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Since the earliest days of using natural remedies, combining therapies for disease

treatment has been standard practice. Combination treatments exhibit synergistic

effects, broadly defined as a greater-than-additive effect of two or more therapeutic

agents. Clinicians often use their experience and expertise to tailor such combinations

to maximize the therapeutic effect. Although understanding and predicting biophysical

underpinnings of synergy have benefitted from high-throughput screening and

computational studies, one challenge is how to best design and analyze the results

of synergy studies, especially because the number of possible combinations to test

quickly becomes unmanageable. Nevertheless, the benefits of such studies are clear—by

combining multiple drugs in the treatment of infectious disease and cancer, for instance,

one can lessen host toxicity and simultaneously reduce the likelihood of resistance to

treatment. This study introduces a new approach to characterize drug synergy, in which

we extend the widely validated chemogenomic HIP–HOP assay to drug combinations;

this assay involves parallel screening of comprehensive collections of barcoded deletion

mutants. We identify a class of “combination-specific sensitive strains” that introduces

mechanisms for the synergies we observe and further suggest focused follow-up studies.

Keywords: drug synergy, drug combinations, drug–gene interaction, antifungal, chemogenomics

INTRODUCTION

Drugs and drug-like molecules are powerful molecular tools that can act by rapid and reversible
inhibition of a specific protein or other biomolecule in cells. Such chemical perturbations,
while similar to genetic manipulations, have several experimental advantages: they are tunable,
fast-acting, often reversible, and applicable across large evolutionary distances, e.g., from yeast to
human. Drugs can be easily combined to simultaneously modulate multiple proteins’ activities,
and in fact, the modulation of gene products by administering a combination of drugs can
be vital for a successful course of treatment (Keith et al., 2005). The clinical success of
chemical combination therapies has motivated our empirical study of synergistic chemical
interactions. These data can then be assessed to predict how two drugs might interact in a
biological system. To study the potential interactions, several mathematical models of drug
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synergy are available (Loewe, 1928; Bliss, 1939; Lehár et al., 2007);
two widely used approaches are the Bliss model of independence
(Bliss, 1939) and the Loewe additivity model (Loewe, 1928,
1957). Neither model is able to explain all drug synergies, and
no mathematical model is suited for all observed chemical
interactions, indicating the complexity of the problem.

Invasive fungal infections (IFI) are lethal threats to human
health, and they cause almost two million worldwide deaths
annually. In 2018, the death rate among patients suffering from
IFI was reported to be 28.8% (Webb et al., 2018). At present,
the available therapies, particularly for invasive infections, are
limited to four categories of antifungal drugs; azoles, polyenes,
echinocandins, and 5-flucytosine (Perfect, 2017), and the clinical
results frommost IFI cases are not optimal. In addition, emerging
pathogens resistant to common antifungals (Fairlamb et al., 2016)
such as the pan drug-resistant yeast Candida auris have spread in
health care facilities globally (Meis and Voss, 2019; Zhang et al.,
2020). One potential solution to the dearth of effective treatments
is to explore the antifungal efficacy of novel drug combinations,
including those prescribed for diverse indications (Livengood
et al., 2020). The use of drug combinations gives rise to several
opportunities: (1) it has been proven, both empirically and
theoretically, that drugs that are synergistic for a particular effect
do not tend to show synergy for side effects (Cokol et al., 2011),
(2) the dose of individual agents with serious side effects can
be reduced in a combination, (3) synergistic antifungal activity
increases therapy potency and reduces lengths of treatment,
and (4) compared with monotherapy, it minimizes the risk for
antifungal resistance (Livengood et al., 2020). Based upon The
National Institutes of Health (NIH) reports on ClinicalTrials.gov,
as of May 2021, there are ∼500 on-going or completed clinical
trials involving antifungal drug combinations, but the success
rate of such trials has been modest.

Considering the limited number of drugs available for IFI
treatment (Hill et al., 2013), we sought to expand upon our
strategy to use yeast as a eukaryotic model to screen any
drug that inhibits the growth of, or kills yeast—Saccharomyces
cerevisiae in this study. Even though such drugs may be active
against the host itself, our rationale is that using these drugs
could lower host-dependent side-effects because each agent
in a combination is typically applied in lower doses. Screens
using select combinations on Candida spp. and Saccharomyces
have been performed, but in this we work cast a broader,
unbiased net (Hill et al., 2013; Shekhar-Guturja et al., 2016).
Specifically, in this study, we selected 11 compounds based
upon their well-characterized targets in yeast, and among
all possible combinations, drug pairs that empirically showed
synergy were used in HIP–HOP assays—a validated genome-
wide screen based on HaploInsufficiency Profiling (HIP) and
HOmozygous Profiling (HOP) to quantify the relative abundance
of uniquely tagged yeast deletion strains. Briefly, in the rapid and
cost-effective HIP assay, a complete collection of heterozygous
deletion strains is pooled, grown in the presence of the
compound, and sampled as a function of time. Molecular
barcodes incorporated into each strain allow parallel analysis
and relative strain abundance to be quantitatively assessed either
by hybridization to oligonucleotide arrays, or more recently, by

