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“The organisms parts are reciprocally cause and effect of each others form.” (Kant 1790, Critique
of Judgement, § 65).

INTRODUCTION

This article is unorthodox in suggesting a hypothesis which may, at least currently, be inaccessible
to experimental tests. But learning from the admired Peter Mitchell, I think that this hypothesis is
of heuristic value. My aim is to draw attention to a specific point: That the fungal organism as a
whole is the cause of its physiological behavior. I hereby place myself within the tradition of the
so-called organismic biology, which was developed, among others, by the Theoretical Biology Club
in England in the 1930’s (Peterson, 2016). This conclusion imposed itself on me from 30 years
of work on the excretion of organic acids by Penicillium ochrochloron, i.e., overflow metabolism
in the sense of Foster (1949), who first used this term in connection with organic acid excretion
by filamentous fungi (the terms overflow metabolism and organic acid excretion, OAE, are used
synonymously in this article).

Overflow metabolism, i.e., the excretion of incompletely oxidized metabolites in the presence
of oxygen, is a feature of many microorganisms as well as of cancer cells (Warburg effect).
Microorganisms in which overflow metabolism was studied in detail are Klebsiella aerogenes
(Neijssel et al., 2008), Saccharomyces cerevisiae (Bruggeman et al., 2020), Escherichia coli (Basan
et al., 2015; Bruggeman et al., 2020), Bacillus subtilis (Dauner et al., 2001), Streptococcus bovis
(Russell, 2007),Aspergillus niger (Karaffa and Kubicek, 2003, 2019;Wierckx et al., 2020),Aspergillus
carbonarius (Linde et al., 2016) and Penicillium ochrochloron (Vrabl et al., 2017).

Especially for S. cerevisiae and E. coli a detailed experimental and theoretical picture for
overflowmetabolism exists. No such picture does exist for filamentous fungi despite the importance
of fungal overflow metabolism in biotechnology and ecology. I will describe main features
of overflow metabolism in E. coli and S. cerevisiae, argue why this overflow metabolism is
fundamentally different from overflow metabolism in P. ochrochloron and suggest a hypothesis
why P. ochrochloron excretes organic acids.

Overflow Metabolism in E. coli, S. cerevisiae, and K. aerogenes
The central point concerning S. cerevisiae and E. coli is that overflow metabolism
in glucose limited chemostat cultures starts if the specific growth rate is increased
beyond a certain value. Thus, a threshold exists for overflow metabolism. At µ values
higher than this threshold experiments showed a linear increase (q, mmol (g dry
weight)−1 h−1) of (i) the excretion of specific metabolites (ethanol, acetate), (ii) the
glucose consumption, and (iii) the carbon dioxide production (Bruggeman et al., 2020).
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Simultaneously the oxygen consumption decreased (Bruggeman
et al., 2020). Thus, metabolism changed from respiratory
to respirofermentative. These data were won from glucose
limited chemostats. This phenomenological description is true
regardless of the underlying mechanistic explanation (Shimizu
and Matsuoka, 2019).

In K. aerogenes, another microorganism well-studied
concerning overflow metabolism, the picture for ethanol and
acetate excretion seems to be similar to E. coli and S. cerevisiae
(Paca, 1976; Teixeira de Mattos et al., 1982) whereas the scarce
results for the dependence of OAE on the dilution rate (Paca,
1976; Neijssel et al., 2008) are closer to the picture found in
P. ochrochloron.

Overflow Metabolism in P. ochrochloron
Two scenarios will be considered. The description of the two
scenarios for P. ochrochloron is based on published data, with
one exception (Heiss, 2016). Because the focus of experiments
changed with the progress of research it has to be accepted
that not for all runs all desirable data were available. A similar
systematic study of OAE is regrettably neither available for any
other filamentous fungus nor for E. coli and S. cerevisiae. I
have deliberately refrained from presenting specific data and
only quoted them. To guarantee that the reader can find easily
the particular results I am referring to, the quotations include
references to specific figures within the quoted articles.

