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Olefins, a common intermediate from biomass conversion processes, are
undesirable in jet fuel because of their poor thermal stability. This paper
presents an approach for olefin quantitation using 2D gas chromatography
coupled with vacuum ultraviolet spectroscopy. Principal component analysis
was used to reduce the dimensionality of the spectroscopic data from a highly
olefinic fuel intermediate. A principal component template was created that
enabled olefin quantitation, which was compared to the existing GCxGC-VUV
approach from the literature. The principal component method was able to
identify and quantify trace amounts of cyclodienes, which were present at only
0.01 wt% in the fuel sample. The principal component approach also identifies
species that fall outside of theGCxGC template. For instance, quantitationwith the
literature method resulted in an olefin concentration of 0.95 times that of the
principal component method due to olefins falling outside of the expected
GCxGC regions. The principal component results were compared with 13C and
1H NMR data, which confirmed that the fuel had a high concentration of olefins
and alkanes with little aromatic content.
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1 Introduction

Sustainable aviation fuel (SAF) represents the only near-term solution to reducing
emissions associated with commercial air travel (Staples et al., 2018). SAF represents a subset
of alternative jet fuel that, in addition to being from a non-petroleum source, produces fewer
CO2 and particulate matter (PM) emissions compared to conventional jet fuel (Kosir et al.,
2019). Olefins are a common product of processes relevant to SAF, including gasification,
deoxygenation, and fermentation (Zacharopoulou and Lemonidou, 2018). Olefins are
generally limited to less than 1% in jet fuel (ASTM D7566, 2022) because of their poor
thermal stability, which can result in the formation of coke and gum. Methylindene blended
at 3% in synthetic paraffinic kerosene (SPK) exhibited nitrile rubber O-ring swelling less than
conventional jet fuel, which raises O-ring swell concerns (Graham et al., 2011). Additional
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internal O-ring testing indicates that olefins have low O-ring swell,
similar to their saturated counterparts. It follows that the accurate
detection of olefins in SAF is necessary for safe aircraft operation.

The olefin detection method specified in ASTM D7566 is the
bromine index (ASTM D2710, 2020), which requires up to ~12 mL
of fuel and provides no information about the nature of the olefins.
Vacuum ultraviolet spectroscopy (VUV) can potentially provide
more information about the olefins by providing unique spectra for
hydrocarbon classes (Schug et al., 2014) while using as low as ~1 mL
of fuel when coupled with gas chromatography (GC). Such low-
volume olefin quantitation constitutes Tier α prescreening, which
can save fuel producers significant production costs by detecting
promising SAF candidates at early stages and helping to make
process refinements (Yang et al., 2021). For reference, Tier 1 and
2 testing following ASTMD4054 requires approximately 20–100 gal
of fuel. Currently, ASTM D8071 is the only approved method for
olefin quantitation using vacuum ultraviolet spectroscopy (ASTM
D8071, 2021). It uses a 1D GC-VUV configuration and is geared
toward gasoline samples. The identity of the measured VUV spectra
is compared against a reference VUV library, with up to three
coeluting species considered simultaneously. Extension to 2D
GCxGC-VUV offers the advantage of improved separation
resolution. The literature for GCxGC-VUV olefin quantitation,
hereafter referred to as the deconvolution method, uses a single
reference spectrum to represent each hydrocarbon class (Lelevic
et al., 2021). Deconvolution is then carried out by assuming that the
resulting spectrum is a linear combination of two reference spectra.
Olefin quantitation is performed by taking the olefin/non-olefin
proportion in each template region and multiplying it by the VUV
relative response factors.

Principal component analysis (PCA), a technique for reducing the
dimensionality of data, is applied to VUV spectra in this paper. PCA
produces vectors that result in maximum variance in an
N-dimensional feature space. These vectors are called principal
components (PCs), which can be constructed to align with
important features and neglect unimportant features. The original
data can then be transformed andmanipulated in the PC space. In the
case of VUV spectra, the features being reduced are the number of
wavelengths required to describe spectral features. As shown in the
Results section, two PCs can describe 82% of the variance for
absorbances across 3240 wavelengths spanning from 125 nm to
240 nm. A PC template, which can be used in place of a GCxGC
template, was created using PCs. Several recent papers have applied
PCA to VUV spectra (Santos et al., 2018; Roberson and Goodpaster,
2019; Roberson et al., 2020; Tanen et al., 2020; Cruse and Goodpaster,
2021); however, this paper represents the first application of PCA to
fuel templating to the best of the authors’ knowledge.

