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The Caatinga, a seasonally dry tropical forest in northeastern Brazil, is notable 
for its biodiversity and high proportion of endemic plants adapted to its semi-
arid environment. Among its prominent tree species, Myracrodruon urundeuva 
(Aroeira) stands out due to its extensive distribution and economic value. Despite 
its significance, little is known about the environmental factors influencing its 
distribution. This study uses species distribution modeling (SDM) to assess the current 
and potential distribution of M. urundeuva and its habitat suitability under various 
climate change scenarios. Utilizing models like GLM, GAM, and BRT, and MaxEnt, 
the research analyzes georeferenced occurrence data and bioclimatic variables 
(selected by the variance inflation factor) from precipitation and temperature 
metrics. Our findings indicate that M. urundeuva is projected to experience relative 
stability or slight expansion in suitable habitats under future climate scenarios, 
including the pessimistic SSP585 scenario. However, localized habitat losses may 
occur, particularly in certain regions and timeframes, highlighting the complex 
and regionally variable impacts of climate change. This study emphasizes the 
need for localized and regional action plans to mitigate climate change impacts 
on M. urundeuva’s habitats. Conservation efforts should target areas identified as 
stable, ensuring the species’ resilience against escalating climate threats, thereby 
preserving one of its critical habitats within the Caatinga.
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1 Introduction

Climate is one of the main drivers that delineates and influences biodiversity, geographic 
distribution, and the occurrence of plant species on a global scale. There is a latitudinal pattern 
especially in the tropics indicating that many plant species can be seriously affected by climate 
changes (Liang et al., 2022). However, there are still few approaches addressing why tropical 
species are more vulnerable to climate changes (Menezes-Silva et al., 2019), particularly those 
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in arid and dry climate areas, which are strongly influenced by climatic 
seasonality. These areas in Brazil are almost exclusively located in the 
northeastern region and are predominantly dominated by 
Caatinga vegetation.

The Caatinga vegetation is a phytogeographic domain classified 
as a biodiversity hotspot and falls under the category of seasonally 
dry tropical forest (STDF) (Banda-R et al., 2016; Pennington et al., 
2018). The hot-arid and seasonal climate is the main underlying 
mechanism for the endemism of many plant species (da Silva et al., 
2017b). Its ecological processes, such as energy balance, CO₂ 
exchange, and water use efficiency, have been the focus of recent 
studies, highlighting its critical role in the carbon and hydrological 
cycles (da Silva et al., 2017a; Mendes et al., 2020; Carneiro et al., 
2025). For instance, the efficiency of water use by Caatinga vegetation 
underscores its adaptation to semi-arid conditions, further 
corroborated by satellite-based assessments of regional 
evapotranspiration and productivity (de Oliveira et al., 2023). These 
findings emphasize the ecological importance of Caatinga in 
mitigating climate change impacts through its resilience and resource 
optimization strategies (Moura et al., 2023).

Approximately 1,000 vascular plant species have been recorded in 
this region (Fernandes et  al., 2020), among which M. urundeuva, 
regionally known as Aroeira, is one of the most well-known. It has 
become a highly sought-after species in the Caatinga due to its larger 
size for the production of firewood, stakes, and fence posts. It has 
geographical distribution in the Cerrado and a high resilience capacity 
in areas with long periods of water scarcity, high temperatures, and 
poor soils (Gariglio et  al., 2010). Given its wide occurrence, 
M. urundeuva significantly contributes to nutrient cycling by releasing 
organic matter and nutrients back into the soil as they develop, 
mature, and decompose, improving soil fertility and enabling the 
growth of other plant species. Additionally, it plays a role in erosion 
control. For example, the large root systems of the species help 
stabilize the soil and prevent erosion on slopes or particularly in areas 
with loose soils.

Despite its importance and current legal protection against cutting 
(Normative Ordinance No. 83, Ibama—1991), it is among the most 
threatened and least studied forest species, and as a result it may 
be listed as an endangered species. Recent research shows that some 
species in tropical ecosystems have already experienced a higher 
frequency of local extinctions associated with climate changes and are 
expected to have reduced physiological temperature tolerance (Zurell 
et al., 2020a; Grinder and Wiens, 2023; Bedair et al., 2024). On the 
other hand, no studies have yet been conducted to investigate the 
effects of climate change on M. urundeuva. This is likely because arid 
ecosystems are some of the least researched regions in the world for 
ecological niche modeling of plant species (Bedair et al., 2023).

