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The phylum Chytridiomycota (the “chytrids”) is an early-diverging, mostly unicellular,

lineage of fungi that consists of significant aquatic saprotrophs, parasites, and

pathogens, and is of evolutionary interest because its members retain biological traits

considered ancestral in the fungal kingdom. While the existence of aquatic chytrids has

long been known, their fundamental biology has received relatively little attention. We are

beginning to establish a detailed understanding of aquatic chytrid diversity and insights

into their ecological functions and prominence. However, the underpinning biology

governing their aquatic ecological activities and associated core processes remain largely

understudied and therefore unresolved. Many biological questions are outstanding for

aquatic chytrids. What are the mechanisms that control their development and life cycle?

Which core processes underpin their aquatic influence? What can their biology tell us

about the evolution of fungi and the wider eukaryotic tree of life? We propose that

the field of aquatic chytrid ecology could be further advanced through the improved

understanding of chytrid biology, including the development of model aquatic chytrids

and targeted studies using culture-independent approaches.
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INTRODUCTION

The phylum Chytridiomycota (Hibbett et al., 2007) (the “chytrids”) is an early-diverging,
predominantly unicellular group of fungi that use anucleate rhizoids to attach and feed on
substrates, and reproduce by motile uniflagellate zoospores (Sparrow, 1960; Naranjo-Ortiz and
Gabaldón, 2019) (Figures 1A,B). Chytrids are important components of aquatic ecosystems
(Figure 1C), and their ecological impact has been thoroughly reviewed by previous authors
(Frenken et al., 2017; Gleason et al., 2017; Grossart et al., 2019). In addition, chytrids retain
biological characteristics and traits shared with their last common ancestor with hyphal fungi,
making them of interest to evolutionary biologists, which has also been recently well-reviewed
(Berbee et al., 2017; Nagy et al., 2017; Naranjo-Ortiz and Gabaldón, 2020). Even though aquatic
chytrids have long been known to science, their fundamental biology has received relatively little
attention compared to other fungi.

It is not the aim of this perspective article to review the entire fields of chytrid biology, ecology,
and evolution, but to highlight recent advances related to aquatic chytrid research and knowledge
gaps. It is also not within the scope of this perspective to discuss developments in chytrid taxonomy
and molecular phylogeny, which have been recently covered by others (Frenken et al., 2017;
Hurdeal et al., 2021). We also provide our opinion on the future direction of aquatic chytrid
research, including important questions to be addressed and how this could be achieved. Our
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standpoint is the importance of the fundamental biology of
chytrids and how increased biological knowledge could improve
understanding of the ecology and evolution of aquatic chytrids.

BIOLOGY UNDERPINNING AQUATIC
CHYTRID ECOLOGY

Motile zoospores are a major feature of aquatic chytrids,
which enable the targeting of trophic substrates and hosts
by the propagules in a way not possible by dikaryan spores.
Dissolved molecules act as chemoattractants for zoospores
(Muehlstein et al., 1988; Moss et al., 2008; Scholz et al., 2017).
Batrachochytrium dendrobatidis Longcore et al. (1999) zoospores
are attracted to amphibian thyroid hormone (Thekkiniath
et al., 2013) and are repelled by antifungal metabolites
produced by amphibian skin bacteria (Lam et al., 2011).
Zoospores have also been shown to exhibit positive phototaxis
(Muehlstein et al., 1987). Cell structures, including the enigmatic
chytrid rumposome, that connect the cell surface with the
flagellar apparatus have been implicated in zoospore response
to environmental signals (Powell, 1983), however detailed
mechanisms of environmental sensing and guided motility in
aquatic chytrid zoospores are currently unknown.

