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Are passive collectors e�ective
samplers of microbes in natural
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1Smithsonian Tropical Research Institute, Panama City, Panama, 2Department of Genetics and

Molecular Biology, University of Panama, Panama City, Panama

Biodiversity surveys of aquatic systems often include DNA metabarcoding

analyses of environmental samples that are collected through filtration of large

volumes of water. The standard practice of sterile collection and filtration in

or near the field sites is challenging to implement in remote locations, and

filtration of large volumes is a limiting step, especially for water from highly

productive systems or with high suspended sediment loads. Recent trials have

shown that passive samplers can be e�ective for aquatic metabarcoding to

document metazoan diversity, but that this approach needs to be trialed under

a wider variety of conditions and across more diverse taxa. Here we assess

the utility of passive sampling for documenting the diversity of bacteria in six

tropical aquatic environments (one lake, one reservoir, two mountain streams

and two blackwater rivers). We find that passive collectors generally recover

significantly higher diversity of Bacteria compared to filtered samples, despite

capturing significantly less overall DNA than active water filtering. However,

the communities captured by the two methods show significant di�erences

within sites, with only 26% of the Bacteria ASVs recovered by both methods.

These di�erences were largely driven by relative abundances of taxa within

Actinobacteriota, Campilobacterota, Desulfobacterota, and Proteobacteria. Our

results demonstrate that passive collectors can be a cost-e�ective solution

for monitoring aquatic microbial diversity but that the two methods are not

interchangeable. Additional work is necessary to understand the selectivity of

both passive collectors and active water filtering for eDNA studies.

KEYWORDS

bacteria, eDNA, metabarcoding, Panama, Bocas del Toro, water filtration

Introduction

Microbial communities can be incredibly diverse and molecular methods are

revolutionizing the endeavor of describing the biodiversity and understanding the

microbial ecology of aquatic systems. Metabarcoding analysis of environmental DNA

(eDNA) obtained from filtered water samples has allowed the characterization of diverse

and remote systems on a temporal and spatial scale difficult to implement with classical

approaches to biodiversity discovery and monitoring (e.g., Sales et al., 2021; Bista et al.,

2017; Li et al., 2023). Nevertheless, logistical constraints for sample collection and

processingmay still limit the temporal and spatial resolution or even prohibit this approach

from being applied in very remote or under-resourced regions.

In many cases, the limiting step in the traditional approach is the collection and

filtering of water samples. As the number of species detected generally increases with
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the volume of water filtered, large volumes (often 1 L) are typically

vacuum filtered in preference to syringe filtering smaller volumes

in the field (Bairoliya et al., 2022; Patin and Goodwin, 2023). For

large scale sampling efforts this involves transporting cumbersome

(large and heavy) numbers of sample bottles on ice. To process

large numbers efficiently, filtration is often set up in parallel, further

increasing the challenge of maintaining sterility and avoiding

cross contamination of water samples, a particular concern for

microbial samples (Alexander et al., 2023). Water with high levels

of suspended solids or high concentrations of phytoplankton

can rapidly clog filters, which increases processing time and

opportunities for contamination as filters are changed (Patin and

Goodwin, 2023; Chen et al., 2024). For water with high turbidity

this approach may not be feasible at all. Finally, if large sample sizes

are required these approaches can involve significant investment

in disposable plastics and can produce significant plastic waste

(Chen et al., 2022). These processing challenges particularly limit

our ability to sample remote locations where access to sterile lab

space and power to support hours or days of filtration may not

be available.

