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In the context of climate change, assessing the adaptive potential of species and 
populations is crucial for developing effective conservation strategies. Changes in 
plant gene expression play a significant role in the adaptation process to climate 
change. This study aims to explore the adaptive responses of the conifer species 
Chamaecyparis hodginsii (the name has been revised from Fokienia hodginsii) to 
climate change and analyze the molecular-level reactions of these long-lived trees 
to climatic shifts. It seeks to understand their phenotypic responses to climate 
change, identify key environmental factors driving adaptive gene expression, 
and provide information for transplantation conservation strategies based on 
genetic adaptability. By conducting mixed-tissue RNA sequencing on samples 
from multiple provenances and employing redundancy analysis (RDA), weighted 
gene co-expression network analysis (WGCNA), and partial least squares path 
modeling (PLS-PM), the study assesses the impact of climatic variables on gene 
expression and phenotype. It identifies key gene groups associated with environmental 
responses and elucidates the complex relationships between environmental factors, 
functional gene groups, and phenotypic traits. The findings reveal that C. hodginsii 
adapts to environmental stresses by regulating specific gene activities related to 
morphological trait adjustments. Moreover, environmental factors such as the 
impact on tree architecture emphasize the importance of Precipitation Seasonality, 
Isothermality, and Precipitation of Driest Quarter for adapting to climate stresses. 
This research not only unveils the complex adaptive responses of C. hodginsii 
to climate change but also provides critical insights for the management and 
conservation of long-lived tree species facing climate change threats.
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1 Introduction

Climate change is one of the major threats to biodiversity, with 
studies showing it has led to localized extinctions of animal and plant 
species (Walther et al., 2002). Assessing the current adaptive state of 
species and populations is essential for effective conservation strategies 
(Eizaguirre and Baltazar-Soares, 2014; Razgour et al., 2019). For long-
lived species, such as forest trees, rates of mutation and migration may 
be  insufficient to match the pace of environmental change, thus 
limiting adaptive potential (Holliday et al., 2017; Bisbing et al., 2021; 
Dauphin et al., 2021). Consequently, shifts in gene expression are 
critical for plant adaptation to changing environments and can, to 
some extent, reflect the adaptive status of species. Rapid environmental 
shifts can induce changes in gene expression programs, thereby 
regulating plant metabolism to adapt to new conditions and increasing 
phenotypic variation (López-Maury et al., 2008; Berger et al., 2011). 
Changes in gene expression not only directly reflect the species’ 
adaption to current environments but are also essential for assessing 
the viability of natural species under climate change and for developing 
effective ecological and forest management strategies. During the 
process of adapting to antibiotic stress, plants undergo extensive 
changes in gene expression (Chen and Soltis, 2020; Kan et al., 2023), 
providing a basis for natural selection on short evolutionary timescales 
(Xu et al., 2016; Innes et al., 2023).

Differences in gene expression patterns can explain the varying 
abilities of different populations to adapt to environmental changes 
(Poncet et al., 2010; Xu et al., 2016). Traditional transplant or garden 
experiments are the gold standard for assessing plant adaptability 
(Weeks et  al., 2011). Translocating organisms from their native 
habitats to new environments also serves as an effective method to 
conserve genetic diversity (Anderson et al., 2011; Fournier-Level et al., 
2011; Sang et al., 2022), especially for threatened and rare species 
(Hufford and Mazer, 2003). Notably, seedlings, being in the early 
stages of growth, may be more sensitive to environmental changes 
(Hummel et al., 2004; Huang and Wang, 2016). RNA-seq has been 
successfully applied to adaptive studies in conifer species (Ma et al., 
2019; Yang et al., 2022). Additionally, Weighted Gene Co-expression 
Network Analysis (WGCNA) can identify gene sets closely related to 
climate adaptation, revealing how plants regulate gene expression to 
cope with rapidly changing climates, thereby deepening the current 
understanding of species adaptation mechanisms.