While the trophic range and ecological niches are established
for some chytrids [e.g., Rhizoclosmatium globosum Petersen is
a saprotroph commonly found attached to chitin-rich exuviae
(Sparrow, 1960)], we know little about the degradation enzymes,
mechanical processes, and physiology of nutrient assimilation.
This is particularly important for degraders of recalcitrant
biopolymers and hosts that are inaccessible to other heterotrophs
(Kagami et al., 2014; Agha et al., 2016). Comparative genomics
suggest that chytrids use a range of extracellular enzymes as
part of their secretome, including carbohydrate-active enzymes
(CAZymes) (Lange et al., 2019), that are yet to characterized in
any biological detail.

The biochemical development of lipid-rich zoospores is
important in aquatic ecosystems because of trophic transfer
through the mycoloop (Kagami et al., 2007a). Zoospore lipid
profiling has shown enrichment in polyunsaturated fatty acids
(PUFAs) and sterols (Kagami et al., 2007b; Akinwole et al.,
2014). Parasitic chytrids have PUFA profiles that are similar
to their hosts, indicating direct assimilation, and new sterols
that are likely synthesized de novo (Gerphagnon et al., 2019).
These details have been instrumental in quantitative aquatic
ecology, allowing the modeling of C:N:P stoichiometry and
nutrient flux through ecosystems (Kagami et al., 2007b). The
biochemistry of lipid anabolism and intracellular transport
during zoosporogenesis, and lipid catabolism during zoospore
free-swimming and encystment are largely uncharacterized.

A major knowledge gap in understanding the ecological
function of aquatic chytrids from a biological view is their
wider role as parasites and pathogens, particularly of algae,
because most of this knowledge comes from amphibian
and plant hosts. Culture-based studies have characterized the
impact of B. dendrobatidis secretions on amphibian skin (Moss
et al., 2008; Rollins-Smith et al., 2019) and investigations of
growth physiology have allowed for general phenotypic profiling

(Berger et al., 2005; Voyles, 2011), but quantitative biological
investigations into chytrid parasites of other aquatic hosts are
largely lacking.

THE BIOLOGY OF CHYTRIDS IN TERMS
OF FUNGAL TRAIT EVOLUTION

Chytrids and their close relatives represent a key transition in
the fungal kingdom from generally unicellular and rhizoidal
growth toward multicellularity and hyphal growth (Berbee et al.,
2017; Nagy et al., 2017). As extant chytrids exhibit ancestral
characteristics of the progenitors of multicellular and hyphal
fungi (Berbee et al., 2017; Nagy et al., 2017), insights into their
cell biology can help infer traits associated with the origin of the
archetypal fungal cell form.

Of prominence are investigations into the biology of chytrid
rhizoids, as it has been hypothesized that rhizoids or rhizoid-like
structures were the evolutionary precursors to hyphae (Dee et al.,
2015, 2019; Kiss et al., 2019; Laundon et al., 2020). Comparative
genomics has suggested that hyphae evolved in the rhizoid-
bearing Chytridiomycota-Blastocladiomycota-Zoopagomycota
nodes of the fungal tree (Kiss et al., 2019). Monoblepharids, a
sister group to the chytrids, have aseptate coenocytic hyphal
growth as their predominant cell plan (Dee et al., 2015).
Cytoskeleton, cytoplasmic, and vesicular organization in the
hyphae of zoosporic and dikaryan fungi suggests multiple
convergent origins of hyphae from rhizoid-bearing lineages
(Dee et al., 2015). In chytrids, actin polymerization and cell wall
synthesis guide rhizoidmorphogenesis (Dee et al., 2015; Laundon
et al., 2020; Medina et al., 2020), as in hyphal growth (Gow et al.,
2017; Steinberg et al., 2017; Riquelme et al., 2018). Actin cables
and patches are present throughout the rhizoids of several
chytrid species (Dee et al., 2019; Laundon et al., 2020; Medina
et al., 2020) and inhibition of normal actin polymerization
disrupts rhizoid branching causing hyperbranched paramorphs
(Dee et al., 2019; Laundon et al., 2020). Inhibition of cell wall
synthesis also results in similarly abnormal rhizoids (Laundon
et al., 2020).

