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Introduction: The European chestnut (Castanea sativa Mill.) is a historically and ecologically 
important tree in the Iberian Peninsula. The species now faces challenges related to the 
abandonment of traditional management practices, and climate change, although the 
potential impact of the later on chestnut potential range remains unexplored.

Methods: We assessed variations in chestnut potential range under different climate 
change scenarios in the Iberian Peninsula, by studying the current and projected 
habitat suitability of the species across distinct biogeographical regions (Atlantic and 
Mediterranean) and Regions of Provenance (RoPs). Environmental static (topography 
and soil parameters) and dynamic (bioclimatic variables) factors were used to build 
Species Distribution Models (SDMs). Future habitat suitability projections were based on 
an ensemble of five global circulation models (GCMs) for two climate change scenarios 
included in CMIP6. The SDMs were constructed using the Random Forest algorithm.

Results and Discussion: Our model achieved an accuracy of 86.82%, with high sensitivity 
(89.91%) and specificity (83.73%). Favourable chestnut habitats were linked to wetter 
regions, and included factors associated with annual and seasonal precipitations, coldest 
quarter temperature, soil pH and annual mean temperature. Optimal conditions for 
chestnut trees include precipitation exceeding 800 mm/year and mean temperature 
ranging from 10-15°C. Future projections suggest a potential habitat loss for chestnut 
and slight changes in net primary productivity. The Regions of Provenance exhibit varying 
levels of resilience, with the Mediterranean regions being particularly vulnerable. We 
highlight the need to develop mitigation strategies to facilitate chestnut resilience in 
the face of threats related to climate change.
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1 Introduction

The European chestnut (Castanea sativa Mill.) is native to the Iberian Peninsula. After the 
artificial expansion of the species driven by the Greeks and Romans, chestnut cultivation 
became a common practice throughout the Middle Ages (Conedera et al., 2004; Pereira-
Lorenzo et al., 2011; Pereira-Lorenzo et al., 2019), resulting in the species being distributed 

OPEN ACCESS

EDITED BY

Manoj Kumar Jhariya,  
Sant Gahira Guru Vishwavidyalaya, India

REVIEWED BY

Abhishek Raj,  
Rajendra Agricultural University, India
Arnab Banerjee,  
Sarguja University, India

*CORRESPONDENCE

Pedro Álvarez-Álvarez  
 alvarezpedro@uniovi.es

RECEIVED 15 January 2025
ACCEPTED 27 January 2025
PUBLISHED 12 February 2025

CITATION

 Álvarez-Álvarez P,  Aviñoa-Arias A,  
Díaz-Varela E,  López-Bao JV and  
Pérez-Girón JC (2025) Impact of climate 
change over distribution and potential range 
of chestnut in the Iberian Peninsula.
Front. For. Glob. Change 8:1561027.
doi: 10.3389/ffgc.2025.1561027

COPYRIGHT

© 2025 Álvarez-Álvarez, Aviñoa-Arias, 
Díaz-Varela, López-Bao and Pérez-Girón. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 12 February 2025
DOI 10.3389/ffgc.2025.1561027

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2025.1561027&domain=pdf&date_stamp=2025-02-12
https://www.frontiersin.org/articles/10.3389/ffgc.2025.1561027/full
https://www.frontiersin.org/articles/10.3389/ffgc.2025.1561027/full
https://www.frontiersin.org/articles/10.3389/ffgc.2025.1561027/full
https://www.frontiersin.org/articles/10.3389/ffgc.2025.1561027/full
mailto:alvarezpedro@uniovi.es
https://doi.org/10.3389/ffgc.2025.1561027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2025.1561027


Álvarez-Álvarez et al. 10.3389/ffgc.2025.1561027

Frontiers in Forests and Global Change 02 frontiersin.org

across extensive areas and subjected to traditional management 
practices, such as the establishment of grafted trees in orchards 
(Conedera et al., 2001; Beccaro et al., 2020a; Beccaro et al., 2020b). 
Hence, past intensive management for agroforestry purposes has led 
to the current distribution of chestnuts, masking the species’ natural 
range and autecological preferences (Conedera et al., 2021).

Chestnut trees possess a multifaceted role in biodiversity 
conservation beyond their productivity potential (Gondard et  al., 
2006; Guitián et al., 2012). Within chestnut orchards, the trees serve 
as microhabitats (Kraus et  al., 2016) due to their structural 
characteristics, which include cavities, cracks, water-filled holes, and 
microsoils. These features host a diverse array of species ranging from 
fungi and epiphytic plants to insects, birds, and small mammals 
(Rubio, 2009; Zlatanov et al., 2013). Additionally, chestnut fruits serve 
as an essential dietary component for various animal species, 
including the brown bear (Ursus arctos L.; Pérez-Girón et al., 2022), 
which is threatened in the Iberian Peninsula and constitute an 
umbrella species for conservation (Gonzalez et  al., 2016). When 
effectively managed (Moretti et al., 2021), chestnut orchards represent 
significant assets for nature conservation within landscape mosaics 
(Diaz-Varela et al., 2018).