Chamaecyparis hodginsii is classified as Vulnerable (VU) on 
the International Union for Conservation of Nature (IUCN) Red 
List (Thomas and Yang, 2013) and is listed as a Category II 
protected plant in China1. This Tertiary relict species has survived 
since the glacial periods (Yin et al., 2018; Rong et al., 2024). In 
some regions where it currently exists, it remains a dominant 
species; however, historical human activity and climate change 
have led to population decline and habitat fragmentation, which 
are the primary threats to its persistence (Yin Q.-Y. et al., 2021). 
Additionally, fossil records indicate that this genus was once widely 
distributed across the Northern Hemisphere, including locations 
such as Saskatchewan, Canada (McIver and Basinger, 1990), Jilin 
in northeastern China (Ying and Fu, 2002), and Zhejiang in 

1 https://www.gov.cn/gongbao/content/2000/content_60072.htm

eastern Chin (He et al., 2012). However, climate shifts have led to 
its disappearance in these areas, and C. hodginsii is now limited to 
southern China, northern Vietnam, and northern Laos (Yin et al., 
2018). It is highly likely that C. hodginsii will face further 
population declines and heightened survival challenges under the 
current context of climate change. The recently released 
C. hodginsii genome (Rong et  al., 2024) offers an excellent 
opportunity to evaluate its environmental plasticity at the 
genetic level.

Trees act as effective carbon sinks and are crucial in fighting 
climate change (Isabel et  al., 2020; Zhu et  al., 2023). Their long 
generation times and frequent extreme climate events make them 
vulnerable to climate change (Nepstad et al., 2007; Dauphin et al., 
2021). This study focuses on C. hodginsii, a near-threatened species. 
We aim to understand its adaptability to climate change using mixed-
tissue RNA sequencing. Our goals include revealing tree phenotypes’ 
response to climate change at the gene expression level, identifying key 
environmental factors affecting adaptability, and analyzing gene 
expression regulation. This work seeks to provide insights and 
strategies for protecting long-lived tree species against climate change.

2 Materials and methods

2.1 Plant materials

All plant samples in this study were sourced from the Bailai State-
owned Forest Farm in Hutou Town, Anxi County, Quanzhou City, 
Fujian Province, China (118°3′ E, 25°49’ N, 590–600 m above sea 
level). The plant experiments and field studies, including the collection 
of plant materials, complied with relevant institutional, national, and 
international guidelines and regulations. The germination and 
sprouting experiments of cypress seeds were conducted in the 
greenhouse of Fujian Agriculture and Forestry University, with seeds 
disinfected before sowing. At the end of 2015, seed germination began 
under controlled environmental conditions, maintaining a 
temperature of 22–25°C and a relative humidity of 70–80%. 
Successfully germinated seeds were then transferred to seedling trays 
filled with standard nutrient soil to promote seedling growth. 
Seedlings received at least 8 h of natural light, supplemented by grow 
lights to ensure adequate lighting, and were watered and fertilized 
according to standard care procedures. In April 2016, when the 
seedlings reached about 15 cm in height, they were transplanted to 
outdoor plots with similar soil texture, drainage conditions, and light 
exposure. The experiment employed a completely randomized block 
design (CRD) with 8 plots, each containing representative seedlings 
from 14 different provenances (Supplementary Table S1 and 
Supplementary Figure S1). Five seedlings from each provenance were 
randomly assigned to each plot to ensure even distribution across the 
experimental area, with a planting distance of 2 m to minimize 
competition. Appropriate measures were taken to alleviate transplant 
shock, and the growth and adaptability of the seedlings were regularly 
monitored post-transplantation. In April 2020, 4  years after 
transplantation, key growth parameters of the surviving seedlings 
were measured, including Height, Diameter at Breast Height (DBH), 
Crown Width (CW), and the Average Angle of Dips, the latter 
obtained by calculating the average angle of the three lowest secondary 
branches of each plant.
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2.2 Transcriptome sequencing