The method developed in this paper uses PCA to identify and
quantify olefins and other hydrocarbons without the use of a
GCxGC template. The objective of this work is to apply PC
quantitation to a highly olefinic fuel intermediate. Deciphering
olefins from cyclic molecules is a challenge for mass
spectrometry, which is a common detector for GC systems. The
PC results will be compared to the deconvolution method (Lelevic
et al., 2021) which relies on a GCxGC template and spectral
deconvolution as described above. The PC results generated will
also be validated against 13C and 1H NMR, which is a common
method for hydrocarbon quantitation.

2 Materials and methods

2.1 Principal component quantitation

FID and VUV data were collected using previously published
methods (Feldhausen et al., 2022; Heyne et al., 2022). A highly
olefinic fuel intermediate from an anonymous source was screened
in this paper. The PCAmodel was generated using 298 VUV spectra
from 12 different hydrocarbon groups that did not contain
heteroatoms. The spectra were first interpolated so that the
absorbances were all at the same wavelengths. The spectra were
smoothed using the SciPy Savitzky-Golay filter with a polynomial
order of three and a window length of 324. Each spectrum was then
normalized by the sum of its absorbances. The PCA model was
trained using the Scikit-learn PCA package with four PCs in total.

The screening VUV spectra had to be aligned with the FID
peaks, which tend to drift behind their respective VUV spectra, as
depicted in Supplementary Figure S1. Alignment was accomplished
by finding the local maxima of VUV absorbance, and then aligning
them with their respective FID peaks as identified by the FID
software. The VUV data, which has retention times associated
with two columns, RT1 and RT2, was converted into a 2D matrix
using the NumPy histogram2d package. VUV maxima were then
detected using the SciPy maximum filter package with a footprint of
100. VUV spectra were integrated from 130 to 135 nm to compare
the peak sizes on an equal basis. This range was selected because
hydrocarbon groups have VUV features of similar absorbances
(Lelevic et al., 2021).

The VUV-FID phase shift was calculated as follows:

Phase shift�∑ VUVi –FIDi( )/N (1)

Here, N is the number of VUV maxima used, VUVi is the
elution time of the VUVmaxima, and FIDi is the elution time of the
trailing FID peaks. Once a VUV-FID phase shift was determined, it
was subtracted from RT2 for all of the FID data. The fuel
intermediate VUV spectra went through the same preprocessing
as the training data before being run through the PCA model. The
signal-to-noise ratios of the absorbances were calculated over the
range of 130–135 nm, and noisy VUV peaks with signal-to-noise
ratios less than 10 were dropped. Once the fuel intermediate VUV
spectra were processed, they were categorized using the PC template
on a timestep basis. The coupled FID peaks were used to determine
the mass contribution of the identified VUV spectra, as reported in
Figure 4.

2.2 Reference GCxGC-VUV quantitation

The PC method presented in this work will be compared against
the existing approach that is based on the deconvolution procedure
presented in the literature [3,4,8]. The method requires importing
the GCxGC hydrocarbon group-type template from ChromSpace
into Python and overlaying the template onto the VUV dataset so
that each of the VUV timesteps can be classified into a
corresponding hydrocarbon group. Because olefins most
commonly elute within the iso-alkane and cycloalkane regions,
these regions undergo further olefinic analysis while the other
regions rely solely on GC-FID data for quantitation. The olefinic

Frontiers in Fuels frontiersin.org02

Kosir et al. 10.3389/ffuel.2023.1246950

https://www.frontiersin.org/journals/fuels
https://www.frontiersin.org
https://doi.org/10.3389/ffuel.2023.1246950


content is determined by resolving the linear combination of a
representative olefin spectrum and a representative saturate
spectrum. With a ratio of olefins to saturates, a weighting can
then be applied to the GC-FID group result for a final mass-
based olefinic quantitation.

2.3 NMR quantitation

13C and 1H NMR spectra were acquired at 125.65 and
499.67 MHz, respectively, on an Agilent 600 MHz instrument at
room temperature in 5 mm NMR tubes. Quantitative 13C NMR
spectra were acquired over a spectral width of 250 ppm, applying
acquisition and relaxation delay times of 3 and 5 s, respectively.
1024 scans were collected and combined. Quantitative 1H spectra
were obtained using acquisition and relaxation delays of 3 and 8 s,
respectively. 128 spectra were collected and combined. All chemical
shifts were referenced to the CDCl3 solvent (77.16 ppm for 13C, and
7.26 ppm for 1H). The 13C test mixture was prepared by mixing
0.40 mL of the sample with 0.15 mL of CDCl3 (containing 0.05 M
chromium (III) acetylacetonate, added to reduce T1 relaxation
time), and the 1H test mixture was prepared by mixing 0.05 mL
of the sample with 0.75 mL of CDCl3. The CDCl3 and chromium
(III) acetylacetonate were obtained from Sigma-Aldrich. The NMR
spectra were processed using the MestReNova 10.0.2 software
package. An automatic baseline correction and phase correction
were performed before further data analysis.