The European chestnut (or sweet chestnut) is a thermophilic 
species, and the optimal conditions for growth, phenology and 
ecological well-being occur in regions where the annual mean 
temperature ranges from 8°C to 15°C, accompanied by annual rainfall 
ranging from 600 to 700  mm to 1,500–1,600 mm (Menéndez-
Miguélez et al., 2015; Conedera et al., 2016; Pérez-Girón et al., 2020; 
Freitas et al., 2021). Chestnuts also tolerate maximum temperatures of 
between 27 and 31°C. However, the species exhibits heightened 
sensitivity to summer drought and requires moderate chilling 
accumulation (Conedera et al., 2004; Santos et al., 2019). The growth 
of chestnuts is closely linked to temperature, precipitation and other 
climatic factors. As a result, ecosystems relying on this species are 
vulnerable to climate change (Castellana et  al., 2021; Freitas 
et al., 2022).

The Intergovernmental Science-Policy Platform on Biodiversity 
and Ecosystem Services (IPBES, 2019) has identified climate change 
as a primary driver of ecological threats to forest ecosystems, with 
particular focus on vulnerable areas such as the Mediterranean region, 
including the Iberian Peninsula (Purvis et  al., 2019; European 
Commission, 2022; Xunta de Galicia, 2022). In this regard, projections 
for the Mediterranean region, anticipate temperature increases and 
substantial decreases in precipitation, especially during summer 
(Giorgi, 2006; Giorgi and Lionello, 2008; Ozturk et al., 2015; IPCC, 
2021); leading to more frequent and intense droughts (Böhnisch et al., 
2021; García-Valdecasas Ojeda et al., 2021; Soares et al., 2023). Shifts 
in precipitation patterns (de Luis et al., 2010; Lorenzo and Alvarez, 
2020) and an increased frequency of extreme weather events 
(Mohammed et al., 2018; Cardoso Pereira et al., 2020; Barbosa and 
Scotto, 2022) are also expected to occur.

The expected potential consequences of climate change, including 
alterations in the metabolic processes of chestnuts, like phenological 
changes (Alhinho et  al., 2021; Larue et  al., 2021; Conedera et  al., 
2021), physiological stress (Alcaide et al., 2019; Camisón et al., 2020; 
Pérez-Girón et al., 2020; Camisón et al., 2021; Castellana et al., 2021), 
shifts in pest and disease dynamics (Bale et  al., 2002; Simler-
Williamson et al., 2019; Gil-Tapetado et al., 2021; Lombardero et al., 
2021; Dorado et  al., 2023), impacts on genetic diversity 

(Pereira-Lorenzo et al., 2011; Míguez-Soto et al., 2019), as well as shifts 
in environmental variables such as soil composition and water 
availability, are likely to pose threats to the health, productivity and 
distribution of chestnuts (Pérez-Girón et  al., 2020; Menéndez-
Miguélez et al., 2023), with consequences to current chestnut-related 
ecosystems and of their capacity to provide goods and services (Freitas 
et al., 2022; Fernandes et al., 2022; Castellana et al., 2021).

Since various climate-related variables can influence on chestnut 
sensitivity, it is critical to assess the potential impact of climate change 
on the species, in order to delineate effective and adaptive strategies to 
maintain the growth, productivity and long-term sustainability of 
chestnut. In this regard, the application of short- and medium-term 
adaptation actions may be important to mitigate potential impacts of 
climate change, such as efficient waterlogging or irrigation 
management to maintain adequate soil moisture levels (especially in 
Mediterranean climates; see Mota et al., 2018a; Mota et al., 2018b); the 
use of protective compounds including symbiotic fungi to improve 
nutrient uptake, enhance tolerance to drought and contribute to 
overall plant health, thereby aiding in the defence against 
environmental challenges (Aryal, 2017; Begum et al., 2019); the use of 
silicon fertilisation for prophylaxis to prevent the impact of abiotic 
stress (Carneiro-Carvalho et al., 2023); and the genetic selection of 
clones with enhanced adaptability and resilience (Fernández-López 
et al., 2005; Pereira-Lorenzo et al., 2011; Míguez-Soto et al., 2019; 
Castellana et al., 2021). Better understanding of the potential impacts 
of climate change on habitat suitability for chestnuts will help to 
identify the most appropriate actions across space, considering future 
potential climate scenarios. In this study, we assessed the potential 
impacts of climate change on chestnut potential range across the 
Iberian Peninsula, considering both current and projected habitat 
suitability. We  also conducted a comprehensive analysis of the 
potential impacts of climate change across established chestnut 
ecological regions (areas where species thrive under 
uniform conditions).