The first scenario is OAE during steady state of chemostat
cultures with different nutrient limitations (glucose, ammonium,
phosphate). The second scenario is OAE after abrupt changes in
environmental conditions such as (i) the addition of inhibitors to
ammonium limited chemostat culture (uncouplers, N2, SHAM),
(ii) the addition of glucose to glucose limited chemostat culture or
(iii) the transition from exponential growth to non-exponential
biomass increase after the exhaustion of a main nutrient in
bioreactor batch culture, or after harvest and resuspension of
biomass in an aerated ammonium free glucose solution.

The question that is easiest to answer is how P. ochrochloron
does excrete organic acids. A more difficult question is, whether
or not OAE in P. ochrochloron is different from overflow
metabolism in E. coli and S. cerevisiae. Themost difficult question
is: why P. ochrochloron excretes organic acids – this is the
question dealing with cause(s) and purpose(s) in organisms.
At this point I want to mention that with plant pathogenic
and entomopathogenic fungi the why question is answered for,
e.g., the fungal excretion of oxalic acid (Palmieri et al., 2019):
This excretion is to support infection. The “Why” question in
this article refers only to growth of Penicillium ochrochloron
under artificial laboratory conditions, and not to growth of
P. ochrochloron or any other fungus in natural habitats.

Main features of OAE by P. ochrochloron for the first
scenario, i.e., chemostat cultures of P. ochrochloron are: (i) in
glucose limited chemostats very low excretion of metabolites was
observed regardless of the specific growth rate (Gallmetzer and
Burgstaller, 2001, Figure 2, Table 1; Gallmetzer and Burgstaller,
2002, Figure 1; Gallmetzer et al., 2002, Figures 1, 3); for
example, they showed that even with the very low OAE there
is a continuous increase in citrate excretion between a specific

growth rate of 0.06 and 0.18 h−1;there is thus no threshold
value for µ concerning overflow metabolism; (ii) in chemostat
culture amounts and pattern of OAE were different with different
limiting nutrients (Gallmetzer and Burgstaller, 2001, Figure 2;
Gallmetzer and Burgstaller, 2002, Figure 3; Gallmetzer et al.,
2002, Figures 1, 2; Vrabl et al., 2017, Figures 3, 4); for example
they showed that OAE was strongly increased with ammonium
and phosphate limitation compared to glucose limitation; (iii)
increased OAE was found together with either an increased or
a decreased glucose and oxygen consumption (Gallmetzer and
Burgstaller, 2002, Figure 2); (iv) no change from respiratory to
respirofermentative metabolism was observed with increasing µ.
Thus, the characteristics of overflow metabolism stated for S.
cerevisiae and E. coli do not apply to P. ochrochloron.

Second scenario. In NH4 limited bioreactor batch cultures
OAE increased after the exhaustion of a main nutrient
(ammonium, phosphate) combined with a transient decrease in
µ, qGlu, qO2 and qCO2. Biomass formation and qGlu stopped
completely for about one hour (Vrabl et al., 2009, Figure 5; Vrabl
et al., 2012, Figures 4–6; Heiss, 2016; Vrabl et al., 2019, Figure 4).
For example, they showed that the transition from exponential to
post exponential growth triggered an increase in OAE.

Pattern and amounts of OAE were also shifted by adding
inhibitors like uncouplers and inhibitors of the respiratory chain
and the plasma membrane H+-ATPase (benzoate, DNP, SHAM,
azide, N2, sodium orthovanadate; Franz et al., 1993; Burgstaller
et al., 1994, Figure 4; Burgstaller et al., 1997, Figure 2; Gallmetzer
et al., 1999, Figure 11; Gallmetzer and Burgstaller, 2002, Figure 4;
Gallmetzer et al., 2002, Table 1).