Next-Generation Sequencing Technologies. The result is a list
of genes ranked in order of their importance for growth and
survival, a quantitative metric termed “fitness.” Strains most
sensitive to drugs often carry deletions in genes that encode the
drug target. Once the primary mechanism has been identified
and confirmed in secondary genetic and/or biochemical assays,
further pathway-specific genes that act to buffer the drug target
pathway can be uncovered using our HOP assay. This assay
identifies the drug effects on the non-essential fraction of the
genome and reveals the genes important for buffering the drug
target pathway. As described in this study, we modified the HIP–
HOP assay to study drug combinations. Using this approach, we
were able to: (1) identify numerous synergistic combinations, (2)
quantify this synergy and identify combination-specific sensitive
strains on a genome-wide scale. This study is intended to generate
a new strategy to predict drug synergy by using comprehensive
genome-wide screens. None of the drug combinations identified
here were actually tested in a fungal pathogen. However, we
are hoping that this study will inspire research on relevant
fungal pathogens.

METHODS

Pair-Wise Screening of Drug Combinations
To identify synergistic combinations, one should determine the
effect of both individual agents and drug combinations on yeast
growth rate. To accomplish this, we screened the drugs in a
checkerboard matrix, in which, along each axis, one of the
drugs is added at progressively higher doses. Drug concentrations
were selected based on inhibitory concentration (IC), which was
determined prior by prescreening the drugs’ effects on the wild-
type cell growth; concentrations are such that there is an IC0 (no
drug), IC2, IC5, IC10, IC20, and IC50 for each drug in the matrix.
Hence, each drug pair was screened in a 6-by-6 dose-response
curve at the IC-values listed above. All possible pairs of the 11
drugs were screened, resulting in 55 combinations, including
self-by-self drug combination. The diploid yeast strain BY4743
(derived from S288C) was used to screen these combinations
and was grown in a 96-well microtiter plate at 30◦C for 24 h in
a TECAN optical density reader. The optical density (OD600)
was measured at 15-min intervals. A diagram depicts how the
combination screening was performed (Figure 1).

Determination of Synergistic Combinations
Based on Growth Curve Analysis
Following growth, data for all growth curves were extracted
using AUDIT software (Coutin et al., 2020) as described. First,
the curves were smoothed, and the area under the curve was
calculated. The area under the curve was then compared to the
area of no drug control (AREAdrug/AREAcontrol) to create an

inhibition ratio. We then used the Bliss multiplicative model3 to
calculate epsilon for each dose matrix, ε = Drug ABratio – (Drug
Aratio × Drug Bratio). Specifically, we considered “drug epsilon”
to be the difference between the actual combined growth and
the “expected” from the multiplication of the two single agents.
For example, if drug A grows at 90% compared to no drug and
drug B grows at 80% compared to no drug, the expected defect
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FIGURE 1 | Combination screening and transformation of growth data into a quantitative metric. (A) Illustrates the combination of compounds cerivastatin and

fenpropimorph as an example. A 6-by-6 dose matrix is screened with an increase of each drug along the x and y axes. The blue triangles represent increasing

concentration of drugs. In (B) each square in the 6-by-6 matrix is represented by a growth curve for each drug combination, which is optical density (OD600) vs. time.

Panel (C) shows an example of greater than additive inhibition due to synergy. The blue growth curves represent the DMSO (no drug) control. Green curves show

growth in the presence of compounds A and B. The combination of A and B is shown in the bottom right-hand cell in which the black line indicates the expected

growth rate based on the multiplicative model, while the red curve is the actual cell growth in the drug combination. In the heatmap (D), the color of each square

reports the epsilon value generated using the multiplicative model, where black represents no interaction, yellow represents synergy, and blue represents antagonism.

In this heatmap, the 6-by-6 dose response matrix of cerivastatin vs. fenpropimorph provides an example of synergy, because epsilon is negative (yellow). WAB

represents the relative growth of yeast in the presence of both drug A (cerivastatin) and drug B (fenpropimorph) when compared to a no-drug control (DMSO), WA

represents the relative growth of yeast in the presence of drug A when compared to a no drug control. The color-coded scale bar from yellow (synergy) to blue

(antagonism) covers the spectrum where Wab < Wa × Wb, to no interaction Wab = Wa × Wb to antagonism Wab > Wa × Wb.

would be 90 × 80% (e.g., 72%). If the actual combination grows
at 50% compared to no drug then epsilon would be 50–72% =

−23% When epsilon is zero, then no interaction is observed;
when epsilon is negative, there is a synergy, and positive epsilon
denotes antagonism. An antagonistic interaction indicates that
one of the drugs buffers the effect of the second agent—Figure 1

illustrates how growth data was transformed into a quantitative
trait to determine epsilon.

Drug–Gene Interaction Screening Using
Isogenic Cultures
To determine whether a deletion mutant was hypersensitive to
the drug, we had to know the growth rate of both the mutant and
wild-type strains with and without drug. We used heterozygous
deletion mutants of the known drug-targets (listed in Table 1).