Quantitative microscopy has shown that saprotrophic aquatic
chytrid rhizoids are capable of developmental plasticity and
functional differentiation analogous to that characteristically
displayed by mycelial dikaryans (Laundon et al., 2020). Parasitic
chytrids can also have outstretched rhizoids capable of finding
new algal hosts (Longcore et al., 1999) and penetrating through
the frustule girdle of host diatoms (Beakes et al., 1992). These few
studies into the chytrid rhizoid present a promising beginning
in understanding the trophic interface of the chytrid cell for
both saprotrophs and parasites, and have laid the foundation for
future, quantitative cell biology in rhizoid development.

KNOWLEDGE GAPS IN AQUATIC CHYTRID
BIOLOGY AND POSSIBLE FUTURE
DIRECTIONS

Here we identify research questions that we think stand out as
areas for investigation to help improve understanding aquatic
chytrid biology, ecology, and evolution (Figure 2). This is not an
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FIGURE 1 | Chytrids represent an important and understudied early diverging branch of the fungal tree of life and are important components of aquatic food webs.

(A) Phylogenetic tree of the Kingdom Fungi, adapted from the phylogeny outlined in Tedersoo et al. (2018). (B) Key stages of the archetypal dimorphic chytrid lifecycle.

The center of the circle highlights key features of the chytrid cell anatomy. (C) Summary of some of the ecological roles played by chytrids in aquatic ecosystems.

attempt at an exhaustive list, but our perspective of knowledge
gaps and future research directions that could stimulate interest
and discussion.

Chytrid cell biology important for aquatic ecology
(Figure 2A)

1. Lipid accumulation in chytrid zoospores is a key contributing
factor to their ecological impact (Akinwole et al., 2014; Kagami
et al., 2014; Gerphagnon et al., 2019). A large proportion of
intracellular space is devoted to lipid storage, with evidence to
suggest that lipid stores are dynamic throughout the zoospore

Frontiers in Fungal Biology | www.frontiersin.org 3 August 2021 | Volume 2 | Article 708813

https://www.frontiersin.org/journals/fungal-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/fungal-biology#articles


Laundon and Cunliffe Aquatic Chytrid Biology

FIGURE 2 | There are many fundamental questions outstanding in basic aquatic chytrid biology. Our perspective for research directions in aquatic chytrid biology

concerning (A) cell development and lipid production, (B) chytrid-host interaction and (C) rhizoid biology. Question marks indicate biological processes whose

presence and function are speculative. (D) Web of Science (WoS) counts for fungal phyla search terms since 1970. (E) WoS for search terms associated with

mycology. Chytrids suffer low representation next to other mycological terms. However, when scaled as a percentage of total results, chytrids have experienced a

sharp increase in attention in the past couple of decades (F). *phylum Chytridiomycota.

stages of the chytrid life cycle (Powell, 1976). How are lipids
synthesized and what are the anabolic pathways of lipid
accumulation under different trophic conditions? How are
lipid stores localized, regulated, and trafficked through the
chytrid cell? What cellular processes govern the distribution
and allocation of lipid reserves during zoosporogenesis? How
does the balance between lipid anabolism and catabolism shift
over the chytrid life cycle?

2. The apophysis is the subsporangial swelling in many chytrids
that links the sporangia to the substrate attaching and feeding
rhizoids (Laundon et al., 2020). Fluorescent labeling of the cell
wall (Ota and Kawano, 2015) and endomembrane (Laundon,
unpublished) have shown increased relative brightness in the
apophysis compared to the sporangium indicating elevated
activity, however the structure and function of the apophysis
is largely unknown. What is the role of the apophysis in
aquatic chytrids, how is the apophysis formed and what does
it contain? How does the apophysis link the sporangium and
rhizoids? Does the apophysis act as an interface between the
reproductive and feeding structures?