Furthermore, increasing extracellular pH (batch und
chemostat; Gallmetzer and Burgstaller, 2001, Figure 3; Vrabl
et al., 2012, Figures 4, 5) and osmolarity (Gallmetzer and
Burgstaller, 2001, Figure 3) increaed OAE.

Studies into the dynamics of adenine and pyridine
nucleotides, and also the energy charge, showed that OAE
increased with a decrease of intracellular concentration of
nucleotides, whereas the Energy Charge (EC) as well as the
Catabolic Reduction Charge (CRC) remained constant (Vrabl
et al., 2017, Figure 4). For example, they showed how changes
in three essential metabolic levels (the activity of the plasma
membrane H+-ATPase, the nucleotide concentrations and
ratios, the respiratory activity) were related to changes in OAE.
These relationships were summarized in a model [Figure 1,
taken from Figure 7 in Vrabl et al. (2017)]. It becomes clear
that each parameter is individually adjusted to the specific
nutritional situation and thus OAE is not determined by one
single parameter or reason. It must be assumed, of course, that
many more levels of metabolism are involved in OAE.

The resuspension of growing biomass in an aerated
ammonium free glucose solution increased OAE (Gallmetzer
et al., 1998, Figure 2).

To emphasize it once again: OAE in P. ochrochloron
differs in my opinion fundamentally from the excretion of
ethanol, acetate and lactate by E. coli, S. cerevisiae and
cancer cells. In consequence OAE in P. ochrochloron has
nothing to do with a shift from respiratory to fermento-
respiratory metabolism (Bruggeman et al., 2020) or with a
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FIGURE 1 | Synopsis of parameters simultaneously analyzed with organic acid excretion at different nutrient limitations (glucose, ammonium, phosphate) during

growth of Penicillium ochrochloron CBS 123.824 in chemostat culture at a specific growth rate µ of 0.1 h−1. EC, Energy Charge; CRC, Catabolic Reduction Charge;

ARC, Anabolic Reduction Charge; n.d., not determinable. The Figure is taken from Figure 7 of Vrabl et al. (2017).

change in the allocation of resources (Basan et al., 2015; Basan,
2018).

Hypothesis for the Causation of Overflow
Metabolism in P. ochrochloron
The big picture that emerges from the total of results gained
with P. ochrochloron suggests that OAE in P. ochrochloron
is a more fundamental physiological tool than overflow
metabolism of ethanol in S. cerevisiae and of acetate in
E. coli. The hypothesis I suggest is that in P. ochrochloron
OAE serves as a general means to balance or regulate pool
concentrations of metabolites in accordance with extracellular
constraints (a specific combination of nutrients; exhaustion of a
nutrient; stress factors) and intracellular constraints (activities of
metabolic pathways, subcellular compartrmentation). Whether
this involves a change in transcriptional patterns is unknown.
This balancing of metabolite pool concentrations includes also
the reuptake of excreted organic acids in the presence of glucose
(Vrabl et al., 2012, Figure 6; Artmann et al., 2020, Figure 4).

The clearest indications for this hypothesis are: (i) both
quantity and pattern of OAE depend on the nutrient composition
of the growth medium, and thus on the physiological state

of the organism as a whole; and (ii) OAE changes when the
physiological state changes due to exhaustion of a main nutrient.
The pattern of extracellular metabolites can even be used to
characterize the physiological state of an organism (Paczia et al.,
2012; Granucci et al., 2015; Pinu et al., 2018).

The amounts of enzymes and the substrate concentrations
determine metabolic fluxes (Heinemann and Sauer, 2010; Litsios
et al., 2018). That pool concentrations of metabolites must be
controlled tightly in subcellular compartments of eukaryotic
microorganisms is further supported by the observation that
TCA cycle metabolites have more regulative functions than
thought up to now (Martinez-Reyes and Chandel, 2020). This is
true for the mitochondrial matrix and as well for the cytoplasm
(Tepper et al., 2013;Wellen and Snyder, 2019; Donati et al., 2021).