In April 2020, we randomly selected seven individuals from each 
seed provenance and collected their stem-differentiating xylem, leaves, 
branches, and roots. To ensure robustness and reliability of the data, 
samples were collected in two separate replicates for each seed 
provenance. These tissues were mixed by category and disinfected 
uniformly with alcohol for 30 s to 1 min, then rinsed in deionized 
water for 2 min to remove any alcohol residue and dead microbes. One 
gram of mixed tissue sample from each type was immediately weighed, 
flash-frozen in liquid nitrogen, and stored at −80°C for later use. Total 
RNA was extracted using the RNAprep Pure Plant Kit (Tiangen, 
Beijing, China) and the quality of RNA was assessed by 2% agarose gel 
electrophoresis. The concentration of RNA was determined by the 
NanoPhotometer® spectrophotometer (IMPLEN, California, 
United States) and the Qubit® 2.0 Fluorometer in conjunction with the 
Qubit® RNA Assay Kit (Life Technologies, California, United States). 
RNA integrity was evaluated using the RNA Nano 6,000 Assay Kit on 
the Agilent® 2,100 Bioanalyzer (Agilent Technologies, California, 
United States), with an RNA integrity number (RIN) greater than seven 
considered satisfactory. Subsequently, libraries were constructed using 
the NEB-Next® Ultra™ RNA Library Prep Kit for Illumina® (NEB, 
United  States) and sequenced on the Illumina® NovaSeq  6,000 
platform to produce 150 bp paired-end reads.

2.3 RNA-seq reads mapping and 
quantification

We performed initial processing of the raw RNA-Seq data 
(NGDC: CRX961097–CRX961124) using fastp v0.23.2 (Chen et al., 
2018) with parameters set to ensure quality (−qualified_quality_phred 
15 --unqualified_percent_limit 50 --n_base_limit 15), generating a 
total of 315.16  Gb of clean data. Subsequently, we  obtained the 
C. hodginsii reference genome and structural annotations (Rong et al., 
2024) from https://doi.org/10.6084/m9.figshare.26064412.v1. The 
clean data were aligned to the genome using the Two-pass alignment 
mode of STAR v2.7.8a (Dobin et  al., 2013) with parameters of 
--alignIntronMin 20 --alignIntronMax 50,000 --sjdbOverhang 
149 --outFilterMismatchNmax 2 --outSJfilterReads Unique 
--outSAMmultNmax 1 --outSAMmapqUnique 60 to enhance the 
accuracy and reliability of the alignment, resulting in an average depth 
of 48.63x per base. After alignment, gene expression levels for each 
gene were quantified using featureCounts v2.0.1 (Liao et al., 2014) 
with default parameters.

2.4 Statistical analysis

First, we obtained information on 19 environmental factors from 
various seed provenance locations (Supplementary Table S1), sourced 
from the WorldClim database (Fick and Hijmans, 2017). Spearman 
correlation analysis was employed to assess the interrelationships 
among these environmental factors. High correlations (correlation 
coefficient |r| > 0.65) were observed among many environmental 
factors, likely due to the close proximity of certain provenance 
locations. Such high correlations can lead to multicollinearity among 
predictors in redundancy analysis (RDA), reducing model accuracy. 

Therefore, following the method of Sang et al., we selectively retained 
the most significant variables from highly correlated groups (Sang 
et al., 2022). We conducted gradient forest model analysis using the R 
package gradientForest v0.1–37 (Ellis et al., 2012), setting the tree 
count to 500, to evaluate the impact of each environmental factor on 
gene expression levels and determine their importance. Based on the 
results of the gradient forest analysis and the correlations between 
environmental factors, we selected factors that were both significant 
and had low intercorrelations to reduce potential collinearity issues. 
The R package stats v4.3.3 is used to perform Principal Components 
Analysis (PCA) on various samples to initially characterize the 
potential associations between provenances and expression data. These 
selected environmental factors were then used as explanatory variables 
in subsequent Redundancy Analysis (RDA) to delve deeper into their 
relationship with gene expression data. RDA, known for its low false-
positive rate (Capblancq and Forester, 2021), was conducted using the 
R package vegan v2.6–4 (Oksanen et al., 2017) to further reveal how 
environmental factors influence gene expression patterns. Significant 
environment-associated expressed genes were defined by their 
loadings on the tails of the distribution along one or more RDA axes.