The biology behind aquatic chytrid-host interaction (Figure 2B)

1. Genomic analysis of chytrid parasites show that they have
genes that encode a suite of effector proteins and pathogenicity

factors (Thekkiniath et al., 2015; Ellison et al., 2017; Farrer
et al., 2017; Van de Vossenberg et al., 2019a,b). What are the
functions of effector proteins and where is effector protein
secretion localized? What is their phenotypic impact on host
defense systems? What do chytrid parasites secrete when
infecting hosts?

2. The biointerface between the chytrid and host represents the
frontline of pathogenic cell biology where parasite virulence
meets host defense, analogous to the biotrophic complex
in other fungal parasites (Yan and Talbot, 2016). What
biology characterizes the physical host-parasite interface and
what is the biophysical composition of this interface from
a subcellular and biostructural perspective? What proteins
and carbohydrates are associated with parasite adhesion?
What are the roles of turgor pressure, enzymatic degradation,
and cytoskeletal organization in host penetration? How do
penetrating rhizoids localize in subcellular compartments of
the host, and how do they migrate through host cytoplasm?
Is there division of labor in parasitic rhizoids (e.g., feeding
vs. attachment) as with saprotrophic chytrids (Laundon et al.,
2020)?

3. Reactive Oxygen Species (ROS) molecules are implicated
in fungal pathogenicity as hypersensitive host defenses,
cell signaling components, and parasite development cues
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(Camejo et al., 2016). What is the role of ROS in chytrid
parasitic biology? Do hosts from various taxa accumulate ROS
as a defense against chytrid parasitism, as earlier proposed
(Canter and Jaworski, 1979)? How do chytrid parasites deal
with ROS? What is the role of ROS in parasite development
and virulence? Where is ROS production localized at a
subcellular level?

The rhizoid—the interface between aquatic chytrids and their
substrates (Figure 2C)

1. Our understanding of the subcellular machinery involved in
hyphal development is well-characterized (Riquelme et al.,
2018) and provides hypotheses to investigate similarities
and differences in chytrid rhizoids (Laundon et al., 2020).
Cell wall and actin proliferation have been implicated in
rhizoidal development (Dee et al., 2019; Laundon et al., 2020;
Medina et al., 2020), but how do these processes differ along
the rhizoidal axis? To what extent do vesicle trafficking,
cytoskeleton organization, and secretory machinery interact at
the rhizoidal tips? Do ion gradients drive rhizoidal extension?
Are dikaryan “hyphal” orthologs expressed in aquatic chytrids
and how do they contribute to rhizoid morphogenesis
and function?

2. Anastomosis is a rare event in chytrids and is probably
associated with sexual reproduction (Miller and Dylewski,
1981). The biology of hyphal fusion is well-understood
(Read et al., 2014), but what drives chytrid rhizoidal fusion?
What enzymes are associated with adhesion and cell wall
degradation? What intracellular processes drive membrane
fusion? Are endomembrane trafficking and vesicle formation
important? How are homeostasis, nutrient translocation and
network resilience affected by a fused rhizoidal system?

3. In addition to a molecular understanding of hyphal
development, we have a good understanding of the physical
forces governing hyphal growth (Lew, 2011; Roper and
Seminara, 2019) providing ground for investigations into
rhizoid biophysics and fluid mechanics. Is internal turgor
pressure comparable in rhizoids and, if so, how is it generated?
How does cytoplasm flow through the rhizoids and what is
transported with it? How elastic is the cell wall to deformation?

DEVELOPMENT OF MODEL AQUATIC
CHYTRIDS

Chytrids are understudied relative to dikaryan fungi, but the
situation is starting to improve (Figures 2D–F). Of chytrid
publications however, a majority are based on studies with
the amphibian pathogenic batrachochytrids and plant pathogen
Synchytrium endobioticum (Schilb.) Percival. This research is
vital for the protection of global biodiversity and food security,
however, as their roles as pathogens is unusual amongst the
chytrids, it is unlikely that their biology is representative of most
aquatic chytrids. We propose that other chytrids should also be
developed as aquatic models.