The yeast strains BY4743 and corresponding heterozygous
mutants were grown, as isogenic cultures, in 96-well microtiter
plates, at 30◦C for 24 h in a TECAN optical density reader. The
optical density (OD600) was measured at 15-min intervals. Here,
the growth metric average generation time (aka AvgG) was used
to assess the fitness of wild-type and mutant strains with and
without drug; this metric is comprehensively described in the
protocol written by our lab (Proctor et al., 2011). The generation
time is calculated from the initial inflection point at the end
of log phase until the second inflection point as the culture
reaches stationary phase. We normalized each strain’s fitness to

the wild-type and subtracted any single mutant fitness that was
contributed by any particular mutant, i.e., we normalized the

various heterozygous mutants’ growth to wildtype to take into

account any fitness defect that was caused by haploinsufficiency.
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TABLE 1 | Compounds used and known targets.

Compound Protein target Method

cerivastatin Hmg1 (Bischoff et al., 1997) HOP

tunicamycin Alg7 (Barnes et al., 1984) MSP*/HIP

methotrexate Dfr1 (Huang et al., 1992) HIP

miconazole Erg11 (Turi and Loper, 1992;

Truan et al., 1994)

HIP

rapamycin Tor2 (Heitman et al., 1991;

Sabatini et al., 1994)

MSP/HIP

cantharidin Glc7 (Li and Casida, 1992;

Honkanen, 1993)

HIP

fenpropimorph Erg24 (Marcireau et al., 1990; H.

Lai et al., 1994)

HIP

latrunculin A Act1 (Spector et al., 1983;

Yarmola et al., 2000)

Resistance mapping

benomyl Tub1 (Davidse and Flach, 1977;

Sheir-Neiss et al., 1978)

HIP and mutant mapping

sodium fluoride Ipp1 (Yan et al., 2008) HIP

hydroxyurea Rnr1 (Elledge and Davis, 1990;

Tai et al., 2017)

HIP and resistance mapping

* Multicopy suppression profiling (target overexpression).

Predicting Synergistic Combinations via
Chemogenomic Interactions
Following up on how drug–drug interactions predict drug–
gene interactions – to predict synergy using chemogenomic
data, we examined 18 datasets (see Table 2) and assessed if the
known drug-targets listed in Table 1 were sensitive in any of the
treatments based on the log2 ratio of control over treatment.
We then identified combinations available in our laboratory for
testing; 25 combinations were selected based on the availability
of compounds present in the Giaever/Nislow laboratory as well
as Boone lab, at the University of Toronto. To determine if
this method can successfully predict synergistic combinations,
the chances of observing synergy between randomly paired
compounds need to be known.

Determination of Background Synergy
Rate and Experimental Validation of
Predicted Combinations
To define enrichment for synergistic combinations, the chances
of observing synergy between randomly paired compound
combinations must be known. To address this, 105 combinations
in a 4-by-4 dosage matrix were screened. We used a smaller
matrix in this experiment to maximize the number of
combinations that could be screened in a short time. As a result,
six combinations can be screened per 96-well plate per TECAN
plate reader, instead of two combinations when screened in a 6-
by-6 matrix. The drug concentrations were such that there was
an IC0 (no drug), IC10, IC20, and IC50 for each drug in the
matrix (Table 2). The yeast strain, BY4743, was used to screen
these combinations and was grown in a 96-well microtiter plate
at 30◦C for 24 h in a TECAN optical density reader. The optical
density (OD600) was measured at 15-min intervals.

Pooled Competitive Growth Assays
Two deletion pools, a homozygous deletion pool of 5054 strains
representing non-essential genes and a heterozygous pool of
1,194 strains representing genes essential for viability, were
thawed and diluted in YPD to an OD600 of 0.0625; 700 µl
cultures were then grown at 30◦C with a chemical inhibitor(s)
applied at a dose that produced 10–20% growth inhibition
of wild-type. An automated liquid handler robot was used to
maintain logarithmic growth of pools by collecting 0.7 OD600s
of heterozygous pool following 20 generations of growth, and 1.4
OD600s of homozygous pool following five generations of growth,
for further processing as described below.

Assessing Fitness of Barcoded Yeast
Strains by Barcode Microarray
Except where indicated, pooled assays were performed as
described in the protocol by Pierce et al. (2007). Genomic DNA
was isolated from cells and barcodes, amplified, and hybridized
to barcode microarrays, where each barcode deletion mutant is
represented by 10 hybridization signals (the uptag and downtag
for each strain are each represented on the array five times; Pierce
et al., 2007). Array measurements were quantile normalized
such that all tags hybridized with the sample pool had similar
distributions. Following normalization, we applied a correction
factor to the array data to correct for feature saturation (Pierce
et al., 2007) and determined the fitness of each barcoded deletion
strain using the average of both barcodes. A Z-Score was
calculated based on the average barcodes signal intensity against
a control probe sets distribution. Positive fitness defect scores
signify a decrease in strain abundance during drug treatment.

Haploinsufficiency Profiling and
HOmozygous Profiling of Synergistic
Combinations
A key parameter in performing genome-wide screens in yeast is
to determine an appropriate screening dose. This value has been
empirically determined to be 10–30% of inhibition of wild type
growth (Lee et al., 2014). In practice, when performing synergy
screens with two agents, one must eliminate any effects due to
the action of a single agent alone. Therefore, we screened each
single agent at its IC20, as well as at the dose that was used to
generate a combined IC20. We therefore needed data from both
the combination and individual agents. For each combination
genome-wide assays five screens were performed. Specifically,
Agent A at its IC10-30, Agent A the dose used when combined
(usually an IC2), along with Agent B at its IC10-30, Agent B
at the dose used when combined (usually an IC2). Accordingly,
each genome-wide synergy assay comprises five separate screens:
(1) the combined screen (A+B), (2, 3) each single agent at an
IC10–30 (A and B), (4, 5) each single agent at the doses used
in A+B.