2 Materials and methods

2.1 Study area

The study was conducted in mainland Iberian Peninsula (Figure 1), 
a region characterised by substantial climatic heterogeneity. The climate 
can be broadly categorised into three main zones: dry climate zones, 
which dominate the southern and southeastern areas; temperate zones 
with dry and hot summers, covering approximately 40% of the Peninsula; 
and temperate zones with dry and mild summers, prevalent in the 
northeastern regions and along most of the western coast of mainland 
Portugal (AEMET, 2011). To address the climatic heterogeneity of the 
area and facilitate specific comparisons and analyses, two types of 
territorial divisions were used: the biogeographical the Atlantic and 
Mediterranean regions (where chestnut are present); and the Regions of 
Provenance (RoPs), regarded as ecologically homogeneous areas for the 
species, which were used as reference elements.

Regions of Provenance (RoPs) are specific areas delineated on the 
basis of uniform ecological conditions, where stands or seed sources 
with similar phenotypic or genetic traits are found. RoPs are defined 
in European Directive EC/1999/105, and they are delineated by EU 
countries according to their own criteria. We  used two types of 
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classification in the present study. For Portugal, we used the RoPs 
defined for C. sativa by the Instituto da Conservação da Natureza e 
das Florestas (Instituto da Conservação da Natureza e Florestas 
(ICNF), 2018). For Spain, we used the RoP method developed by Alía 
Miranda et al. (2009), which divides the territory into ecologically 
analogous zones independent of species, as a cumulative RoP system 
for C. sativa has not yet been developed.

2.2 Sweet chestnut presence

We compiled an extensive database of georeferenced occurrences 
of sweet chestnut. This compilation draws from data collected in the 
3rd and 4th National Forest Inventories in Spain (NFI3 and NFI4), the 
6th National Forest Inventory in Portugal (NFI6), the Continuous 
Forest Inventory of Galicia (IFCG), and the Global Biodiversity 
Information Facility (GBIF) (GBIF, 2024; MITECO, 2022; Xunta de, 
2022; ICNF, 2015). Firstly, we considered only those occurrences with 
a coordinate accuracy uncertainty <25 m. Then, we  eliminated 
occurrences within artificial surfaces (e.g., urban, industrial, etc.…) 
by cross-referencing the occurrences with CORINE land cover 2018. 
In addition, as NFIs follow a systematic statistical sampling system, 
NFI plots without sweet chestnut were considered as true absences. 
Finally, to reduce possible spatial bias arising from the use of different 
data sources, we used random spatial filtering, implemented in the 
ecoinfo package (Carlisle and Albeke, 2016) in the R 4.3.1 software (R 
Core Team, 2023). Specifically, we  restricted our analysis to 
occurrences separated from each other by >200 m, while a minimum 
distance of 1,000 m was selected for absences to match NFI sampling 
intensity. As a result, we used 4,505 occurrences and 56,498 absences 
for subsequent analyses. Of the total occurrences, 3,128 georeferenced 
occurrences were located in the Atlantic biogeographical region, 
1,359 in the Mediterranean and 18 in the Alpine region. The latter, due 

to the small number of samples, has been excluded from the 
biogeographical regions analysis.

2.3 Environmental predictors

First, we selected a set of environmental variables that are assumed will 
remain static under the influence of climate change on a short- medium- 
term, and reflected chestnut habitat preferences. Related to topography, 
we computed slope and aspect with the 30 m European Digital Elevation 
Model (EU-DEM). Aspect was further divided into Northness (cosine of 
aspect) and Eastness (sine of aspect) to mitigate duplication of values for 
north (0° and 360°). For soil-related parameters, we included soil pH and 
soil organic carbon content (SOC) within the 5–15 cm layer, sourced from 
SoilGrids250m version 2.0 (Poggio et al., 2021). On the other hand, we used 
a set of dynamic bioclimatic variables from the CHELSA V.2.1 dataset, 
computed as the average for the years 1981–2010, and at a spatial resolution 
of 30 arc-seconds (approximately 1 km) (Karger et al., 2017). We omitted 
bioclimatic variables 8, 9, 18, and 19 from the analysis owing to recognised 
issues of spatial discontinuity (Booth, 2022; see Supplementary Table S1). 
Finally, to remove multicollinearity we excluded those variables with a 
Spearman’s pairwise correlation coefficient > |0.7| or a Variance Inflation 
Factor (VIF) > 5. However, to exclusively assess the importance of 
predictors in the Atlantic and Mediterranean biogeographical regions, all 
predictors were considered for modelling without exclusions.