To gain a deeper understanding of the modular characteristics of 
gene expression, this study employed WGCNA. We utilized the Python 
package PyWGCNA v2.0.1 (Rezaie et al., 2023) with default parameter 
settings. This analysis clusters genes into modules based on similar 
expression patterns, aiding in exploring the correlations among these 
modules, environmental factors, and morphological traits of each seed 
provenance. It helps identify groups of genes that may be influenced 
by specific environmental factors. Within each module significantly 
related to environmental and phenotypic factors, we further filtered to 
select genes with a KME value greater than 0.6 as key genes. These key 
genes are considered to play central roles within the modules and may 
be  sensitive to environmental changes. Functional annotation and 
enrichment analysis identified genes with significant functions and 
strong correlations to environmental factors. Finally, we selected these 
genes for constructing a Partial Least Squares Path Model (PLS-PM) 
using the R package plspm v0.5.1 (Tenenhaus et al., 2005), setting the 
maximum iteration count to 300. We began by hypothesizing potential 
connections among three variable groups based on the prior 
assumption that environmental changes, mediated by gene expression, 
influence phenotypic traits. Using PLS-PM, we  then assessed the 
strength, direction, and reliability of relationships between each factor 
within the environmental and gene expression datasets. This was 
followed by analyzing connections between gene expression and 
phenotypic changes, ultimately linking the three variable groups 
through the combined results. The PLS-PM model reveals the direct 
and indirect effects among these variables, offering profound insights 
into how gene expression is regulated by environmental factors at the 
seed provenance location, impacting the phenotype.

3 Results

3.1 Significant and independent 
environmental factors potentially affecting 
the gene expression of C. hodginsii

Through correlation analysis, we  identified temperature and 
precipitation metrics that exhibit strong positive correlations 
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(Figure  1A). To address these collinearity issues and ensure the 
accuracy of subsequent analyses, we employed a gradient forest model 
to assess the importance of various environmental factors on gene 
expression (Figure 1B). The results indicated that the precipitation of 
the driest quarter and the precipitation of the driest month were most 
critical to the predictive models, suggesting the significance of drought 
conditions in influencing gene expression. Furthermore, to avoid 
collinearity issues, we  selected the most important representative 
factor from each group, ultimately identifying five relatively 
independent and significant environmental factors: precipitation of 
the driest quarter, mean temperature of the driest quarter, annual 
temperature range, isothermality, and precipitation seasonality. These 
factors are crucial for explaining variations in gene expression.

3.2 The close relationship between 
environmental factor variability and gene 
expression patterns

To explore the expression heterogeneity of different provenances 
of C. hodginsii, we first characterized the distribution of each sample’s 
expression levels using PCA. The results showed a potential correlation 
between expression levels and the geographic distance of the 
provenances. For instance, CQJJ is geographically distant from other 
provenances (Supplementary Figure S1), and its samples also exhibit 
a more distinct distribution compared to others 
(Supplementary Figure S2). The RDA results further confirmed this 
connection, revealing a strong relationship between gene expression 
and environmental factors of the provenances, with the first axis 
explaining 38.6% of the environmental variation, while the second and 
third axes accounted for an additional 21.7 and 16.5% of variation, 
respectively, highlighting the profound impact of environmental 
factors on gene expression (Figures 2A,B and Supplementary Table S2). 
Notably, the significant orientation of Precipitation Seasonality on the 
first axis indicated it as a key environmental factor driving major 
variations in gene expression. The similar direction of arrows for 

Isothermality and Precipitation of Driest Quarter suggested some 
similarity in their effects on gene expression. In contrast, the unique 
direction of Mean Temperature of Driest Quarter pointed to a 
different pattern of influence compared to other factors. Furthermore, 
the directions of Temperature Annual Range and Precipitation of 
Driest Quarter nearly overlapped on the second and third axes 
(Figure 2B), suggesting similarities in their effects on gene expression 
patterns in these specific dimensions. However, this does not imply a 
lack of differences between these two factors; rather, such differences 
may not be evident on these two axes.

