gray bar, mm) located in Buin (A) and Nancagua (B) in Central Chile, during the seasons 2014 and 2015. Star
indicates the date of pruning.
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chlamydospora, because the range for mycelial growth (10 to 35°

C) and germination (15 to 35°C) of P. chlamydospora is very

wide (Whiting et al., 2001; Dı́ az and Latorre, 2014). In this sense,

the monitored airborne conidia of P. chlamydospora have been

correlated with the occurrence of rainfall or high relative

humidity, especially during winter months in California

(Eskalen et al., 2004), South Africa (van Niekerk et al., 2010),

and Spain (González-Domı́ nguez et al., 2020; Martı́ nez-Diz
et al., 2020). These weather parameters must therefore be

studied in depth, specifically the factors involved in conidia

dispersal, such as the rainfall and wind, and the distance reached

by the airborne spore of P. chlamydospora in the vineyard.

Furthermore, these aspects should be integrated along with the

monitoring of airborne spores of P. chlamydospora during the

seasons for a better understanding of the biology of this fungal

trunk pathogen in Chilean commercial vineyards. Recently,

González-Domı́ nguez et al. (2020) developed a model for

predicting periods with a high risk of P. chlamydospora

airborne spore dispersal based on weather conditions.

This model might be run using registered temperature and

rainfall data together with airborne spore monitoring

studies in different regions such as Central Chile to better

understand P. chlamydospora biology and explain pruning

wound susceptibility.

The results obtained in this study on Cabernet Sauvignon

were in accordance with previous works conducted on other

grapevine cultivars in California (Eskalen et al., 2007), Italy

(Serra et al., 2008), and Spain (Elena and Luque, 2016), where a

high percentage of P. chlamydospora was recovered from fresh

pruning wounds in the vineyard during the first two weeks. Serra

et al. (2008) found a decrease in susceptibility to P.

chlamydospora during the growing season in Sauvignon Blanc,

but differences in pruning dates were unclear. Eskalen et al.

(2007). found that grapevine pruning wound susceptibility

decreased over time in cvs. Thompson Seedless and Cabernet

Sauvignon with a lower rate of susceptibility about 4 months

after pruning, but the grapevine tissues remain susceptible to

infection by P. chlamydospora from dormant to actively growing

tissue. Although wound susceptibility to P. chlamydospora

significantly decreased 45 days after artificial inoculation of

pruning wounds, varying from 95.8 to 8.3% in 2014 and from

91.7 to 12.5% in 2015, the values of the percentage of wounds

infected (95.8 to 60.4%) obtained from 1 to 15 days are

epidemiologically important for the dissemination of P.

chlamydospora in the vineyard over time (Serra et al., 2008;

van Niekerk et al., 2011). These results do not discharge the

possibility that root cuttings can be infected in the nursery

process, as has been suggested previously in Chile (Dı́ az and

Latorre, 2014). Furthermore, several studies have demonstrated

the presence of fungal trunk pathogens, including P.
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chlamydospora on the propagation material of grapevines

(Aroca et al., 2010; Gramaje and Armengol, 2011; Carbone

et al., 2022).

The pruning date is considered to be a critical decision in the

cultural practice and management of GTDs (Gramaje et al.,

2018; Baumgartner et al., 2019). In this sense, several works have

evaluated the effect of early versus late pruning on the level of

infection of pruning wounds, where late pruning (February-

March) can reduce the risk of infection to P. chlamydospora,

because early pruning (December-January) coincides with the

peak of spore release and the presence of the first rains of the

season that generally occur in California (Eskalen and Gubler,

2001). Similarly, these results were also found with E. lata and P.

chlamydospora, where early pruning inoculations showed higher

levels of spurs infected in France (Chapuis et al., 1998) and Italy

(Serra et al., 2008), respectively. This is in contrast to the results

obtained by Luque et al. (2014) and Elena and Luque (2016),

who obtained higher infection levels on spurs pruned late during

the winter than early pruning in Spain. A similar result was

obtained by van Niekerk et al. (2011); González-Domı́ nguez
et al. (2020), and Martı́ nez-Diz et al. (2020), where later winter
wounds were more susceptible to infection by P. chlamydospora

than wounds made early in the dormant season in South Africa

and Spain. Therefore, early and late pruning should be studied

under Chilean conditions to know the effect of the pruning date

on the infection by P. chlamydospora and other fungal trunk

pathogens on grapevines.

Our results showed that fresh pruning wounds aged one and

two weeks are more susceptible to artificial inoculation with P.

chlamydospora. However, in the present work, the susceptibility

was maintained for up to 45 days. Under these conditions,

traditional protective management through a single fungicide

application could not be enough in Chile (Dı́ az and Latorre,

2013). This same phenomenon was founded in the literature

mentioned above, where the pruning wounds can be susceptible

for a period extended up to 4 to 16 weeks after pruning in

vineyards located in California (Petzoldt et al., 1981; Eskalen

et al., 2007; Úrbez-Torres and Gubler, 2011), France (Chapuis

et al., 1998), Italy (Serra et al., 2008), South Africa (van Niekerk

et al., 2011), and Spain (Elena and Luque, 2016). Therefore,

further studies evaluating one and two applications of fungicides

and alternating with commercially available biocontrol agents

are needed in Chile and worldwide.
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