2.4 Climate change projections

We assumed that estimates of chestnut habitat suitability would 
reflect the potential range of the species. To approach habitat 
suitability in the future, we used the bioclimatic variables associated 
with several climate projections based on the Coupled Model 

FIGURE 1

(A) Map of the Biogeographical Regions in Europe from 2016 onwards (source: European Environment Agency) and (B) Regions of Provenance (RoP) 
with presence of sweet chestnut. Source: (Instituto da Conservação da Natureza e Florestas (ICNF), 2018; Alía Miranda et al., 2009).
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Intercomparison Project Phase 6 (CMIP6) provided by CHELSA V2.1 
(Karger et al., 2017). These projections follow the guidelines of the 
Intersectoral Impact Model Intercomparison Project (ISIMIP) 
regarding selection of Global Circulation Models (GCMs) and Shared 
Socioeconomic Pathway scenarios (SSPs). Specifically, we considered 
five high-performance General Circulation Models (GCMs) (GFDL-
ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and 
UKESM1-0-LL) and two Shared Socioeconomic Pathways (SSPs) 
(SSP3-7.0 and SSP5-8.5) for three distinct periods: 2011–2040, 2041–
2070 and 2071–2100 (Lange, 2021). In contrast to the previous 
Representative Concentration Pathways (RCP4.5 and RCP8.5), they 
represent possible alternative future scenarios shaped by various 
political and socio-economic, thus providing a more contemporary 
basis for assessing the impacts of climate change. SSP3-7.0 portrays a 
scenario characterised by limited proactive measures to mitigate 
climate change, resulting in a steady temperature increase of 
approximately 3.6°C and a doubling of CO2 emissions from current 
levels by 2,100. Conversely, the SSP5-8.5 scenario presents the most 
pessimistic outlook, projecting a temperature increase of up to 5°C or 
more above pre-industrial levels. However, this scenario is often 
mistakenly perceived as “business as usual” despite being deemed an 
improbable, high-risk future. Consequently, the focus shifts to the 
second-highest scenario, SSP3-7.0, emphasising its heightened 
significance in climate change research. Additionally, to assess 
variations in primary productivity between the current and potential 
future ranges, we obtained the projected Net Primary Productivity 
(NPP) for each GCM, SSP and time period from BIOCLIM+ (Brun 
et al., 2022). BIOCLIM+ uses the Miami model (Lieth, 1975) and 
provides a simple but widely applied, empirically derived model that 
includes valuable information for management considerations.

Both environmental variables as climate change variables were 
cropped to fit the study area, reprojected to GRS84 (EPSG: 4326) and 
resampled to a 100 m resolution by bilinear interpolation. These 
processes were conducted using the terra package (Hijmans et al., 
2022) in R 4.3.1 software.

2.5 Species distribution modelling, 
evaluation and ensembling

A Random Forest (RF) classifier algorithm was used to develop 
Species Distribution Models (SDMs) to predict current and future 
habitat suitability for chestnuts in the Iberian Peninsula. The RF 
classification and non-parametric regression methodology, proposed 
by Breiman (2001), includes numerous individual decision trees that 
work as an ensemble, known as a “forest.” It uses the bagging method 
(Breiman, 1996), which implies that a random sample is selected with 
replacement, and therefore the individual sample may be chosen more 
than once. A class imbalance can therefore lead to the predictive 
accuracy of the minority class being much lower than that of the 
majority class. To deal with class-imbalance problems, we used down-
sampling technique, in which each tree was trained with a subset of 
the majority class (absences) equal to minority class (presences) (Liu 
et al., 2009). This method has proven to be the best when used as the 
only modelling method (Valavi et al., 2022). Furthermore, RF uses a 
random subset of predictor variables, controlled by the mtry parameter 
(Ho, 1998), leading to a randomised and uncorrelated forest. These 
characteristics lead to the method being less sensitive to parameter 

tuning (Strobl et al., 2009). Consequently, the presence/absence data 
were split into two data sets, with 80% allocated for training and 20% 
for validation purposes. The RF model was trained on a balanced 
sample achieved through down-sampling, with an mtry value 
computed as the square root of the number of predictors and including 
1,000 trees. The predictive performance of RF models was assessed 
with the validation data set through sensitivity and specificity (i.e., the 
numbers of correctly classified presences and absences, respectively), 
obtained with the confusion matrix.

Spatial predictions were returned in terms of the probability of the 
target pixel and then converted into binary outcomes using a 
conservative threshold of 0.4 at a spatial resolution of 100 m. For 
future projections, a spatial prediction for each GCM, climate change 
scenario and time interval was generated. Finally, an ensemble of 
models was generated using both mean and median values for each 
scenario and time interval and binarized using the above-mentioned 
threshold. Binary maps were used to assess significant differences in 
elevation and productivity (NPP) in future scenarios by applying the 
Wilcoxon-Mann–Whitney test (at α = 0.01) and using the mean of the 
current scenario as the reference for comparison.

Net Primary Production (NPP), commonly used to evaluate the 
responses of the terrestrial carbon cycle to climate change, depends on 
climatic variables (Lieth, 1975). Previous studies by Pérez-Girón et al. 
(2020) show a negative correlation between NPP and mean 
temperature variables (MAT, MATmin and MATmax) and a positive 
correlation between NPP and latitude, while no correlation was found 
with mean annual precipitation (MAP).