Further analysis revealed that 2,941 genes had significant loadings 
on at least one RDA axis, indicating high sensitivity to specific 
environmental factors and significant expression variation. Through 
999 permutation tests, our model was statistically significant 
(p < 0.05), confirming the substantial impact of Precipitation of Driest 
Quarter and Mean Temperature of Driest Quarter on gene expression 
(Supplementary Table S3). Overall, environmental factors accounted 
for 25.06% of the total variance, with the remaining variance likely due 
to other unconsidered variables. These findings highlight the 
complexity of plant gene regulatory networks and suggest that plants 
may respond to diverse environmental conditions through 
transcriptional regulatory mechanisms.

3.3 Key gene modules closely associated 
with environmental and phenotypic 
variations

Through WGCNA, we categorized the genes into 14 modules, 
each containing a cluster of genes with similar expression patterns 
(Supplementary Figure S3). The analysis indicated significant 
correlations between specific modules and environmental factors or 
phenotypic traits, suggesting that certain genes may respond to 
environmental stresses or phenotypic changes. For instance, the 
Rosybrown module showed a positive correlation with Precipitation 
of Driest Quarter (r = 0.65, p < 0.05), while the Brown module was 

FIGURE 1

Correlation matrix (A) and importance barplot (B) of the 19 environmental factors. The depth of color and the fill level of the shapes are both used to 
represent the strength of the correlation, with dark colors and solid fills indicating strong correlations, and white and hollow shapes indicating no 
correlation. Environmental factor importance was calculated using the random forest algorithm. Within the highly correlated groups (correlation 
coefficient |r| > 0.65), the most important factors are highlighted in bold and the bars for the same factor group are colored the same.
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negatively correlated with DBH (r = −0.63, p < 0.05) (Figure 3). To 
identify genes most sensitive to environmental changes, we selected 
those with module membership (KME) values greater than 0.6 as key 
genes, highly correlated with the representative gene expression 
patterns of their respective modules. Integrating these findings with 
RDA results, we further pinpointed key genes within the Dimgrey, 
Firebrick, Rosybrown, and Snow modules. These modules 
demonstrated strong correlations with environmental factors or 
phenotypic traits, reinforcing the credibility of the RDA findings. 
Notably, the Dimgrey module contributed the majority of key genes, 
with fewer key genes from the other three modules 
(Supplementary Figure S4), suggesting that while multiple modules 
are associated with environmental or phenotypic characteristics, the 
Dimgrey module may play a leading role in responding to 
environmental changes. Functional enrichment analysis of these key 
genes revealed their involvement in the synthesis of cyclic and 
aromatic compounds and various enzymatic activities (Figure  4). 
These functions are crucial for cellular metabolic activities, the 
transmission of genetic information, and genome integrity, 
highlighting the pivotal role of these genes in plant adaptive responses 
and phenotypic shaping.