Recent studies have explored the use of natural eDNA collectors

like living sponges which process large volumes of seawater during

their feeding and retain residual eDNA in their bodies (Mariani

et al., 2019; Turon et al., 2020), or collection of natural biofilms

which may also trap eDNA (Rivera et al., 2022). Sampling modules

with high surface areas have been manufactured with the aim

of trapping eDNA either through towing or static deployments

(Alexander et al., 2023; van derHeyde et al., 2023), and small bags of

high surface area materials like hemp or active carbon (Bessey et al.,

2022) have also been trialed. The simplest and cheapest approach

to passive sampling, suspension of glass fiber, cellulose or other

kinds of filter membranes in the water for a few hours to days,

has also proved effective (Bessey et al., 2021; Chen et al., 2022,

2024; Redden et al., 2023). When tested in laboratory mesocosms

or in the field these approaches have been found to detect the

local diversity of fish (Bessey et al., 2021; Chen et al., 2024; Zhang

et al., 2024) and other metazoans (van der Heyde et al., 2023)

as effectively as standard water filtration. This approach has thus

far been applied primarily for metabarcoding of eukaryotes (see

Discussion), and its efficacy for capturing microbial diversity has

yet to be explored in a natural environmental setting. Researchers

who have used this passive sampling approach successfully have

pointed to the importance of conducting trials across a wider

array of environmental conditions to confirm its utility and to

document any potential environmental limitations (Bessey et al.,

2021; Chen et al., 2024). To this end, we compared bacterial

communities characterized with metabarcoding from traditional

actively filtered water samples and from passive membrane

collectors that were deployed in six tropical aquatic sites reflecting

the range of common environmental conditions experienced in

lowland tropical environments.

Methods

Study sites

We sampled in three artificial water bodies and three natural

waterways in Panama (Supplementary Table S1). Lake Gatun (425

km2), which we sampled at Gamboa in central Panama, was formed

in 1913 as part of the Panama Canal. The Big Creek Reservoir

(<0.1 km2), on Isla Colon in Bocas del Toro Province, is a small

man-made reservoir adjacent to the ocean and provides much of

the drinking water to the island. The other four sampling sites

are on the mainland of Bocas del Toro (see Clark et al., 2022 for

detailed descriptions). Río Nigua and Río Pastores are mountain

streams that drain small steep catchments into Bahia Almirante.

The catchment of Río Nigua is more highly impacted by human

activities than Río Pastores (Clark et al., 2022). The Black River

drains the peat swamp forest of the San San Pond Sak Ramsar

site, and the Changuinola (Soropta) Canal, a 30m wide artificial

canal constructed in 1903 to transport bananas, connects the Río

Changuinola to the Bahia Almirante through the swamp forest.

Both have dark, relatively hypoxic and acidic waters typical of

blackwater rivers. The tidal influence is evident, as saltwater wedges

can extend significantly into these two waterways (Clark et al.,

2022).

Field sampling

We accessed each field site either by boat or from docks or

piers to ensure samples were taken from the water column without

interference from the substrate. For each field site we sampled on

2 days, at least 10 days apart (Supplementary Table S1), between

9 a.m. and 3 p.m. and at a depth between 0.7 and 1.0 m.

All of the equipment used in the field and for filtration

(collection bottles, clamps, frame, mesh bags, glass, hoses) was

cleaned with Alconox soap, rinsed with deionized (DI) water,

soaked for a minimum of 20min in a 20% bleach solution, and

rinsed four times with DI water. The rubber adapters, which were

used to adjust the vacuum pump were only washed with DI water.

After washing, all glassware and bottles were autoclaved for 20min

at 120◦C.

For passive eDNA collection (hereafter passive samples), we

used a metal frame with clips to suspend six positively charged

47mm mixed cellulose filters (Millipore) with a pore size of

0.8mm into the water (Figure 1). Filters were collected after 24 h

of deployment and stored frozen in sterile 5ml tubes until DNA

was extracted. All filters were certified sterile before deployment

and were moved with sterilized forceps.

For active filtered eDNA collection (hereafter filtered samples),

we collected six 1 L bottles of water when we recovered the passive

filter membranes at the same depth used for passive sampling at

each location. The van Dorn bottle used for sampling was rinsed

three times with water from the collection site before making

the final collection and the water was transferred to sterile 1 L

bottles immediately after collection. In addition, control bottles of

autoclaved water were taken to each sampling site (n =7 total)

and had their lids removed while the other samples were collected.