3 Results

3.1 Principal component template

A PC template was created by plotting PC1 versus PC2, as shown
in Figure 1. PC1 and PC2 comprise 66% and 16% of the explained
variance in the VUV spectra, respectively. PC3 and PC4 have been

omitted because they offer only a marginal improvement, capturing
7% and 4%, respectively, of the explained variance in the VUV
spectra. Six distinct regions can be identified, including aromatics,
diaromatics, conjugated dienes, cyclodienes, olefins, and alkanes.
The olefin region comprises linear alkenes, branched alkenes,
cycloalkenes, and unconjugated dienes. The alkane region
comprises n-alkanes, iso-alkanes, monocycloalkanes, and
dicycloalkanes. In general, species are more saturated at higher
values of PC1. Linear alkenes progress from cis-2-pentene to 1-
tetradecene as PC1 increases, indicating that longer linear alkene
spectra behave similarly to alkanes. This can be explained by a
dilution of the double bond as the length of the aliphatic chain
increases. The meaning of the positive and negative PC values are
discussed in the following paragraphs.

The loadings of each principal component were plotted against
their respective wavelengths to determine which spectral features the
principal components align with, as shown in Figure 2. Each PC has
a unique set of loadings associated with each feature. Once the
loadings are determined, the PC is calculated as a linear combination
of the original variables:

PCi � wi1X1 + wi2X2 + . . . + wipXp (2)

Here, wip is a loading, Xp is an absorbance, i is the principal
component index, and p is the wavelength index. Loadings range
from −1 to 1, with higher absolute values representing features that
align more closely with a PC. A feature and PC are positively
correlated when the loading is positive, and negatively correlated
when the loading is negative. The loadings in Figure 2 are low
because a large number of features were used in this study.

PC1 has positive loadings below 160 nm and negative loadings
above 160 nm. This explains why alkanes, which have spectral
features at low wavelengths, have positive PC1 values. The
opposite is true for aromatics, which have spectral features at
180 nm. PC2 crosses the x-axis at 200 nm, with negative loadings
at 160–200 nm and positive loadings at 200–240 nm. Aromatics
have spectral features at 180 nm, while diaromatics have spectral
features at 220 nm. It follows that aromatics and diaromatics diverge

FIGURE 1
Principal component template generated using PC1 and PC2,
with template regions in boxes. Specific hydrocarbon groups are listed
in the legend.

FIGURE 2
Loadings for PC1 and PC2 across the VUV wavelengths. Large
positive loadings indicate a strong positive correlation between a
principal component and a wavelength, and vice versa for large
negative loadings.
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over PC2 in Figure 1, with aromatics exhibiting negative PC2 values
and diaromatics exhibiting positive PC2 values. It should be noted
that while spectra can readily be converted to PCs, the opposite is
not typically true. Unless the nonzero loadings of a PC are confined
to a narrow wavelength range, a given PC has multiple possible
spectra. This is evidenced by the aromatic/diaromatic divergence
over PC2 in Figure 1.

3.2 Olefin quantitation—deconvolution
method

The GCxGC template used in this study is shown in Figure 3,
with the hydrocarbon groups called out in the legend. In general, the
volatility of species increases from left to right and polarity increases
from bottom to top. GCxGC-VUV analysis using the deconvolution
method for the fuel intermediate determined that it consists of
93.4 wt% olefins, which is 0.95 times that of the PC method. This is
likely due to olefins eluting in stencil regions other than those that
were assigned to olefins, such as the n-alkane regions. The remaining
species are as follows: 2.8 wt% iso-alkanes, 0.9 wt%
monocycloalkanes, and 0.1 wt% dicycloalkanes. 2.8 wt% of the
species were not identified because they fell outside of the
GCxGC template regions.

3.3 Olefin quantitation—Principal
component method

PC olefin analysis for the fuel intermediate is depicted in
Figures 4A, B isolates the trace species to give a better sense of
their location. After the signal-to-noise filter was applied, 75.0 wt%
of the spectra remained. The filtered spectra were 98.3 wt% olefins,
1.1 wt% alkanes, 0.01 wt% cyclodienes, and 0.5 wt% unmatched
spectra. Many alkane peaks fall outside of the GCxGC template

at RT1 ≈ 1,000 s. 99.5 wt% of the spectra were matched, indicating
that the signal-to-noise processing was effective at removing noisy
spectra.

Representative n-alkane, olefin, and cyclodiene spectra from this
analysis are shown in Figure 5. As expected, the alkane spectrum has
a large feature below 160 nm, and the olefin spectrum has a
characteristic hump at 190 nm. The cyclodiene spectrum is right-
shifted to 200 nm compared to the olefin spectrum, as expected from
its higher PC2 value. The cyclodiene spectrum represented only
0.01 wt% of the sample, illustrating the ability of the PC method to
resolve trace olefin peaks. The unmatched spectra are plotted over
the PC template in Supplementary Figure S2. Most of the spectra fall
below or between the olefin and alkane regions.