The ecological niche modeling or species distribution modeling 
(SDM) approach is crucial for understanding the niche and predicting 
the distribution of many plant species, indicating areas of potential 
occurrence and projecting their possible future distribution changes 
on a landscape scale (Guisan et al., 2017; Zurell et al., 2020a). The 
results of SDMs can be  widely used to guide management and 
conservation strategies for threatened areas, including direct 
objectives to mitigate the effects of climate change (Guisan et al., 2013; 
Pecchi et al., 2020). SDMs are therefore the most commonly used 
spatial modeling technique to predict how global changes will affect 
biodiversity. This increase in SDM research is likely due to the growing 

accessibility of digital data available on platforms and user-friendly 
software solutions (Elith et al., 2020).

Recent studies in arid and desert environments have concluded 
that species distribution modeling methods have been successful, 
providing useful information on the direct effect of bioclimatic factors 
on the occurrence and potential distribution of local plants (Santos e 
Silva et  al., 2019; La Montagna et  al., 2023; Zaiats et  al., 2024). 
Rodrigues et al. (2015) suggested significant advances on regional 
scales, indicating a significant influence of temperature and 
precipitation metrics on the distribution of three species in the 
Caatinga, including M. urundeuva. However, despite these advances, 
approaches to SDM in Caatinga plants, especially regarding suitable 
habitats for M. urundeuva under climate change scenarios, are 
still incipient.

Understanding environmental factors and mapping species’ 
geographic distributions over time and space through spatial models 
is currently one of the most practical methods to assess the potential 
effects of future climate changes on species distribution areas (Guisan 
and Thuiller, 2005; Elith and Leathwick, 2009). SDMs have been 
significantly improved in recent years through the use of artificial 
intelligence tools (i.e., machine learning) and other algorithms that 
can incorporate continuous spatio-temporal information on key 
environmental factors, thus improving their use and accuracy (Naimi 
and Araújo, 2016; Raes and Aguirre-Gutiérrez, 2018). It is important 
to emphasize that integrating bioclimatic remote sensing data into 
SDMs can enhance spatial prioritization decisions for conservation 
planning, as effective habitat management needs to consider other 
structural environmental variables beyond climate to address 
appropriate habitat characteristics for relevant management actions 
(Tuanmu and Jetz, 2015; Randin et  al., 2020). These habitat 
characteristics are important to spatially inform conservation 
planning and management decisions to sustain forest biodiversity, 
especially when considering extensive areas such as the Caatinga.

Herein, considering the wide occurrence of M. urundeuva in the 
Caatinga, we aim to evaluate how climate changes affect its potential 
distribution range. Specifically, the objectives were: (a) to model the 
current suitable potential habitats for this species; (b) to study the 
effects of climate changes on its current range, using an ensemble 
model of four algorithms for 2041–2060 and 2061–2080, under the 
most optimistic and pessimistic climate change scenarios; and (c) to 
assess future changes in gain and loss of area for this species. 
We conducted this study with the aim of providing new insights aimed 
at guiding management and protecting plants with high potential 
threatened by the effects of climate change in this rich region of Brazil.

2 Materials and methods

2.1 Study area

The scope of this study encompasses the territory of the Caatinga 
phytogeographic domain, classified as seasonally dry tropical forests 
(SDTF) (Pennington et al., 2018; Moonlight et al., 2021), located in 
the northeastern region of Brazil (Figure  1). It covers an area of 
862,818 km2, corresponding to 18% of the Brazilian territory. The 
predominant climate of the region according to the Köppen climate 
classification (Alvares et al., 2013), is semi-arid (BSh), with patches of 
tropical climate with dry summers (As) and tropical climate with 
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alternating seasons (Am). Some regions can also be classified as hot 
and dry, with the rainy season occurring between summer and 
autumn (da Silva et al., 2017b).

The average annual precipitation is around 800 mm year−1, with 
well-defined dry and rainy seasons, also presenting high annual and 
monthly rates of solar radiation and potential evapotranspiration 
(Martins et al., 2019). The average temperature in the Caatinga is high, 

ranging between 25°C and 30°C. However, temperatures in 
mountainous regions can be lower, and precipitation can be higher. 
Thus, the Caatinga is considered a diverse phytogeographic domain, 
presenting variations in topography, soils, climate, and vegetation (da 
Silva et  al., 2017b). Due to the limited availability of robust 
meteorological data from many locations in the northeastern region 
of Brazil, temporal climatological summaries could not be produced. 

FIGURE 1

Study area—phytogeographic domain of the Caatinga in Northeast Brazil. The elevation range reported in the legend is for the entire domain that 
corresponds to the occurrence of the seasonally dry tropical forest (SDTF).
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To overcome this, spatially explicit maps of the selected bioclimatic 
variables were generated, providing a detailed representation of 
climatic variation across the study region. These maps are included as 
Supplementary Table 1 and Supplementary Figure 1 to enhance the 
contextual understanding of the region’s climate.