3.4 Environmental factors influence 
phenotypic traits through key gene 
pathways

To further understand how environmental factors influence plant 
phenotypic traits through key genes, we  employed PLS-PM. This 
analysis revealed a network of relationships among environmental 
variables, functional gene groups within the key genes, and phenotypic 

traits (p < 0.05). The environmental variables included only 
Precipitation Seasonality, Isothermality, and Precipitation of Driest 
Quarter. These factors significantly impacted two groups of genes: one 
involved in the biosynthesis of cyclic and aromatic compounds, and 
the other related to peptidase and nucleotidyltransferase activities 
(Figure  5 and Supplementary Table S4). These relationships were 
further linked to two phenotypic traits of trees: CW and Average 
Angle of Dips. Precipitation Seasonality and Isothermality directly 
influenced the genes associated with cyclic and aromatic compound 
biosynthesis, subsequently affecting CW. In contrast, the mean 
temperatures of the three environmental variables influenced the gene 
groups related to peptidase and nucleotidyltransferase activities, 
which then affected the Average Angle of Dips. Additionally, our 
model explained 76.15% of the variance in CW and 68.24% of the 
variation in Average Angle of Dips (Supplementary Table S5), 
indicating that we  could substantially explain the variations in 
phenotypic traits. This model helps visualize the complexity of gene 
responses to environmental cues and their potential impact on 
phenotypes, emphasizing the significance of specific environmental 
factors in the adaptive responses of the species.

4 Discussion

The capacity of plants to adapt to environmental stress, 
particularly under rapidly changing climate conditions, is a central 
topic in ecological and evolutionary biology research. Previous 
studies have shown that plants can achieve local adaptation through 
genetic variation even over short geographical and temporal scales 
(Medrano et al., 2020; Innes et al., 2023), suggesting that plants can 
cope with diverse environmental challenges by selecting specific 

FIGURE 2

Ordination plots of redundancy analysis (RDA) of gene expression under different environmental conditions, showing RDA1 vs. RDA2 (A) and RDA2 vs. 
RDA3 (B). In both plots, individual genes are depicted as small points, with those more affected by environmental factors highlighted in purple. The 
vectors represent the direction and magnitude of the environmental factors’ influence on gene expression, with the length of the vector corresponding 
to the strength of the influence.
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FIGURE 3

Heatmap showing the results of weighted gene co-expression network analysis (WGCNA) associating gene modules with environmental and 
phenotypic variables. Each cell in the heatmap represents the correlation coefficient and its significance in parentheses between a gene module and 
an environmental or phenotypic trait. The color scale on the right indicates the strength of the correlation.

FIGURE 4

Gene ontology (GO) functional enrichment analysis of key genes identified with KME > 0.6 by WGCNA and RDA. The bubble plot represents various 
biological processes and molecular functions, with the size of each bubble reflecting the number of genes associated with that term and the color 
representing the -log10Qvalue of the enrichment significance.
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life-history traits (Poncet et al., 2010). However, long-lived and highly 
specialized species may face issues of adaptive lag, especially 
pronounced against the backdrop of rapid climate change (Holliday 
et al., 2017; Bisbing et al., 2021; Sang et al., 2022). In response to this 
challenge, using the translocation of C. hodginsii as an example, 
explored the potential adaptability of conifer trees under 
environmental change pressures. Climate change has significantly 
increased the intensity of droughts in humid regions, posing major 
challenges to plant growth and development (Ruffault et al., 2013; 
Grossiord et al., 2020). Temperature and moisture are key factors 
affecting plant growth and development, with changes in 
environmental temperature directly impacting plant physiological 
processes (Porporato et al., 2001; Ding et al., 2020).

The strong El Niño event of 2015–2016, part of the El Niño 
Southern Oscillation (ENSO) phenomenon (Qian, 2022), coincided 
with the transplantation period of our C. hodginsii seedlings. This 
severe drought may lead to a significant increase in tree mortality rates 
(Nepstad et al., 2007), presenting a unique challenge to plant growth 
and development. Under such harsh conditions, the early growth 
stages of plants are likely to be  profoundly affected. Notably, 
transcriptomic analyses were conducted on these four-year-old 
transplanted C. hodginsii. The results showed a range of transcriptional 
changes closely related to the climate of their seed provenance 
locations (Figures 2, 3), especially genes involved in the biosynthesis 
of cyclic and aromatic compounds (Figure  4). This suggests that 
C. hodginsii might cope with early environmental stress by regulating 
the synthesis of aromatic compounds. These compounds not only play 
roles in signaling between plants, enhancing stress tolerance 
(Ahammed et al., 2015, 2020), but may also prime surrounding plant 
tissues for stronger responses to subsequent stresses (Erb et al., 2015). 
This mechanism is particularly important for coniferous trees known 
for their aromatic wood and contributes to their adaptation to rapidly 
changing environments.