2.6 Assessing changes in potential range 
and association

To assess changes in the spatial distribution of environmentally 
suitable habitats for chestnut under current and future climatic 
conditions, scenarios and temporal intervals, we used the biomod2 
package (Thuiller et al., 2023) to compute the species stability, gains, 
losses and percent change, the latter of which was calculated as the 
difference between gains and losses. In order to map the changes on 
the chestnut distribution, we categorised the species change as stable 
(change equal to zero), slight (values from (−)1 to (−)24), moderate 
(values ranging from (−)25 to (−)49) and extreme (values equal to or 
greater than (−)50).

The key precipitation and temperature variables were chosen to 
compute significant habitat associations by comparing the occurrences 
of sweet chestnut within a habitat against a randomly distributed set 
of points. The comparison was implemented with the shar package 
(Hesselbarth, 2021) and a significance level of 0.01 was applied. These 
bioclimatic factors are essential for understanding the dynamic nature 
of chestnut habitats across the Iberian Peninsula, influencing critical 
ecological aspects such as vegetation composition, habitat structure 
and species diversity. Temperature breaks were established every 
2.5°C, and 300 mm steps were chosen for precipitation. The resulting 
positive species-habitat associations were used as a reference 
framework for future predictions within RoPs.

Within the framework of the source regions, changes in habitat 
suitability for chestnut were analysed on the basis of future projections. 
These analyses quantified the percentage differentials between gains 
and losses for RoPs with a minimum land area of 100 hectares for 
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representation, encompassing a total of 33 distinct regions of origin 
across the Iberian Peninsula, of which 28 regions are in Spain and 
5 in Portugal.

3 Results

3.1 Contemporary estimates of chestnut 
habitat suitability

Our RF model demonstrated strong sensitivity (88.86%) and 
specificity (83.52%), indicating a remarkable capacity to correctly 
identify presence and absence, respectively. The overall accuracy of the 
model was 86.19%. The estimated suitable habitat for chestnut 
currently spans a total area of 69,650 km2 (see Figure 2A), with an 
optimal distribution observed in the wetter regions influenced by 
oceanic climates. Mean annual precipitation (Bio12), soil pH, which 
affects nutrient availability, particularly during critical times when 
moisture is essential, and annual mean temperature (Bio1) were 
identified as the most important factor for chestnut growth 
(Figure 2B). Other important factors such as SOC provides valuable 
information about soil fertility levels.

When examining the overall importance of the different variables 
used concerning the Atlantic and Mediterranean biogeographical 
regions, notable differences emerged (Figure  3); highlighting the 
importance of precipitation as one of the most influential variables in 
habitat suitability and chestnut resilience, particularly in the 
Mediterranean region. In the Atlantic region, precipitation seasonality 
(Bio15) was the most important variable, which impacts on soil 
moisture availability, essential for tree growth. Other important factors 
were the mean temperature of coldest quarter (Bio11), indicating 
winter severity and affecting chestnut physiology and survival, 
isothermality (Bio3), the annual mean temperature (Bio1) (influencing 
temperature stability and growth conditions), and soil pH, which 

impact on nutrient availability. By contrast, in the Mediterranean 
region, annual (Bio12) and wettest quarter (Bio16) precipitation, 
critical for soil moisture during growth periods, were the most 
important variables affecting chestnut habitat suitability. Followed by, 
the precipitation of wettest month (Bio13), essential for chestnut 
development, temperature conditions (Bio1), and soil pH, which 
influences nutrient availability, vital for chestnut ecosystem health.

3.2 Future predictions for chestnut 
potential range

The estimated habitat suitable for chestnut varies significantly 
across scenarios and time periods according to the median ensemble 
(Figure  4 and Table  1, see Supplementary Figure S1 for the 
corresponding maps of mean ensemble). In scenarios SSP3-7.0 and 
SSP5-8.5, habitat loss increases over time. Between 2011 and 2070, 
we estimated a substantial and progressive increase in habitat loss, 
with the percentage of loss exceeding gains. This trend further 
intensifies between 2071 and 2100, with a significant decrease in stable 
habitat and a considerable increase in habitat loss. Estimates based on 
the SSP5-8.5 scenario showed a more pronounced habitat loss than 
SSP3-7.0 (Table  1), particularly towards the end of the century. 
Remarkably, while habitat gain is evident in all scenarios and time 
periods, it is outweighed by the magnitude of habitat loss, resulting in 
overall negative range changes.

The projected scenarios also suggest potential changes in the 
elevational range inhabited by the species and in the productive 
capacity (NPP) (Figure 5). The median elevation of pixels with suitable 
habitat undergoes fluctuations across all future scenarios. In the short 
term, we  forecast a median increase of approximately 60 m a.s.l., 
increasing to over 200 m a.s.l. in the long term. Chestnut demonstrates 
an ability to colonise higher elevations as conditions shift (Freitas 
et al., 2021), suggesting the involvement of some elevational-related 

FIGURE 2

Current spatial predictions of habitat suitability for sweet chestnut, expressed as probability (A) and importance of variables (B).
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stress tolerance in its adaptation. Similarly, the median NPP is 
predicted to undergo a slight but statistically significant increase, 
particularly between 2041 and 2070 onwards, as might be expected 
due to the increase in temperatures. The predicted increase is 
asymmetric, as it is more pronounced at relatively low NPP values.