Water samples were placed on ice immediately and stored at 4◦C

until filtering, within 24 h of collection. Filtering occurred in the

laboratory using a vacuum pump to draw each sample through

stacked 47mm mixed cellulose filters with pore sizes of 0.8 and

0.22mm (Millipore), which aided in reducing clogging of the lower

filter. Filters were stored frozen in dry, sterile 5ml tubes until DNA

was extracted from both filters in a single extraction.
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FIGURE 1

Passive sampling set up: (A) View of the passive collection frame that was deployed for 24h at each site; (B) Passive collection frame deployed at Río

Nigua, September 27, 2022.

DNA extraction, amplification and
sequencing

Total DNA was extracted from all filters using the DNeasy

PowerSoil Kit (Qiagen), following the manufacturer’s protocols

with several adjustments. To maximize DNA recovery, the filters

were cut into smaller pieces under sterile conditions in a laminar

flow hood prior to adding PowerSoil beads and bead solution (as

in Chavarria et al., 2021). Final elution volume was 70ml in C6

buffer. Two DNA extraction blanks using sterile ddH20 were also

performed. DNA concentration was quantified on a NanoDrop

(Thermo Fisher).

Library preparation for Illumina sequencing was done using

a 2-Stage PCR protocol. Amplifications of the bacterial 16S

rRNA V4 region were performed using 1ml of DNA extract

in 35 cycles of 10ml reactions using KAPA 3G Plant 2X

Mastermix (KAPA) and the 515F-806R primer set (Caporaso

et al., 2011) with Illumina P5 and P7 adaptors included. A

second PCR with six cycles was then performed using 1ml

of PCR1 as template to add on unique barcode indices and

Illumina flow cell adaptors. Products were cleaned and normalized

using the Just-A-Plate 96 PCR Purification and Normalization

Kit (Charm Biotech), pooled to make a sequencing library, and

concentrated with KAPAPure magnetic beads. The library was

sequenced on a paired end 2 × 250 bp Illumina MiSeq run at

the Naos Molecular Laboratory (Smithsonian Tropical Research

Institute, Panama).

Analysis

All sequence data analysis was done using R v. 4.41.

Primer trimming, sequence quality filtering, and read merging,

and taxonomy assignment was performed using the default

parameters in cutadapt (Martin, 2011) and DADA2 (Callahan

et al., 2016) to produce amplicon sequence variants (ASVs).

Taxonomy was assigned using the SILVA 138.1 database (Quast

et al., 2013). Downstream analysis was done in phyloseq

(McMurdie and Holmes, 2013) and associated packages such

as decontam (Davis et al., 2018), vegan (Oksanen et al., 2020)

and microbiome (Lahti et al., 2017). Field and extraction

blanks and positive and negative controls, as well as all

ASVs with <10 counts were eliminated prior to diversity

analyses. Finally, samples were rarefied to 5,000 seqs/sample

(Supplementary Figures S1a, b) resulting in 94.6% of the bacterial

ASVs being retained.

We applied a suite of diagnostic tests to examine how

the diversity recovered by the two methods compared. We

used a mixed model with site as a random effect to compare

the quantity of DNA extracted from the passive and filtered

samples. To assess differences in passive vs. active sampling,

we first created a Venn diagram to illustrate the number

of shared and unique ASVs in each sampling type. We

then compared the alpha diversity in each sample type by

calculating the Shannon, Inverse Simpson and Chao1 diversity

indices and testing for effects of site and sampling method

using Kruskal-Wallis and pairwise Wilcox tests with Bonferroni

correction. We used principal coordinates analysis (PCoA) based

on Bray Curtis distance and PERMANOVA, with subsequent

tests for beta dispersion (betadisper followed by a permutation

test), to compare how the community composition of the

samples varied across sites and between collection methods, in

addition to visual inspection of relative abundance plots and

Linear Discriminant Analysis Effect Size analysis (LefSe; Mandal

et al., 2015), as implemented in MicrobiomeAnalyst using the

default parameters.
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Results

The concentration of extracted DNA varied with sample

collection type with passive DNA collection recovering less DNA

than active filtered samples (Table 1). Mixed model analysis with

site as a random effect found a significant effect of samplingmethod

(p < 0.001), with active sampling recovering an average of 30.9

ng/µl (SD = 29.0) and passive sampling recovering 4.3 ng/µl

(SD= 2.9).