The soils in the Caatinga exhibit low natural fertility, low organic 
matter content, and reduced water retention capacity. The region has 
a variety of soil orders, commonly including Neosols, Latosols, 
Planosols, Cambisols, Argisols, and Luvisols (Marques et al., 2014).

2.2 Species occurrence data

We compiled a database with 1.416 georeferenced occurrence 
(presence) information of the tree species locally known as 
Aroeira—M. urundeuva, obtained from the Global Biodiversity 
Information Facility—GBIF,1 using the rgbif package 3.7.5 
(Chamberlain and Boettiger, 2017). Data with uncertain coordinates, 
missing latitude or longitude, marked as NA (not available), were 
eliminated using the dplyr 1.0.10 (Wickham et al., 2023) and tidyr 
1.3.0 (Wickham et al., 2024) packages. Duplicate occurrences were 
also excluded to reduce the effects of spatial autocorrelation by 
trimming records within 5 km of individual occurrence points using 
the R spThin package (Aiello-Lammens et al., 2019). These procedures 
resulted in 516 occurrence points for the species. This step was crucial 
to ensure that the model accurately reflects the climatic conditions of 
the Caatinga domain. Data from occurrences in the Cerrado or 
tropical savannas might represent individuals of M. urundeuva 
persisting under distinct climatic conditions, which could introduce 
biases and fail to represent the ecological and environmental 
characteristics specific to Caatinga populations (Guisan et al., 2017).

An accessible region delimited at the scale of the phytogeographic 
domain was extended using a buffer radius of 100 km around each 
occurrence point. Subsequently, we simulate 1,000 background points. 
Each background point within was randomly allocated within a grid 
cell (i.e., 1 × 1 km) using the spThin package (Aiello-Lammens et al., 
2019), based on the methodology proposed by Erfanian et al. (2021) 
to avoid potential modeling bias related to absent data in model 
calibration. Different approaches exist for creating background or 
pseudo-absence data (Phillips et  al., 2009; Barbet-Massin, 2012; 
Kramer-Schadt et al., 2013), although there remains room for further 
development in this field, and more clear recommendations for users 
would certainly be useful (Zurell et al., 2020a).

2.3 Acquisition and pre-processing of 
geospatial variables

We used the 19 bioclimatic covariates from WorldClim2 (Fick and 
Hijmans, 2017) with a resolution of 2.5 arc minutes to develop the 
spatial model.

Before selecting the bioclimatic layers by the variance inflation 
factor (VIF), we proceeded with selecting all 19 layers individually for 

1 www.gbif.org

2 https://www.worldclim.org/

the limit of the study area, represented by the Caatinga Biome polygon. 
This procedure was essential to ensure that any uncertainty about 
relevant biological aspects of the species was noticed. We took special 
care when dealing with quarterly variables, ensuring they were 
considered carefully to avoid any undue influence on the modeling 
(Booth, 2022). Next, we used the variance inflation factor (VIF) test 
to identify strong correlations between variables and avoid issues 
related to multicollinearity in order to mitigate and assess the effect of 
high spatial correlation among the 19 bioclimatic variables. We then 
eliminated the least significant bioclimatic variable from each pair 
with an absolute correlation greater than 0.8 using the R “usdm” 
package (Naimi, 2023). Additionally, we excluded variables with a VIF 
greater than a threshold of 10 from subsequent analyses. As a result, 
nine variables contributed to the current potential distribution of 
M. urundeuva, namely: (1) Isothermality (Bio 2/Bio 7) (×100) (Bio 3): 
Reflects thermal stability throughout the year; (2) Temperature 
seasonality (standard deviation ×100) (Bio 4): Measures the annual 
temperature amplitude; (3) Annual temperature range (Bio 5–Bio 6) 
(Bio 7): Difference between the maximum temperature of the warmest 
month and the minimum temperature of the coldest month, 
represents thermal extremes; (4) Mean temperature of wettest quarter 
(Bio 8): Indicates thermal conditions during periods of higher 
precipitation; (5) Mean temperature of driest quarter (Bio 9): Reflects 
thermal conditions during periods of lower precipitation; (6) Annual 
precipitation (Bio 12): Represents the total precipitation volume over 
the year; (7) Precipitation seasonality (coefficient of variation) (Bio 
15): Measures variability in precipitation throughout the year; (8) 
Precipitation of warmest quarter (Bio 18): Quantifies rainfall volume 
in the warmest months; and (9) Precipitation of coldest quarter (Bio 
19): Quantifies rainfall volume in the coldest months. These variables 
represent critical climatic aspects, such as thermal stability, extremes 
of temperature and precipitation, and seasonal variations, which 
influence the habitat suitability for M. urundeuva. Further details 
about these variables can be found in the WorldClim documentation 
(Supplementary Table 1 and Supplementary Figure 1).

