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Intertwined for millennia with the human experience, fungi perform vital functions in our daily
life. Without fungi we would not have bread or beer, sake or soy sauce, tofu or miso. Fungi
secrete enzymes that deconstruct the world around them into nutrient building blocks which they
then absorb for nutrition. For example, the number of enzymes for carbohydrate assimilation
continues to expand (Garron andHenrissat, 2019). In addition, fungi communicate andmanipulate
their environment by secreting a stunning variety of metabolites, especially secondary metabolites
(Keller et al., 2005; Keller, 2019). Thus, the ability of fungi to produce and secrete prodigious
amounts of proteins and metabolites is central to their value in biotechnology.

Below I outline a selection of current challenges in fungal biotechnology. The list of challenges
and the examples cited are not meant to be exhaustive.

METABOLIC PATHWAYS

Fungi are a rich and diverse source of metabolic pathways. Through history there are examples
of fungal production hosts for several different types of metabolites. One of the early fungal
metabolites to be produced on an industrial scale was citric acid. The industrialization of fungal
organic acid production arguably began when USDA researcher James Currie published and
patented the Aspergillus niger citric acid process in the US (Currie, 1917). By the late 1920s, A. niger
had displaced lemons as the source of citric acid (Neushul, 1993; Lombardino, 2000). Over 100 years
after the process was patented and published, we are only now identifying the genes responsible for
regulation and export of citric acid (Niu et al., 2015; Steiger et al., 2019). Industrial production of
organic acids is important for food and chemical industry with many research challenges that must
be addressed to enable a robust bioeconomy.

Another success for fungal metabolite production occurred during the World War II when
teams of researchers from academia, government and industry discovered new fungal strains
and developed processes leading to greatly increased production of penicillin, which had been
discovered in 1928 by Alexander Fleming (Fleming, 1929; Neushul, 1993; Lombardino, 2000).
Phylogenetic and genomic analyses have been used to definitively identify the species of Fleming’s
isolate as well as show that one of the critical steps in development of strains with increased
penicillin production is gene duplication of the biosynthetic gene cluster (van den Berg et al., 2008;
Houbraken et al., 2011; Pathak et al., 2020). As new fungal natural products are discovered, it will
be critical to understand the biochemistry and regulation of their associated biosynthetic clusters
for optimal compound characterization and production host development.

Food and beverage production that involves fungi is also a platform for biotechnological
innovation. Aspergillus oryzae, a koji fungus, was among the first filamentous fungal genomes to be
sequenced; this achievement laid the foundation for genome scale based insights into domestication
of fungi for these processes (Machida et al., 2005, 2008; Kjaerbolling et al., 2020). Used in bread,
wine, sake and beer production, genomic studies of Saccharomyces cerevisiae are shedding light
on domestication and specialization within this species (Gallone et al., 2016). With an arsenal of
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tools available for molecular genetic manipulation, S. cerevisiae
has been modified to produce the terpene involved in the
hoppy flavor so prevalent in IPA style beer (Denby et al., 2018).
Continuing to improve our understanding of fungal biology as
it relates to food and beverage production will lead to improved
processes and production efficiency.

PROTEIN SECRETION

Not only are they able to derive nutrition from a broad
range of building block molecules, fungi secrete a massive
array of enzymes to digest complex substrates into building
block nutrient compounds. As such, fungi have long been
utilized as hosts for protein production. Indeed, recognizing
the enzyme production potential of fungi, Jokichi Takamine
was granted one of the first biotechnology patents in 1894
for development of a fungal derived digestive enzyme
mixture (Takamine, 1894).

Genome sequencing and molecular analysis continues to
provide insight into how fungi regulate their secretome in
response to different types of biomass (Benocci et al., 2017;
Wu et al., 2020). As the molecular machinery responsible
for protein secretion continues to be uncovered, there is
increased opportunity for rewiring and improving production
hosts (Baker, 2018). While fungi are known to secrete high
amounts of digestive enzymes, regulation of their secretion is
tightly controlled and despite significant progress, unraveling
the regulatory circuits controlling fungal nutrient acquisition
remains a massive challenge.

SYNTHETIC AND SYSTEMS BIOLOGY

Once primarily the domain of model organisms, genetic
tractability has been democratized by CRISPR-cas9 methods
(Satish et al., 2020). An attractive target for future genetic
engineering method development includes anaerobic fungi who
produce scaffolded plant biomass degrading enzyme complexes
called cellulosomes (Hooker et al., 2019; Wilken et al., 2020). The
potential to manipulate single genes, families of related genes
or even the whole genome is now possible using CRISPR-cas9
based approaches (Schwartz et al., 2019). Using whole genome
genetic queries to screen for genes whose products are involved
in controlling morphology and control protein and metabolite

secretion has potential to accelerate the development of industrial
fungal production hosts.

The chemical diversity present in the fungal kingdom makes
fungi attractive synthetic biology chassis. Understanding the
dynamic nature of metabolic pathways and cell signaling is
essential for both understanding and designing biosystems.
The development of metabolic and regulatory models for a
variety of fungi is made tractable by the rapid generation
of new genome sequences and genome scale data (Swift
et al., 2019). Combining genome scale modeling with novel
genetic tools make fungi increasingly attractive as cell factories
for small molecule production (Lim et al., 2012; Unkles et al.,
2014; Schwartz et al., 2019).

CONCLUSION

The last century has seen great advances in fungal biotechnology
from production of enzymes and organic acids to genome
sequencing, engineering and modeling. Despite these advances
there are still many aspects of fungal biology with potential
applications in biotechnology we still do not fully understand.
The future will see research focused on translating genomes
into functional and phenotypic information that will inform
design of fungal biotechnology based solutions to grand
challenges in human health, nutrition, sustainable energy, and
the environment.
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