Illumina sequencing produced a total of 4,754,262 high-quality

reads that were assigned to 51,393 amplicon sequence variants

(ASVs), across 143 water samples and controls (mean 33,480

sequences per sample). After filtering out ASVs with fewer than

10 counts and including only sequences assigned to the Kingdom

Bacteria, 14,551 ASVs remained. Rarefaction analysis indicated that

sequencing efforts were sufficient to capture the diversity of these

communities (Supplementary Figure S1a) but accumulation curves

did not asymptote indicating that, for both methods, additional

sampling would increase diversity (Supplementary Figure S1b).

However, passive sampling detected 46% more ASVs (10,933) than

active filtration (7,452) across the entire dataset. Overall, only 26%

of the Bacteria ASVs were collected by both active and passive

sampling (Table 1, Figure 2A).

For all metrics tested (Shannon, Inverse Simpson, Chao1),

alpha diversity of Bacteria was significantly higher in the passive

samples than in the active filtered samples (Shannon: Kruskal-

Wallis χ
2
= 97.35, df = 11, p < 0.001; Inverse Simpson: χ

2
=

103.37, df = 11, p < 0.001; Chao1: χ2
=78.30, df = 11, p < 0.001),

except for Gamboa and Pastores where active samples had higher

diversity (Pairwise Wilcox test, p < 0.001; Figure 2B).

Passive sampling also detected more phyla than active sampling

(55 vs. 47 respectively) and the relative abundance of many taxa

differed between active and passive samples (LDA = 4.0, p <

0.05; Figure 3A). Active samples had a higher relative abundance

of Actinobacteriota and Campilobacterota compared to passive

samples, while the passive samples had higher relative abundances

of Proteobacteria, Myxococcota, and Acidobacteriota. Pairwise

comparisons of the two sampling methods showed differences

TABLE 1 Summary of DNA quantity and DNA sequencing results.

Site DNA concentration (ng/µl) Sequencing reads/filter Observed ASVs/filter

Active Passive Active Passive Active Passive

Lake Gatun 21.0 (9.8) 2.2 (2.7) 56,141 (3,389) 54,505 (5,177) 782 (24) 543 (53)

Big Creek Reservoir 40.0 (39.2) 5.0 (4.0) 45,194 (7,649) 44,862 (3,178) 386 (65) 667 (118)

Changuinola Canal 22.3 (12.0) 7.1 (2.5) 24,169 (4,962) 20,047 (2,398) 346 (67) 644 (63)

Black River 71.4 (29.8) 4.1 (1.8) 21,102(3,330) 30,806 (2,369) 122 (14) 653 (34)

Río Nigua 20.1 (9.8) 3.9 (2.7) 25,846 (2,365) 24,057 (1,659) 221 (16) 486 (31)

Río Pastores 10.5 (7.2) 3.6 (2.5) 25,180 (5,344) 30,020 (5,344) 710(87) 412 (56)

Values are mean results from six filters of each sample type, standard deviations are indicated in parentheses.

FIGURE 2

Diversity of bacteria identified with active and passive sampling at six Neotropical waterways: (A) Venn diagram of bacteria ASVs, including the

percentage of the total ASV count that is unique to each sampling type (light and dark blue) and shared between sampling types (green). Numbers in

parentheses represent ASV counts; (B) Shannon diversity of samples collected with the two methods across sites. A, active sampling; P, passive

sampling.
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FIGURE 3

Communities of bacteria identified with active and passive sampling at six Neotropical waterways: (A) Relative abundance of dominant phyla; (B)

PCoA ordination of all sites based on Bray Curtis distance. A, active sampling; P, passive sampling.
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in relative abundances of taxa within the phyla Actinobacteriota,

Campilobacterota, Desulfobacterota, and Proteobacteria to be

driving most of the differences between the communities recovered

by the two methods (LDA= 4.0, p < 0.05; Figure 3A).