3.3 Habitat change in the Regions of 
Provenance (RoPs)

The Cantabrian region RoPs (2, 3, 4, 5, 6, and 7) showed 
resilience and adaptability to changing climatic conditions 
(facilitated by elevational shifts in mountainous areas: regions 4, 5, 
and 7). Conversely, RoPs in Mediterranean regions are expected to 
become more vulnerable, leading to a significant reduction in 
habitat suitability. This vulnerability is particularly pronounced in 
RoPs 11, 20, 24, 25, 28, 29, 30, 38, 39, 40, 42, and 46, as well as in 
the Portuguese RoPs CAS-RP2, CAS-RPA and CAS-RPC. Habitat 
loss is expected to be particularly high in the CAS-RP2 RoP in 
Portugal (Figure 6).

Analysing the influence of the two most influential precipitation 
and temperature variables, annual precipitation (Bio12) and annual 
mean temperature (Bio1), the presence of chestnut is positively 
associated with locations receiving precipitation (Bio12) above 
800 mm/year (Figure 7). Currently, almost all RoPs with chestnut 
presence meet these conditions, explaining the presence of chestnut 
in regions characterised by a pronounced Mediterranean climate, 
with very dry summers. In relation to the annual mean temperature, 
we observed a positive association between chestnut presence and 
mean temperatures ranging from 10 to 15°C (Figure 8). Considering 
this temperature range as optimal for chestnut, two RoPs, 42 and 
46, currently exceed this temperature range. The challenge for 
chestnut in these RoPs escalates further in the analysed climate 
change scenarios, SSP3-7.0 and SSP5-8.5, intensifying throughout 

the periods 2011–2040, 2041–2070 and 2071–2100. Overall, under 
the projected scenarios, the influence of annual precipitation 
(Bio12) is less constraining for the species than the annual mean 
temperature (Bio1). However, during the period 2071 to 2100, 
annual precipitation is anticipated to fall below acceptable 
thresholds for the species. This is particularly notable in RoPs 9, 18, 
19, 42, 46 and CAS-RP2.

4 Discussion

Genetic diversity, soil health and the capacity to adapt to local 
climatic conditions have been identified as key factors enabling 
chestnut to withstand climate challenges (Fernandes et  al., 2022). 
Previous studies suggested that chestnut habitat suitability, and the 
potential impact of climate change, exhibit a high degree of regional 
variability within the Iberian Peninsula (Pérez-Girón et al., 2020). 
Along these lines, our analyses contribute to a better understanding 
of the potential impacts of climate change on the species, and could 
enable development of effective adaptation strategies to promote the 
long-term sustainability of chestnut ecosystems. The widespread 
distribution of chestnuts, influenced by human activities over 
hundreds of years across various regions from southern Europe and 
North Africa to north-western Europe and Western Asia, has enabled 
the species to flourish at the edges of its ecological limits. This presents 
difficulties in precisely identifying its initial natural habitat (Conedera 
et al., 2016).

Chestnuts are thermophilic, but display a remarkable plasticity in 
response to varying precipitation levels (Bourgeois et  al., 2004; 
Gandullo Gutiérrez et al., 2004; Zhang et al., 2011; Conedera et al., 
2016; Freitas et al., 2021; Toujgani et al., 2024). This may illustrate the 
association of the species with areas affected by oceanic influence (see, 
for example, Castellana et  al., 2021; Cedano Gıraldo and Mumcu 
Küçüker, 2024; Beridze et al., 2023), which plays an important role in 

FIGURE 3

Overall importance of variables in (A) Atlantic and (B) Mediterranean Biogeographical Regions. The importance of variables in the Atlantic and 
Mediterranean biogeographical regions was assessed exclusively through a RF model that included all predictors without exclusions, and therefore, 
different from the RF used to predict distributions.
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determining suitable habitats for chestnuts, especially in the 
Mediterranean basin. However, chestnuts also thrive in continental 
zones with milder climates characterised by warm-temperate and 
rainy conditions, including France, Italy and Switzerland (Conedera 
et al., 2016). For instance, chestnuts thrive in the Swiss part of the 
Ticino river basin, which receives a mean annual precipitation of 
1,700 mm and where a mean annual temperature of approximately 
12°C is maintained (Krebs et al., 2012). Overall, therefore, available 
evidence suggest a remarkable capacity of chestnut to thrive across a 
diverse range of precipitation and temperature conditions, including 
the Iberian Peninsula (Figures 2, 3, 7, 8).