Analysis of Combination Profiles
Defining the Sensitivity Score
For each drug treatment, a Z-Score based on the averaged Up and
DOWN barcode signal intensity was calculated. Using a Z-Score
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TABLE 2 | Hundred and ten fitness scores of heterozygous mutants in drugs.

Miconazole Benomyl Rapamycin Fenpropimorph Cantharidin Sodium fluoride Hydroxyurea Methotrexate Cerivastatin Tunicamycin Latrunculin A

200 nM 0.02 µg/ml 6 nM 0.04% 250 µM 40 mM 80 mM 450 µM 2 µM 0.2 µM 0.5 µM

erg11 0.82 0.76 0.94 0.54 0.95 1.00 0.92 0.99 0.90 0.99 0.90

tub1 0.72 0.81 0.90 0.42 0.69 0.87 0.78 0.83 0.81 0.82 0.35

tor2 0.53 0.73 0.56 0.68 0.90 0.98 0.85 0.96 0.87 0.89 0.65

erg24 0.55 0.74 0.71 0.73 0.88 0.89 0.83 0.90 0.77 0.87 0.68

glc7 0.52 0.79 0.65 0.50 0.58 0.95 0.83 0.90 0.88 0.83 0.68

ipp1 0.61 0.74 0.72 0.78 0.91 0.71 0.89 0.97 0.99 0.89 0.68

rnr1 0.64 0.92 0.73 0.56 0.93 0.96 0.87 0.94 0.90 0.93 0.68

dfr1 0.55 0.92 0.80 0.68 0.93 1.04 0.87 0.78 0.97 0.91 0.75

hmg1 0.56 1.07 0.80 0.68 0.97 1.05 0.90 1.01 0.75 0.91 0.87

alg7 0.76 1.05 0.81 0.55 0.99 1.05 0.94 1.04 0.96 0.79 0.96

Combinations with bold font passed the cut-off of ≥10% fitness defect. Red denotes expected drug-induced haploinsufficiency (e.g., when considering an ERG11 Het, the expectation

is that this strain would grow slower than its wild-type counterpart in miconazole because miconazole targets the ERG11 protein.); yellow cells indicate predicted haploinsufficiency

interactions based on synergistic drug combinations (i.e., based on the drug–drug synergy we expect a drug–gene interaction). Numbers in each box represent the average generation

time (AvgG) of the mutant’s fitness relative to wild type in the drug condition. Bold numbers represent interactions causing ≥10% fitness defect, and interactions causing ≥30% are

shown as underlined values.

of >2, we defined a list of sensitive strains in each treatment.
Filtering out strains that arose from the single drug treatments,
we were able to identify unique, combination-specific sensitive
strains. To aid in the analysis of drug combinations, we defined
factor ε that is the sensitivity of genes in the combination minus
the sum of sensitivity in the single agents—ε = Z-ScoreAB –
(Z-ScoreA × Z-ScoreB).

Clustering of Combination HIP–HOP Profiles

Sensitivity Scores
We took raw intensity values from the barcode microarrays and
normalized the logged raw intensities using a method called
Supervised Normalization of Microarrays (SNM). Supervised
Normalization of Microarrays (Mecham et al., 2010) was
supplied with batch definitions—each batch as the arrays that
have the same chip date. We also supplied this method with
array descriptors corresponding to the chemical treatments
(i.e., which compounds were used); this is meant to preserve
biologically relevant signal. After SNM, we selected either the
uptag or downtag for each strain based on the lowest variation
coefficient to avoid noisy tags. The logged intensities were
then used to compute robust Z-Scores. We used the median
and median absolute deviation to calculate the Z-Score, and
then clustered strains and chemical treatments separately. The
similarity between strains/chemical treatments was based on the
Pearson correlation of Z-Scores.

Examination of Gene-Ontology Terms
Gene-Ontology has the aim to standardize terms for describing
gene products. This vocabulary defines a set of cell terms for
which a gene can be annotated to. These annotations cover a vast
range from location within the cell to specific cellular functions
such as nucleotide excision repair. In this study, we used Gene-
Ontology terms with more than five genes and <200 genes. To
determine enrichment, we used the sensitivity score. Following
ranking each gene sensitive in a specific combination, we used

Gene Set Enrichment Analysis (GSEA; Subramanian et al., 2005)
to determine enrichment in each category.

Visualization of HIP–HOP Screens
To facilitate the visualization of the single agent and combination
screens, we provide a custom shiny app to (1) upload excel
or text files, (2) visualize each screen as a scatterplot (HIP
and HOP plots side-by-side), (3) rapidly identify combination
specific strains (red), significantly sensitive strains (green), and
non-significantly sensitive strains (violet), and (4) the significant
strains are detailed below the plots with hyperlinks. Figure 4
provides a static view of the output of this app which can be
accessed here: https://ggshiny.shinyapps.io/GOappCN/

Additional features allow for customization, including
selecting axis limits, label font sized, thresholding for significance,
and sizing of data points.