3.4 Olefin quantitation—NMR

As a means of validating the quantitative GCxGC-VUV analysis
of the fuel intermediate investigated in this study, the mixture was
analyzed via quantitative 13C and 1H NMR (see Supplementary
Figure S3). By integrating key regions of each spectrum and
presenting these values as a proportion of the whole, the mol%
of hydrogen and carbon accounted for by key functional group types
was determined. The values obtained are summarized in Table 1.
This data suggests that the fuel intermediate mixture is a pure
hydrocarbon (i.e., containing negligible quantities of common
heteroatoms), contains little aromatic content, and has a high
proportion of C-C double bonds.

4 Discussion

The PC quantitation approach presented in this paper
represents an alternative approach to olefin quantitation that
relies on a PC template rather than a GCxGC template. One
outcome is that quantitation with the GCxGC template resulted
in an olefin concentration of 0.95 times that of the principal
component method due to olefins falling outside of the expected
GCxGC regions. The ability of the PCmethod to detect and quantify
species that fell outside of the GCxGC template regions can help
with template adjustment. In Supplementary Figure S2, unmatched
VUV spectra were readily identified for further analysis. Other
merits of the PC approach are: 1) it allows for visualization of
VUV spectra on a timestep basis, 2) it has more nuanced
hydrocarbon identification, and 3) it doesn’t rely on a single seed
spectrum for quantitation. The trace cyclodiene detection depicted
in Figure 4B illustrates merit #2. These cyclodienes, which were
present at 0.01 wt%, were not detected by the deconvolution
method.

One shortcoming of the PC approach is that it is currently
unable to perform spectral deconvolution. One possible approach
for PC deconvolution is to take the distance of a spectrum from the
centroids of PC regions. It remains to be seen whether this would
result in linear behavior in the PC space as the relative proportion of
spectra is varied. Another possibility is that VUV spectra could be
identified using the PC approach then deconvolution could be
performed using the literature methods (ASTM D8071, 2021;
Lelevic et al., 2021) to handle coelution. The PC approach could

FIGURE 3
GCxGC template used for the deconvolution method, with
hydrocarbon regions indicated by color.
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also benefit from coupling with the GCxGC template to enable more
nuanced identification of hydrocarbon groups that are not present in
the PC template (e.g., iso-alkanes, monocycloalkanes, and
dicycloalkanes). Finally, the limits of detection of the VUV
detector affect the comprehensiveness of this analysis. As
mentioned in Section 3.3, 25 wt% of the spectra were not
included in the quantitation because they did not meet the
signal-to-noise criteria. Whether this is due to detector limits or

coelution, coupling with the GCxGC template can potentially
overcome this shortcoming.

Both 13C and 1H NMR agree with the GCxGC-VUV data
qualitatively because they indicate that there is a significant
amount of olefins and alkanes present in the sample. Direct
comparison of the GCxGC-VUV with the NMR data is not
possible because they are reported on a molecular and atomic
basis, respectively. The 1H NMR picked up 0.7 mol% of aromatics,

FIGURE 4
(A) (left): Quantitation for the fuel intermediate, with larger FID peak areas represented by darker circles. The GCxGC template is overlayed for
reference. (B) (right): Quantitation for the fuel intermediate with uniform shading for only the trace species. The GCxGC template is overlayed for
reference.

FIGURE 5
Representative alkane (left), olefin (middle), and cyclodiene (right) spectra from Figure 4A.

TABLE 1 Quantitative13C and 1H NMR data for key functional group types of the fuel intermediate analyzed in this study.

Nuclei Type Quantity (mol%) Integration region (ppm)

H Aromatic H 0.7 6.2–10.7

Olefinic H 3.7 4.3–6.2

Paraffinic H (n-, iso-, & cyclo) 95.7 0.5–4.3

C Olefinic + Aromatic C (mol%) 9.9 100–155

Paraffinic C (n-, iso-, & cyclo) (mol%) 90.1 5–55
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while the GCxGC-VUV did not detect any aromatics. It is unlikely
that the unmatched spectra in Supplementary Figure S2 are aromatics,
given that they are closer to the olefin and alkane regions.
Additionally, species from the sample did not elute in the GCxGC
template regions associated with aromatics, as is evident from a
comparison of Figures 3, 4. The aromatics shown in Table 1 merit
further study. A comparison study should be carried out in the future
between the olefin quantitation method presented here and the
bromine index (ASTM D2710, 2020) for validation purposes.
Additional SAF intermediates should also be tested to ensure that
the PC approach is valid over a wide composition range.
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