Our findings are consistent with those of a study conducted by 
Freitas et  al. (2021) in Portugal, where optimal conditions for 
chestnut tree growth were identified by employing an aggregated 

Chestnut Suitability Index (CSI), which includes temperature and 
precipitation variables (growing degree days, annual mean 
temperature, number of summer days with a maximum temperature 
below 32°C, and annual accumulated precipitation). They are also 
highly consistent with the maximal habitat suitability estimations 
established by Conedera et al. (2016) for Europe. This alignment is 
particularly marked in the Cantabrian region, which includes 
Galicia, Asturias and Cantabria. However, there is a clear divergence 
from the aforementioned study along the Atlantic coast of Galicia 
and Portugal. By contrast, our projections differ from the optimal 
areas for chestnut development indicated by the model developed 
by Castellana et al. (2021) for 2020, where the optimal conditions 
for chestnut are situated in the central-northern region of Portugal 
and the Atlantic coastal area of Galicia. Precipitation has also been 

FIGURE 4

Chestnut habitat suitability for (A) 2011-2040, (C) 2041-2070, and (E) 2071-2100 under the SSP3-7.0 scenario, and for (B) 2011-2040, (D) 2041-2070, 
and (F) 2071-2100 under the SSP5-8.5 scenario, as determined using a median ensemble approach.
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identified as a key factor influencing site productivity within 
chestnut plantations and coppice stands in north-western Spain 
(Atlantic Biogeographical Region), with implications for predicting 

chestnut growth and subsequent management decisions, especially 
in areas prioritising timber production (Álvarez-Álvarez et  al., 
2010; Menéndez-Miguélez et al., 2015).

TABLE 1 Habitat change for sweet chestnut for each scenario and time periods regarding median ensemble.

Scenario Years Stable Loss Gain Range change

SSP3-7.0 2011–2040 62.66 37.34 7.18 −30.16

2041–2070 44.42 55.58 11.63 −43.95

2071–2100 28.04 71.96 14.58 −57.38

SSP5-8.5 2011–2040 62.90 37.10 6.49 −30.61

2041–2070 41.76 58.24 12.66 −45.58

2071–2100 16.65 83.35 13.45 −69.91

Values represent the percentage of change.

FIGURE 5

Distribution and mean comparison in current and future predicted areas of (A) elevation and (B) NPP. Statistical significance: ns: p > 0.05; *p ≤ 0.05; 
**p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. Black dots represent outliers.
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The results obtained for the two reference scenarios for climate change 
(SSP3-7.0 and SSP5-8.5) consistently predict a shift in the habitat suitable 
for chestnut-related ecosystems towards higher elevations. This upward 
migration illustrates the sensitivity of chestnuts to future changes in climate, 
particularly water deficit. It is anticipated that humid areas will become 
restricted to higher elevations in the future, which would have an important 
impact on the geographical distribution of chestnut ecosystems. The 
current status of chestnut habitat in the Iberian Peninsula corresponds with 
approximately 50% of the chestnut habitat suitability distributed within 
elevations ranging mainly from 250 to 750 m a.s.l. (with some trees present 
at elevations of up to 1,800 m, exceptionally). However, in future scenarios 
the species range is expected to move upwards towards higher elevations 
(see Figures 2, 4, 5; Freitas et al., 2022). This suggests an elevation-related 

stress tolerance in its adaptation, as evidenced by the 60-m increase above 
sea level (m a.s.l.) in distribution predicted for the short term. Looking 
further ahead, a median rise of over 200 m a.s.l. is anticipated in the long 
term. However, these data must be interpreted with caution because this 
study does not model the species colonisation capacity in terms of 
functional traits. The observed increase in NPP values (Figure 5) is probably 
due to a large reduction in habitat suitability in the southern zones of the 
Mediterranean region, accentuated by climate scenarios in the latter periods 
of the century; where Mediterranean climatic conditions are expected to 
extend northwards into the Iberian Peninsula.

The adaptation of chestnuts to changing environmental 
conditions would entail complex challenges beyond alterations in 
the species habitat suitability. Water scarcity, coupled with other 

FIGURE 6

Chestnut habitat change in the RoPs for (A) 2011-2040, (C) 2041-2070, and (E) 2071-2100 under the SSP3-7.0 scenario, and for (B) 2011-2040, 
(D) 2041-2070, and (F) 2071-2100 under the SSP5-8.5 scenario.
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anticipated abiotic stressors such as flooding, reduced chilling 
hours and rainfall deficits, is poised to significantly diminish the 
production and quality of chestnuts and chestnut wood (Fernandes 
et  al., 2022). This could lead to the abandonment of traditional 
orchards, thereby increasing the risk of wildfires (Freitas et  al., 
2021). The prevalence of prolonged drought would damage the 
integrity of the root systems, rendering them more susceptible to 
infections during subsequent periods of rainfall, conditions 
conducive to the development of pathogens (Turchetti and Maresi, 
2008; Marzocchi et al., 2024), which may lead to the resurgence of 
ink disease throughout European chestnut forests (Prospero et al., 
2023). Climatic factors also have a proven influence on the spread 
of pests, as described by Gil-Tapetado et al. (2021) and Lombardero 
et al. (2021) for Dryocosmus kuriphilus in NW Iberian Peninsula.