For OAE reacting immediately to changes in extracellular
and intracellular constraints it must be postulated that transport
systems for the efflux of organic acids are constitutively present in
the plasma membrane. The activities of these transport proteins
are most probable regulated through threshold values and
the electrochemical gradient of the respective metabolites. The
plasmamembrane tranport systems for the efflux of organic acids
thus act as some sort of “overflow devices” to keep metabolism
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functioning. This is supported by results for citrate exporters in
several filamentous fungi (Gallmetzer et al., 1998; Yang et al.,
2017; Kell, 2019; Odoni et al., 2019; Steiger et al., 2019; Artmann
et al., 2020; Kadooka et al., 2020; Nakamura et al., 2021).

From the point of view of this hypothesis it is obvious that
in P. ochrochloron the “cause” of overflow metabolism is not
a single, unidirectional, unilevel reason (Brash, 2020) but is
due to the purpose of the whole organism to keep himself
functioning in a living state (Tepper et al., 2013; Noble, 2017;
Noble et al., 2019; Brash, 2020). Although this seems to be
a rather vague statement it can not be formulated in another
way. A mathematical formulation was, however, suggested by
Noble (2017) and Noble et al. (2019). In line with Brash (2020)
metabolic regulations may result from the interactions of many
delocalized “control sheets.” These may be for instance, redox
control sheets, membrane potential control sheets, law of mass
action control sheets, Gibbs energy dissipation control sheets,
molecular crowding control sheets and more.

Heuristically this hypothesis means that future research
dealing with OAE in filamentous fungi should simultaneously
be done on as many metabolic levels as feasible, with special
emphasis on subcellular compartmentation. One first attempt
approaching this claim can be found in Vrabl et al. (2017).

If we would know: (i) identity and relevant properties (e.g.,
vmax und KM) of all efflux and uptake transport systems for
organic acids in the plasma membrane; (ii) the activity of the
plasma membrane H+-ATPase; (iii) the membrane potential
across the plasma membrane; (iv) concentration, transported
species, and species distribution of all organic acids, in the
cytoplasm (not on average!; or still better near the cytoplasmic
side of the plasmamembrane); (v) complex formations of organic
acid anions with magnesium ions in the cytoplasm; and (vi) the
biosynthesis rates and consumption rates of organic acids, then
we would be able to construct a model from which predictions
could be derived and tested. BUT: from the experimental
feasibility of this plan we are even further away than from the
discovery of life on other planets. So this list only serves to
indicate which metabolic levels could be envisaged to begin with
future research on OAE in filamentous fungi.

To regulate intracellular metabolite pool concentrations not
only via glucose uptake or the activity of catabolic and anabolic
pathways, but also by excreting metabolites, increases the
robustness of metabolism. One consequence of this view is that
part of the extracellular space should be regarded to “belong”
to the organism as an “organelle” in just the same way as
mitochondria and vacuoles do: “I am I and my circumstances”
(Schaechter, 2006).

CONCLUSIONS

The view that the organism as a whole is the cause of ist
organismic behavior (including physiological “behavior” like
OAE) is shared by an increasing number of scientists (Boogerd
et al., 2007; Powell and Dupre, 2009; Pezzulo and Levin, 2016;
Noble, 2017; Nicholson and Dupre, 2018; Bizzarri et al., 2019;
Noble et al., 2019; Brash, 2020; Levin, 2020; Verhagen et al.,

2020). Actually this should be nothing new for a biologist
studying organisms (Woodger, 1929; Bertalanffy, 1932; Wieser,
2007; Riedl, 2019). The consequence of this point of view is
simple but far-reaching: We should reconsider fundamentally
our general view of causation in organisms by including
such subjects as multilevel interactions, recursive causation,
downward causation, circular causation, and the importance of
constraints for causation in organisms (Noble, 2017; Riedl, 2019;
Brash, 2020; De Groot et al., 2020). But as we all know such
causalities are difficult for us to imagine and understand.
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