RESULTS

Synergy Screens
Using our database of 3,200 drugs and drug-like molecules
(Lee et al., 2014) we selected 11 compounds (Table 1) and
screened all possible combinations of these drugs in a 6-
by-6 dosage matrix using growth curve analysis (Figure 1).
The growth data were analyzed, using a computer program
(AUDIT; Coutin et al., 2020) that converts raw absorbance
values into growth curves. Next, to determine potential
synergy, corresponding growth curve data were examined to
produce the average epsilon score for the drug combination
6-by-6 matrix (defined as AvgS) from which we generated
heatmaps (Figure 1D; drug screens, heatmaps, and MATLAB
code are available in Supplementary Data Files 1 and 2). If two
individual drugs act independently, their effects are expected to
combine multiplicatively. In other words, if a drug affecting gene
x causes a fitness effect Wx, and a drug affecting gene y causes a
fitness effect Wy, then the total effect of the drug combination
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(Wxy) is predicted to be Wx × Wy. For our purposes, we
measured the deviation epsilon (ε) from this expectation (where
εxy = Wxy – Wx × Wy) (Onge et al., 2007; Díaz-Mejía et al.,
2018). Using this score and a threshold of AvgS < −0.05 to score
a combination as synergistic, 33% of all combinations showed
synergy. “Large-scale experimental drug synergy screens have
found that synergistic drug pairs are rare (4–10%) (Cokol et al.,
2011).” Hence, given this unexpectedly high level of synergy, we
applied additional filters such as additivity (Loewe, 1928, 1953,
1957), highest single agent, and a potentiation model (Lehár
et al., 2007). Finally, we identified 10 combinations that deviated
from expectation in all 4 models and were therefore classified
as synergistic. Interestingly, fenpropimorph vs. miconazole,
fenpropimorph vs. cerivastatin, and miconazole vs. cerivastatin
all possessed a strong synergy when combined. These are the only
compound pairs that target the same pathway—consistent with
the idea that drugs targeting the same essential pathway can be
an effective means to produce synergistic combinations.

Using Synergistic Drug Combinations to
Predict Drug–Gene Interactions
Having identified a high-confidence set of synergistic drug–drug
interactions, we tested if these interactions could be recapitulated
by combining the relevant drug–gene interactions. Our rationale
was that if two drugs were synergistic, a loss-of-function
mutation (as exemplified in the heterozygous state) in one of the
known drug-targets would confer hypersensitivity to the second
compound. In other words, if Drug A targets protein A and Drug
B targets protein B to produce synergy, then one would predict
that Drug A when combined with a loss-of-function mutant
in B, should phenocopy the drug combination (it is worth to
mention that loss-of-function screens of heterozygotes assume
they are acting as recessive alleles because they do not manifest
a growth defect in the absence drug). In our experience, all
the heterozygote diploids behave as loss-of-function alleles with
respect to their response to drug. Because each deletion allele is
grown competitively along with ∼6,000 strains that are wildtype
at the locus they behave as recessive alleles. To empirically test
this prediction, we selected heterozygous deletion mutants of the
known drug targets and challenged them with each drug listed in
Table 1, and the results were compared to data derived from the
combination screens.

Eleven heterozygous deletion mutants—each deleted for one
of the known drug-targets—along with a wild type control
strain were profiled in each drug, resulting in 121 drug–
gene interaction tests (i.e., 11 drugs against 11 heterozygous
deletion mutants). The act1 heterozygote displayed a significant
fitness defect without drug treatment and was eliminated from
further analysis. The remaining 110 drug–gene interactions were
examined for drug sensitivity using a cut-off of ≥10% fitness
defect (i.e., an inhibitory concentration of 10 or IC10) and
identified 76 negative drug–gene interactions (bold numbers in
Table 2) among them, 10 are the expected HIP-drug or gene–
drug interactions (i.e., a drug-target mutant being sensitive to
a drug known to target the product of that locus; red cells in
Table 2), while the remaining 66 negative drug–gene interactions

were novel. Among the 66 negative drug–gene interactions,
17 of the 18 predicted interactions (yellow cells in Table 2)
showed a fitness defect ≥10%, giving a significant enrichment
(p-value= 0.003) of drug–gene interactions, which are predicted
by synergistic combinations. Using a more stringent cut-off
of greater than a 30% fitness defect, we found 23 negative
drug–gene interactions (underlined numbers in Table 2), 8 of
which were from the predicted drug–gene interactions (p-value
= 0.0002); Table 2. Situations where two loss-of-functions—
caused by either mutation or drug inhibition—leads to a more
deleterious effect than the fitness reduction expected from the
combined loss of individual genes are referred to as negative
or aggravating interactions (for instance, synthetic sickness, or
synthetic lethality; Beltrao et al., 2010).