Key model features include an available annotated genome,
relatively easy laboratory culture (ideally under axenic

conditions), a comparatively fast life cycle, experimental and
genetic tractability, and representativeness of a major functional
group (Leonelli and Ankeny, 2013; Yarden, 2016). For example,
Rhizoclosmatium globosum (order Chytridiales) is a widespread,
chitinophilic saprotroph, associated with chitin-rich particulate
organic matter such as arthropod exuviae (Sparrow, 1960). It
is frequently isolated from freshwater habitats (Canter, 1953)
and is likely an ecologically important biopolymer degrader.
Rhizoclosmatium globosum JEL800 was isolated by chitin baiting
(Powell et al., 2019) and as an experimental organism is easy to
culture, amenable to live-cell microscopy (Laundon et al., 2020),
and has a rapid life cycle (∼11–13 h at 22◦C on rich medium)
(Laundon, unpublished), making it an excellent choice to study
aquatic chytrid biology. The R. globosum JEL800 genome is
available via MycoCosm (Mondo et al., 2017), and the strain
has been a model in studies on flagella retraction (Venard
et al., 2020), rhizoid development (Laundon et al., 2020), and
chytrid-bacteria interaction (Roberts et al., 2020).

The other major functional group of aquatic chytrids is
as algal parasites (Gleason et al., 2008), some of which have
been isolated into culture (Frenken et al., 2017). For example,
Rhizophydium littoreum Amon (order Rhizophidiales) was
isolated from the marine macroalga Codium from the East
coast of the USA (Amon, 1984), is amenable to laboratory
experimentation (Muehlstein et al., 1988) and has a dynamic
trophic spectrum, ranging from saprotrophy to parasitism
(Shields, 1990). Development of R. littoreum into a model chytrid
could therefore shed light on the biology of marine facultative
parasites. Other aquatic chytrid models could also contribute
to our understanding of specific biological and ecological traits
of algal parasites. For example, a stable co-cultured parasite-
host system for obligate chytrid biotrophs will be necessary
to fully resolve the biology of chytrid parasitism, such as
the recently re-isolated Zygorhizidium affluens Canter (order
Lobulomycetales) that infects the major spring bloom-forming
freshwater diatom Asterionella formosa Hassall (Rad-Menéndez
et al., 2018). Hopefully, sometime soon, successful cultures will
also be isolated of chytrids that infect sea ice diatoms from
the Arctic that have so far only been studied through culture-
independent approaches and microscope observation (Hassett
and Gradinger, 2016).

POTENTIAL LIMITATIONS OF
CULTURE-BASED APPROACHES AND
COMPLEMENTARY ALTERNATIVES TO
UNDERSTAND AQUATIC CHYTRID
BIOLOGY

It is likely that by studying model aquatic chytrid cultures alone
we will not fully emulate the natural aquatic environment in
which chytrids occur, and therefore will not develop a complete
view of aquatic chytrid biology. Berbee et al. (2017) raised the
point that many chytrid cultures are isolated by baiting in which
a substrate [e.g., pollen, snake skin, or defatted hair (Fuller and
Jaworski, 1987)] is placed in the environment for an amount
of time for zoospores to attach to before the bait is retrieved
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and the bait-attached chytrids subsequently isolated. Depending
on the bait used, it could be difficult to be certain of the
natural substrates and niches of the isolated chytrids especially
if maintained on complex laboratory media. Furthermore, when
chytrids models are studied under axenic conditions the potential
positive and negative complex interactions that take place
with other components of aquatic ecosystems, such as bacteria
(Roberts et al., 2020), will not be considered.