Principal Coordinates analysis (PCoA) using Bray Curtis

distance showed clear differences along axis 1 (Figure 3B), with

variation in the communities across sites (PERMANOVA, Pseudo-

F = 30.15, R2 = 0.409, p < 0.001), between those captured by

active and passive sampling within sites (PERMANOVA, Pseudo-

F = 32.28, R2 = 0.088, p < 0.001) and, in some cases, the sampling

date (Supplementary Figure S2). PCoA analysis using a distance

metric weighted for phylogenetic relationships of community

members (i.e. weighted Unifrac, not shown) yielded similar results.

The Black River had the most unique communities across sites

(Figures 3A, B), possibly related to the low pH, high levels of Total

Dissolved Solids, and low levels of dissolved Oxygen found at this

site (Supplementary Table S1).

Discussion

Use of passive filters for eDNA collection in aquatic systems is a

potentially low-cost and efficient way to sample remote locations

where access to equipment is limited. Our results show that the

application of the simplest type of passive sampler, the suspended

membrane filter, can effectively sample microbial communities

across a variety of environmental conditions typical of aquatic

systems in the tropics. Previous work has demonstrated that passive

sampling approaches can effectively detect the eDNA ofmarine and

freshwater fishes (Bessey et al., 2021; Chen et al., 2022, 2024; Zhang

et al., 2024) and invertebrates (Alexander et al., 2023). Similar to

other studies withmetazoans (Alexander et al., 2023; van der Heyde

et al., 2023), we found that passive samplers recovered less total

DNA than active filtration. However, in contrast to comparisons

of metazoan diversity which have found similar levels of diversity

or species richness in both passive and active sampling methods

(Rivera et al., 2022; van der Heyde et al., 2023; Bessey et al., 2022),

the microbial diversity that we recovered was generally higher from

passive samples than from active filtering.

Effective sampling of eDNA may require different conditions

for different types of organisms. Both passive and active sampling

appears to work well for fish and benthic metazoans, because

both methods are capturing DNA from large organisms that is

floating free, such as in mucus, small particles of tissue or feces

in the water column. In low diversity systems, like the coastal

waters studied by Zhang et al. (2024), the two methods have

demonstrated very high (∼90%) overlap between the fish species

sampled, and similarly good performance has been reported in

mesocosms for amphibian DNA (Chen et al., 2022). However,

previous work in high-diversity natural systems often reports

only partial overlap in the fish taxa recovered (e.g., Bessey

et al., 2021; Chen et al., 2024). This may be due to insufficient

sampling to recover the entire community. The distribution of

eDNA is not homogeneous in any environment and can change

quickly depending on local conditions (Barnes et al., 2014; Joseph

et al., 2022). Physiochemical stratification, such as salinity and

temperature gradients, and turbidity have been shown to affect

eDNA movement and longevity in the water column (Canals

et al., 2021; Jeunen et al., 2020; Kumar et al., 2021). In our study,

while we did not collect sufficient samples with either method

to sample the communities completely, as evidenced by the ASV

accumulation curves (Supplementary Figure S1a), the differences

in the composition of the communities between methods are

striking and are unlikely to result from insufficient sampling.

For single celled eukaryotes and prokaryotes, it is plausible that

passive and active sampling may sample different communities.