Random Combinations of Compounds Are
Rarely Synergistic
To put our drug-drug synergy observations in context, we
sought to determine the chances of observing synergy when
two randomly selected compounds were combined. In other
words, establishing the likelihood observing synergistic effects
of any two compounds would then allow one to calculate any
enrichment over random chance. Accordingly, we tested all
pairwise combinations of 15 random compounds in a 4-by-4
dosage matrix (Table 3). Our criteria for selecting such “random
compounds” included (i) they were bioactive in yeast, and (ii)
their HIP–HOP profiles showed a similar number of sensitive
strains when compared to the compounds in Table 2. We
further evaluated these compounds by mapping them onto the
synthetic genetic array (SGA) network of gene–gene interactions
(Costanzo et al., 2010). Using the multiplicative synergy model,
17% of these random combinations were synergistic (ε <

−0.20) which dropped to 9.5% of combinations when the over-
represented compounds that affect the cell wall and secretion
were excluded. This value is similar to previously reported
combination screening studies, which report ∼10% baseline
synergy in any combination (Yeh et al., 2006; Lehár et al.,
2007; Farha and Brown, 2010). Figure 2 represents an example
of synergy prediction screens in a 4-by-4 matrix (all the SGA
heatmaps are available in Supplementary Data File 3).

Predicting Synergy
“Chemical space—a term used to encompass all possible
small (>500 atoms) organic molecules, including those in
biological systems— is vast” (Odling-smee and Dobson,
2004). Furthermore, the current purchasable, and readily
screenable compounds comprise approximately 8 million
unique compounds (Chuprina et al., 2010). Screening each
of these molecules as single agents is quite daunting, while
screening all pairwise combinations is impossible. The number
of potential combinations is (N2 – N)/2, with the number of
starting compounds being (N). To expedite the identification of
synergistic combinations, we test if we could uncover synergistic
combinations from combination chemogenomic data.

We reasoned that if a drug induces a fitness defect in a
particular gene-deletionmutant, but does not directly inhibit that
gene product, then this drugmight be synergistic when combined
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TABLE 3 | Drugs and chemical probes and their concentrations used in a 4-by-4 dose matrix to determine baseline synergy.

Drug Yeast target Dose 1 Dose 2 Dose 3 Dose 4 Units

Cisplatin DNA 0 100.0 150.0 200.0 µM

MMS DNA 0 136 318 454 µM

Camptothecin TOP2 0 250 500 1,000 µM

Caspofungin FKS1 0 0.007 0.0072 0.0075 µM

Chlorpromazine Unknown 0 20.0 21.0 22.0 µM

Hygromycin B Unknown 0 10.0 15.0 20.0 µM

Nocodazole TUB1 0 11.0 12.0 13.0 µM

Cytochalasin A ACT1 0 40.0 50.0 60.0 µM

Pentamidine Unknown 0 75.0 115.0 130.0 µM

Nigericin Unknown 0 20.0 25.0 30.0 nM

Neomycin sulfate Unknown 0 175.0 200.0 225.0 µM

Sodium butyrate HDACs 0 40,000.0 60,000.0 80,000.0 µM

4108395 Unknown 0 9.0 11.0 13.0 µM

2848077 Unknown 0 1.4 1.7 2.0 µM

5962639 Unknown 0 150.0 200.0 250.0 µM

The three compounds indicated by their PubChem CID are from supplementary database of Lee et al. (2014).

FIGURE 2 | Six examples from the set of drug combinations screened in a 4-by-4 dose matrixes. Each drug is present at 3 doses and a no drug control while the

concentration increases along the x and y axis. The color of the heat map represents epsilon generated from the multiplicative model; blue indicates a synergistic

interaction, and the epsilon score is presented underneath each combination.

with a second compound that does inhibit that gene product. To
survey the possible drugs and mutants that satisfy these criteria,
we first used our lab database of several thousand chemogenomic
assays (Lee et al., 2014) to define when a heterozygous deletion
mutant of a known drug-target is sensitive. We then sought to
uncover synergistic interactions so the drug can be paired with a
second drug that inhibits the known drug-target (Figure 3).

This principle is illustrated with miconazole, an antifungal
that targets the enzyme Erg11. Because the hmg11 deletion
strain is also sensitive to miconazole, we hypothesized that
the combination of miconazole and an HMG1 inhibitor (e.g.,
cerivastatin), would be synergistic. To test this hypothesis, we
first examined the dataset in reference (Hillenmeyer et al., 2008)
and all single-agent screens performed in our lab to ask if
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FIGURE 3 | Diagram of synergy prediction method. The HIP–HOP profile for drug A, in which red circles are essential genes and blue are nonessential genes. Genes

are listed on the x-axis and sensitivity to drug A is on the y-axis. The most sensitive strain in this example is the target of drug A. However, another essential gene also

displays sensitivity to drug A. This gene is the known drug-target of drug B. Using the synergy prediction method, drug A and drug B would be predicted to be

synergistic. By testing them in a drug dosage matrix, one can determine if this assumption is true.

any of the drug targets in Table 1 exhibited a fitness defect
(Supplementary Data File 4). From this survey, 26 predicted
synergistic combinations were selected and empirically tested to
determine if their synergy rate was greater than the background
synergy rate of 17%. We found ∼50% of the tested pairs were
synergistic (ε < −0.20): a 3.1-fold significant enrichment over
random pairs (p-value < 0.01). This approach is conceptually
distinct from another synergy prediction method introduced by
Jansen et al. (2009) (a bioinformatics-based approach predicting
antifungal synergy using chemogenomic profiles to identify
compound profiles that have a statistically significant degree of
similarity to a fluconazole profile). In contrast, our approach
is empirical, asking if a drug, selected based on its drug–gene
interactions in HIP–HOP, can induce synergy.