Environmental DNA (eDNA) based assessments of aquatic
ecosystems have shown a vast diversity of zoosporic fungi
(including chytrids) that have no cultured representatives, in
some cases entire clades (Grossart et al., 2016). These cryptic
chytrids that are only known from molecular surveys have been
called “dark matter fungi” (Grossart et al., 2016). For example,
Richards et al. (2015) surveyed marine fungal diversity across six
European sites using V4 SSU sequence data and retrieved familiar
operational taxonomic unit (OTU) clusters closely related to
known genera including Kappamyces (Rhizophydiales) and
Chytridium (Chytridiales). The molecular survey also revealed
many OTU clusters from clades without cultured representatives.
Some of the OTU clusters with no cultured representatives
had high relative coverage in the sequence libraries suggesting
that these chytrids are abundant in the samples and therefore
likely important players at the various marine sites sampled.
Some of the OTU clusters are part of clades that have been
found in other surveys elsewhere suggesting that they are widely
distributed in the marine environment. It is possible that with
improved sampling effort, some chytrids only previously known
via molecular surveys could be isolated into culture. A multiyear
eDNA-based time-series survey of marine fungal diversity in
the coastal waters off Plymouth (UK) showed that in some
years a chytrid OTU (OTU 14) was prevalent only during the
spring diatom bloom suggesting that the chytrid was a diatom
parasite (Taylor and Cunliffe, 2016). Garvetto et al. (2019)
subsequently isolated a novel species within the Rhizophydiales
that infected the bloom-forming diatom Skeletonema and was
closely related to OTU14. If we only study cultured chytrid
models (as outlined above) and ignore “dark matter chytrids,”
we will not be able to achieve a truly complete understanding of
aquatic chytrid biology.

Alternative approaches are available to study aquatic chytrid
biology that do not rely on isolated model cultures and that
are able to include “dark matter chytrids.” Single-cell genomics
is one option to target uncultured aquatic chytrids (Ahrendt
et al., 2018). The approach is based on the isolation of a
target population of cells from a complex sample, such as via
fluorescence-activated cell sorting (FACS), and the subsequent
extraction of DNA, genomic DNA amplification and sequencing.
The approach has been used to target uncultured mycoparasitic
and saprotrophic early-diverging fungi including chytrids, and
because genomic-level information is retrieved, gene-based
aspects of biology such as potential niche associated metabolic
capability can be predicted (Ahrendt et al., 2018).

Meta-omic approaches (metagenomics, metatranscriptomics,
etc.) are now widely established in aquatic microbial ecology

and allow biological understanding to be established
without cultivation of target organisms. Metagenomics and
metatranscriptomics have been used effectively to explore the
functional biology of other uncultivated aquatic fungi, including
for example the potential role of marine fungi in organic matter
processing (Chrismas and Cunliffe, 2020; Baltar et al., 2021). We
are not aware of any studies so far that have used meta-omic
approaches to specifically target and study aquatic chytrids,
however this area has great potential and warrants attention.

CONCLUDING REMARKS

Chytrids are widespread, sometimes dominant, fungi in a range
of aquatic ecosystems. In addition, they are an appealing choice
for evolutionary biologists understanding the position of aquatic
fungi in the eukaryotic tree of life and the origins of fungal
biological trait innovations. These factors have generated an
interest in chytrids and a drive to understand their biology.
The current increase in sequenced genomes and comparative
genomics have made major contributions, but we cannot
fully understand chytrid biology by genomic approaches alone.
Parallel to these investigations, it is necessary to use culture-based
investigations into chytrid biology and apply targeted culture-
independent tools to explore aquatic chytrids in natura. We have
outlined our perspective to bring aquatic chytrids closer to the
forefront of fungal biology. This is a call not only for aquatic
chytrid researchers, but also for general cell biologists to choose
chytrids in their studies and take advantage of the potential of
these aquatic fungi. The community should work collaboratively
to achieve a comprehensive understanding of chytrid biology by
combining skillsets, from taxonomists to cell biologists, and from
evolutionary biologists and paleomycologists to contemporary
aquatic ecologists. In these “little pots” resides great scope
for discovery.
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