The findings of the analysis of the Regions of Provenance (RoPs) 
show a higher resilience and adaptability of RoPs within the 
Cantabrian zone to dynamic climatic conditions. By contrast, RoPs 
situated in Mediterranean sites are increasingly susceptible, leading 
to marked reductions in their distributional extents—as manifested 
by significant habitat suitability loss (Figure 6). Thus, under the 
RoPs delimitation, our findings illustrate the pivotal role of annual 
precipitation (Bio12) and annual mean temperature variable (Bio1) 
in shaping the distribution of chestnuts (Santos et al., 2019; Freitas 
et  al., 2021; Cedano Gıraldo and Mumcu Küçüker, 2024). 
Specifically, locations that receive precipitation exceeding 800 mm/
year are positively associated with chestnut presence, while values 

below this threshold are negatively correlated. Notably, almost all 
RoPs with chestnut presence are characterised by these favourable 
precipitation conditions. Furthermore, chestnut presence is closely 
linked to temperature. Consideration of the annual mean 
temperature variable (Bio1) revealed a favourable association with 
chestnut growth within the range 10 to 15°C, which is considered 
optimal for their development. However, certain specific regions 
currently exceed the maximum temperature threshold established 
for chestnut. Cedano Gıraldo and Mumcu Küçüker (2024), for the 
Black Sea region (Turkey), discussed ecological optima for chestnut 
and reported optimal temperature ranges of 8 to 15°C and 
precipitation levels between 600 and 1,600 mm, except in the Black 
Sea region, and values of annual mean precipitation (Bio12) 
exceeding 200 mm, which at first glance appears to be very low. 
Similarly, studies by Cuenca and Majada (2012), conducted in 
Spain, suggested optimal temperature ranges of 10 to 13°C and 
precipitation values above 850 mm. In the European Atlas of Forest 
Tree Species, Conedera et  al. (2016) also reported optimal 
temperature ranges of between 8°C and 15°C and minimum rainfall 
ranging from 600 to 800 mm for the entire chestnut 
distribution area.

Our findings contribute to establish an ecological reference 
framework based on current data for the species and its region of 
origin in the Iberian Peninsula and provide valuable insights to 
guide conservation actions in the face of changing climate. These 
observations are also consistent with previous findings of 

FIGURE 7

Density function of mean annual precipitation (Bio12) under current environmental conditions and projected future climate change scenarios across 
RoPs. The red line indicates the threshold above which the presence of the species shows a positive association with mean annual precipitation.
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Pérez-Girón et  al. (2020), who evaluated the resilience of sweet 
chestnut Agroforestry Systems (AFS) under both the RCP2.6 and 
RCP8.5 scenarios through 2,100. These authors emphasised the 
need for strategic planning and management of chestnut habitats 
suited to the diverse RoPs to counteract the detrimental effects of 
climate change. The comprehensive examination of chestnut RoPs 
sheds light on the intricate effects of climate change on species 
distributions, emphasising the urgent need for coordinated regional 
and international efforts to address these challenges and protect 
chestnut biodiversity.

5 Conclusion

The results of this study confirm the preference of chestnut for 
wetter, oceanic climates and highlight the critical role of precipitation 
in determining habitat suitability and resilience, particularly in the 
Mediterranean region. Precipitation levels exceeding 800 mm/year 
and optimal mean temperatures ranging from 10 to 15°C are key 
determinants of chestnut habitat suitability. The European chestnut 
displays a high level of adaptability to varying elevation conditions 
and adaptive potential in response to productivity-related obstacles. 
Its stress tolerance and capacity for recovery may be  key for its 
survival in dynamic climate scenarios. Future projections highlight 
significant potential habitat loss, alterations in elevation and shifts 

in NPP, with the Mediterranean region facing heightened 
vulnerability. Escalating temperatures could surpass chestnut 
tolerance thresholds and lead to alterations in the range of the 
species. Variations in resilience and vulnerability across different 
RoPs emphasise the need for strategic habitat management to 
conserve chestnut diversity amidst climate uncertainties.

Sustainable forest management and biodiversity conservation 
require understanding how climate change affects chestnut habitats. 
Climate projections offer valuable insights but must be critically 
evaluated for limitations and updated with emerging findings. For 
instance, consideration of the new perspectives on the potential 
collapse of the Atlantic meridional overturning circulation 
(AMOC) due to freshwater input (see, e.g., van Westen et al., 2024) 
could significantly alter the dynamics of the climate change process 
in the Iberian Peninsula and may necessitate re-evaluation of the 
effects on species and ecosystems. Despite that, this study aims to 
serve as a spatial reference point for future conservation and 
management strategies for the species, laying the groundwork for 
forthcoming research on chestnut-related socioecological systems.
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FIGURE 8

Density function of annual mean temperature (Bio1) under current environmental conditions and projected future climate change scenarios across 
RoPs. The blue and red lines indicate the thresholds between which there is a positive association between species presence and annual mean 
temperature.
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