The water column is full of organic material, both living and

dead, from a variety of organisms. Therefore, it is entirely possible

that active filtration could increase the likelihood of sampling

an exclusively planktonic community with lower prokaryotic

diversity but higher DNA concentrations, due to other organisms

or extracellular tissues being captured. Indeed, our results show

high variability in the concentration of DNA obtained across our

actively filtered samples, suggesting that some replicates captured

more organic material than others. In addition, diverse microbial

communities quickly colonize surfaces in aquatic systems, and

these taxa may not be present in the adjacent waters at high

densities (Zhang et al., 2019). The biofilms produced by benthic

fouling communities can incorporate extracellular DNA (Das et al.,

2013; Decho and Gutierrez, 2017; Hancock, 2001) and have been

shown, for example, to include DNA for the local fish fauna

(Rivera et al., 2022). As such, passive collection may better capture

not only microbial communities from the water column, but

also the fouling community as well as some fragments from the

planktonic community, resulting in lower DNA yield but higher

overall diversity.

The selection of pore size is also an important consideration

when filtering water for eDNA, particularly when active filtration,

which forces the water through the filter, is used. Filter pore sizes of

0.22µm should retain nearly all bacteria but many eDNA studies

use single filters of 0.45 or 0.80µm (Bessey et al., 2022; Majaneva

et al., 2018; Schreiber et al., 2023) as they are targeting larger

organisms such as fish. We used membrane filters with a pore size

of 0.8µm as passive samplers as they are similar to those shown

to develop a covering of adhered particles and biofilm after short

deployments (Bessey et al., 2022). However, when processing our

active samples, we used stacked filters with an 0.8µm filter above

to capture larger particles and prevent clogging of the 0.22µmfilter

underneath which was intended to capture the free-living bacteria

(Chavarria et al., 2021; Urvoy et al., 2022). Overall, we found that

only 26% of the ASVs assigned to the Kingdom Bacteria were

found in both actively filtered and passively collected samples and

the passive samples captured more ASVs and had higher bacterial

diversity at four of our six sites. Further, our PCoA ordinations

(Figure 3B, Supplementary Figure S2) demonstrate that the two

sampling types consistently captured different communities. This

suggests that fewer bacteria were captured by the filtration process

with active sampling, despite the inclusion of two filters of differing

pore sizes in our DNA extractions.

In addition to the physical ability of active and passive sampling

to capture different communities, the temporal scale of sampling

may be expected to lead to higher diversity measures from

passive sampling. Our passive samplers were deployed for 24 h,

and therefore each collected a time-integrated sample. Diurnal

changes in aquatic microbial community composition have been

previously documented (Weber and Apprill, 2020; Becker et al.,

2020; Shahraki et al., 2021). If such cycles occur in the aquatic

systems studied here, the passive samples would have captured a
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signature of this cycle in addition to the daytime diversity recorded

by the filtered samples. In addition to integrating across diurnal

variation, the passive samples could also integrate across changes

in community composition reflecting tidal cycles in the two tidally

influenced sites (Black River and Changuinola Canal; Clark et al.,

2022), as well as any changes in flow rate or water chemistry

reflecting runoff from rain events in the catchments that may have

occurred during the deployments. It is possible that such events

could contribute to the large differences between the actively and

passively sampled communities at all of our sites. Our observation

that species richness is higher in passive samples is consistent with

this temporal integration.

In conclusion, we found that passive sampling by suspension of

membrane filters was an effective way to sample microbial diversity

in tropical aquatic systems spanning a range of environmental

conditions. Although active filtering recovered more DNA and

overall communities were not similar, with only ∼25% of ASVs

recovered using both methods, the levels of diversity in passive

samples were higher than from active filtration in most of our

sites. Passive filtering appears to be an excellent candidate for

new projects focused on documenting and monitoring microbial

communities in aquatic systems with eDNA, as it eliminates

the time and effort needed for water filtration and reduces

associated costs and risks of sample contamination associated

with filtering. However, the distinct communities captured by the

two methods demonstrate that they are not inter-changeable and

transitioning ongoing monitoring projects to passive sampling

may not be possible. It is also evident that multiple sampling

methods may be needed to adequately describe prokaryote

diversity in aquatic systems. Moving forward, optimization

of the technique through streamlining of sample collection

and laboratory workflows, such as pooling of filters for DNA

extraction, should be prioritized. With further optimization and

standardization, passive filtration could become an important

resource for exploration, monitoring and management of

aquatic environments.
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