HIP–HOP Combination Profiles
We next used a variation of the HIP–HOP assay to screen some
of the newly identified synergistic drug combinations, testing
compound combinations genome-wide. Based on these tests, all
14 confirmed synergistic combinations and 12 non-synergistic
combinations, and each single agent was used for chemogenomic
screening (Supplementary Data File 5). We then used the
chemogenomics approach described by Lee et al. (2014) to
identify any significantly sensitive strain in all screens. To further
scrutinize the drug combinations, we defined the epsilon value
(ε) as a fraction of uniquely sensitive genes, in both synergistic
and non-synergistic pairs. We defined uniquely sensitive genes as
those that are significant only when both compounds are tested
together at a fitness defect score of 2.0 or greater. Two examples
are shown in Figure 4, and the entire dataset of single agent and
combinationHIP–HOP profiles which is visualizable in our shiny
app is in Supplementary Data File 4 and 5.

Although the primary goal of these genome-wide
combinations is to serve as a resource for focused tests of
individual combination-specific genes, several high-level
observations are noteworthy: (i) combinations vary greatly in
the number of specifically sensitive genes, (ii) in some cases the
combination-specific strains appear to be subject to potentiation
by one of the two agents (i.e., these strains can be detected at
higher doses of the single agents (Hoon et al., 2008), and (iii)

the combination-specific genes identified are consistent with
known mechanisms of actions of one or both of the drugs used
in the combination.

We examined each combination screen, both synergistic
and non-synergistic, and examined the biochemical pathways
enriched in each pathway. Examining the Gene Ontology (GO)
enrichments via the synergy score (Figure 5), we found that
each combination provides a unique signature. For instance,
the miconazole-cerivastatin combination screen was enriched
for gene deletion strains involved in cell wall, cytokinesis,
vesicle-related processes, and sterol biosynthesis. In contrast, the
miconazole-hydroxyurea screen is enriched for vesicle-related
processes and cytokinesis but not for cell wall-related or sterol
biosynthesis processes. These combination-enriched GO terms
can identify which cellular processes are providing resistance to
the combination and could help to understand the mechanism of
synergy on a combination-specific basis.

DISCUSSION

In this study, we used genome-wide chemogenomic profiling
to select drug combinations for synergy testing then confirmed
our predictions using combined chemogenomic assays. An
interesting observation from the drug combination data is
that the three inhibitors affecting the ergosterol pathway were
highly synergistic when applied in combination, suggesting that
compounds that inhibit different points within a pathway are
more likely to be synergistic, consistent with (Zimmermann
et al., 2007) and the observations by (Cokol et al., 2011) that
found similar compounds to be “promiscuously” synergistic. We
further demonstrated that, among the synergistic combinations,
78% of the combinations tested (Table 1) were the result of
combining an ergosterol inhibitor with a second agent. This
indicates that the ergosterol inhibitors are highly synergistic with
other agents, which is likely due to their effect on the yeast cell
membrane, thereby allowing compounds more effective entry
(Farha and Brown, 2010).

Using a modified genome-wide assay we demonstrated that
synergistic combinations result in uniquely sensitive strains that
are specific to the combinations and are not observed in either
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FIGURE 4 | HIP–HOP screening of select drug combinations. For each combination screen, a drug combination that inhibited wild-type yeast growth by 20% was

selected and screened alongside each single agent. To identify combination-specific strains, we required that the fitness defect in the combination be 2.0 or greater

and that in each single agent, the fitness defect for that strain did not exceed 2.0. For clarity, the heterozygous essential (HIP scatterplots) and homozygous

non-essential (HOP scatterplots) data are plotted separately. Significantly sensitive strains are highlighted in green, and combination-specific strains are depicted in

red, while violet shows non-significantly sensitive strains. The fitness defect scores are shown on the y-axes. In the case of the fenpropimorph vs. rapamycin

combination (top plots), only a single strain, the essential gene DML1, was identified as a combination-specific strain. This gene product has been implicated in

diverse aspects of mitochondrial function. For the hydroxyurea vs. cerivastatin combination (bottom plots), a larger number of combination-specific strains are

apparent. Among these are essential genes involved in sphingolipid biosynthesis (LCB2), mitochondrial metabolism (SDH3, JAC1) as well as cell cycle checkpoints,

and protein degradation at the metaphase anaphase transition (LCD1, CDC23, and CBF2). Non-essential strains specific to this combination include those involved in

response to diverse stresses (STE3, CGR1) and targeted protein degradation (PEP5, KEX2).

of the single agents. Because we used stringent cut-offs, the
difference we found between synergistic and non-synergistic
combinations likely represents a minimum level of enrichment.
We also found that each combination has its own pathway and
GO enrichments (Figure 5).