Gymnosperms often have large genome sizes, largely attributed to 
historical transposon activity causing genomic redundancy (Zhu et al., 

2023). In this study, we  found a positive correlation between the 
climate of seed provenance locations and genes involved in peptidase 
and nucleotidyltransferase activities, enzymes associated with 
transposon activity (Hickman and Dyda, 2015, 2016). This suggests 
that there might be differences in transposon activity levels among 
C. hodginsii provenances. Additionally, the activity changes in these 
genes seem to be related to a decrease in the Average Angle of Dips 
(Figures  4, 5). Transposon activity plays a unique role in species 
diversification and gene function variation, even in species with 
narrower gene pools (Domínguez et  al., 2020). Specifically, genic 
transposable element (TE) insertions can lead to the production of 
multiple transcriptional isoforms, thereby increasing the diversity of 
gene expression (Aktaş et al., 2017; Vandecraen et al., 2017). As a 
tertiary relict gymnosperm (Yin Q.-Y. et al., 2021), transposon activity 
in the evolutionary history of C. hodginsii has provided significant 
momentum (Dubin et  al., 2018; Lisch, 2012). In the context of 
dramatic global climate changes, active transposons may offer ongoing 
dynamism for the environmental adaptability of C. hodginsii, 
facilitating phenotypic variation.

Precipitation and sunlight significantly influence tree architecture, 
where smaller branch angles and shorter branch lengths help reduce 
the risk of photodamage and cavitation in the water transport system 
(Lines et al., 2012; Ceulemans et al., 1990; Haworth and McPherson, 
1995). Our findings indicate a negative correlation between changes 
in Precipitation Seasonality and both the CW and Average Angle of 
Dips of C. hodginsii (Figure 5). This suggests that C. hodginsii from 
regions with more seasonal precipitation may be more sensitive to 
extreme drought conditions.

Additionally, transposon activity may mediate the regulation of 
gene expression associated with plant hormone signaling and branch 
development, thereby indirectly influencing branching patterns 
(Lisch, 2009). For instance, a class of aromatic plant hormones, such 
as strigolactones, can regulate plant architecture (Gomez-Roldan 
et  al., 2008; Crawford et  al., 2010). Therefore, we  speculate that 
transposon activity may regulate the branching pattern of C. hodginsii 

FIGURE 5

Partial least squares path modeling (PLS-PM) plot showing the relationships between specific functional gene categories and environmental and 
phenotypic data. These relationships are represented by the color and thickness of the arrows, with red indicating positive effects and blue indicating 
negative effects, and the thicker the arrow, the stronger the relationship.
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by influencing the expression of genes in hormone signaling pathways 
that regulate plant architecture, thereby helping it better adapt to its 
growing environment.

While our study provides insights into the potential interactions 
between environmental factors, transposon activity, and plant 
hormones, the way these elements collectively influence the adaptive 
development of relict plants like C. hodginsii requires further 
investigation. In particular, understanding how C. hodginsii utilizes 
these mechanisms to adapt to changing environments remains an 
open question. Future research should delve into the specific 
mechanisms of these interactions through genetic and physiological 
experiments to deepen our understanding of plant adaptive evolution. 
Moreover, considering that transcriptional regulatory networks and 
epigenetic mechanisms may be associated with transposon activity 
(Wan et  al., 2022), exploring their roles in rapid environmental 
adaptation will be crucial. This necessitates not only broader genomic 
data but also specific studies on the role of epigenetic modifications in 
adaptive development.
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