During the course of this work, we confirmed that these drug–
drug interactions (derived from drug combination treatment)
can be recapitulated using drug–gene interactions by directly
assaying loss-of-function (heterozygous deletion) mutants for
a drug’s known target with a drug that inhibits a synergistic
target. We further found that drug–gene interactions derived
from synergistic drug–drug interactions were enriched for
negative interactions. To extrapolate these observations, we
analyzed our single-agent chemogenomic screening data to
predict combinations that might exhibit synergy. Given that we

observed the baseline level of synergy between 10 and 17%,
between 83 and 90% of any random combination should not
be synergistic. Our approach reduces the screening required by
at least 3.1-fold. This experimental approach involves: (1) using
chemogenomic data to identify drugs able to make known drug-
targets haploinsufficient, (2) pairing the strain with the expected
drug, and (3) screening a dose matrix for synergy. In a pilot
of 26 combinations, we identified 14 synergistic combinations.
This method is easily adaptable to include new drug-targets, as
we limited our search to 11 well-characterized drug-targets in
Table 1 and only examined one dataset (Hillenmeyer et al., 2008).

Synergistic effects (between either genes or drugs) have
received renewed attention, especially in light of increasingly
sophisticated computational approaches and the precise
genome engineering possible with CRISPR-based technology.
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FIGURE 5 | Combination-specific Gene-Ontology (GO) enrichment HIP–HOP data. Examination of Gene-Ontology enrichment using ε score. In the clustered heat

map generated from the ε scores, on the x-axis we have each drug combination listed on the bottom; at the top on the x-axis is a purple box which denotes if a

combination is synergistic or not. GO terms are denoted on the y-axis. Red shows a particular GO term is highly enriched in the combination, gray denotes no

enrichment, and blue shows significant enrichment among genes with low ε scores.
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For example, Cokol et al. (2018) developed a computational
framework called MAGENTA to investigate the impact of
microenvironment on antibiotic combinations, stating that it
enables tailoring antibiotic therapies based on the pathogen
microenvironment. To predict synergistic or antagonistic
interactions on various microenvironments, MAGENTA
leverages chemogenomic profiles of both single drugs and
metabolic perturbation. They reported several synergistic
combinations against Escherichia coli and A. baumannii, and
predicted bactericidal drug-combinations’ effectiveness when
grown in glycerol media and classified genes in the glycolysis and
glyoxylate pathways as top predictors of synergy and antagonism,
respectively (Cokol et al., 2018).

In 2016, Wong et al. leveraged combinatorial genetics en
masse (CombiGEM) to systematically study gene and drug
combinations modulating biological phenotypes (Wong et al.,
2016). Combi-GEM allows for the rapid construction of
barcoded, combinatorial genetic libraries that can be quantified
with high-throughput sequencing. They applied CombiGEM-
CRISPR to generate a library of 23,409 barcoded dual guide-RNA
(gRNA) combinations, performing a high-throughput pooled
screen to find gene pairs that combine to inhibit ovarian cancer
cell growth. In the same study, small-molecule drug pairs were
tested against the pairwise synthetic lethal hits, revealing that they
exert synergistic antiproliferative effects against ovarian cancer
cells (Wong et al., 2016).

Combining chemogenomics and genetic interactions,
Weinstein et al. (2018) studied antifungal combinations applied
to two yeast species, C. albicans and S. cerevisiae. This study
showed that, both synergistic and antagonistic combinations
increase the cell-type selectivity of growth-inhibiting drugs. The
authors speculate that drug interactions might shift selectivity
in comparison to single-drug effects in mixed microbial
communities. Indeed, few drugs or drug combinations should
be expected to encounter the idealized conditions in laboratory
experiments—the variations observed by Weinstein et al.
(2018) can change the selectivity of compounds, i.e., inverting,
diminishing, or enhancing therapeutic windows.

In a recent CRISPR/Cas9 screen Huang et al. sought to
identify genes whose depletion causes synthetic lethality with the
broad-acting but not particularly potent Aurora kinase inhibitor
VX-680 (Huang et al., 2020). They reported that HCT116
cells showed hypersensitivity to VX-680 when Haspin—a
serine/threonine-protein kinase encoded by the GSG2 gene—was
either depleted by CRISPR knockout or with Haspin inhibitors,
confirming the synergistic effect between VX-680 and Haspin
depletion or inhibition (Huang et al., 2020). Recently, Zhou
et al. reported a CRISPR-based, multi-gene, knockout screening

system for assembly of barcoded, high-order combinatorial
guide RNA libraries, en masse. Although combination therapies
promise to improve treatment efficiency of various diseases, only
a few effective drug combinations—especially those employing
three or more drugs (see Table S1 in reference Zhou et al.,
2020)—have been introduced so far. Zhou et al. used this
approach to systematically identify both pairwise and three-agent
synergistic therapeutic target combinations. Their study claimed
to uncover double- and triple-combinations that suppressed
cancer cell growth and afforded protection against Parkinson’s
disease-associated toxicity (Zhou et al., 2020).

CONCLUSION

In this work, we introduce a strategy to use comprehensive
genome-wide screens to first predict compounds that
might be synergistic and then test novel combinations
empirically. This approach should be extensible to other
models and allow for a rational approach to selecting
effective drug combinations. Though none of the drug
combinations identified here were tested in a fungal pathogen,
we hope this study sheds some light on this research
field and would inspire other scholars work on relevant
fungal pathogens.
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