All selected spatial covariates were pre-processed using the QGIS 
and R 4.2.1 software (R Core Team, 2023), and were reprojected to the 
coordinate system of each sample point area to extract in situ values 
of each variable for spatial model calibration and to optimize the 
accuracy of the final figure and map areas. The first preparatory step 
in creating the spatial prediction was to assemble a data matrix with 
the location (longitude and latitude) of each sample point. Then, all 
raster files of geospatial covariates were plotted and stacked one by one 
at the located points. Geospatial metrics were extracted at each sample 
point using the raster::extract function from the raster package 
(Hijmans et  al., 2021) in R for each raster file of the geospatial 
covariates. This information was stored and saved in a final matrix and 
used as predictor variables in the model.

2.4 Spatial modeling and ensemble 
forecasts

We employ four algorithms from the SDM package (Naimi and 
Araújo, 2016): generalized linear model (GLM), generalized additive 
model (GAM), maximum entropy (MaxEnt), and boosted regression 
trees (BRT) These algorithms are widely used in species distribution 
models and report feasible results for pseudo-absence data (Raes and 
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Aguirre-Gutiérrez, 2018). Moreover, those algorithm builds a model 
based on splines that fit different linear functions to data intervals, 
efficiently capturing complex variations (Leathwick et al., 2006; Elith 
and Leathwick, 2007; Valavi et al., 2022). GLMs are relatively simple 
models that offer a direct interpretation of variable coefficients, which 
helps understand the influence of each variable in the model. Although 
linear, GLMs can be  extended to include nonlinear effects and 
interactions by including polynomial or spline terms; GAMs extend 
GLMs by allowing relationships between the predictor variables and 
the response variable to be modeled in a nonlinear manner, using 
smooth spline functions. Despite their ability to model complex 
relationships, GAMs maintain interpretability, allowing you  to 
visualize how each predictor variable affects the response quickly. 
MaxEnt, one of the most widely used algorithms for species 
distribution modeling, was used to predict the probability of 
occurrence of trees by maximizing the entropy of the distribution of 
presences conditioned on climatic variables (Phillips et al., 2006). BRTs 
are efficient in dealing with unbalanced data and can capture complex 
interactions between variables by combining several tree models in 
sequence, where each subsequent tree tries to correct the errors of the 
previous ones. BRT can achieve high accuracy in predicting species 
distributions due to its iterative focus on correcting the errors of 
previous models. For more details, see the Supplementary material 
with the mathematical description of the algorithms.

The data were randomly divided into a training dataset (70%) and 
a test dataset (30%). The training data were used for model calibration, 
and the test dataset was used for cross-validation of model evaluation. 
We divided the data because we did not have independent data for 
model evaluation. One hundred replicates were run for each model 
using resampling methods for subsampling. We  evaluated model 
performance using the true skill statistic (TSS) and the area under the 
curve (AUC) of the receiver operating characteristic (ROC) curves. TSS 
is a threshold-dependent measure, ranging from −1 to +1, where +1 
indicates perfect agreement between predictions and observations, and 
values of 0 or less indicate no better agreement than random partitioning 
(Allouche et al., 2006). AUC is widely used to determine the predictive 
accuracy of ecological niche models. Typically, AUC ranges from 0.5 to 
1.0, with models having AUC >0.8 categorized as very good (Zhang 
et al., 2015). The ROC curve allows visualizing the relationship between 
true positives and false positives at different cut-off points, while TSS 
offers a single measure of the model’s discriminative ability. We used the 
threshold that maximizes TSS (TSS >0.8) to convert the probability of 
occurrence values into presence/absence predictions for binary 
transformation. The threshold approach that maximizes TSS is suitable 
because it produces the same threshold using presence-absence or 
presence-only data through sensitivity analysis (Guisan et al., 2017). For 
more details, see the Supplementary material with the mathematical 
description of the model performance using the true skill statistic (TSS) 
and the area under the curve (AUC) of the receiver operating 
characteristic (ROC) curves.

Additionally, we performed a sensitivity analysis, systematically 
changing one variable at a time while maintaining the other constants, 
to observe how changes in the variable affected the model output. This 
approach allows you to identify which variables impact the model 
most. Given the available computational capacity, the algorithms were 
trained 10 times to ensure the robustness of the results. The model 
parameterization consisted of a pre-modeling process using the 
sdmData function from the SDM package. This function creates the 
conditions for modeling, indicating the response variable (species 

occurrence) as a function of the complete set of bioclimatic layers 
selected through VIF. During this process, we defined the background 
randomly, following the recommendations proposed by Smith (2013).

We then used the ensemble prediction procedure to obtain final 
models in order to reduce uncertainty among the potential distribution 
modeling algorithms for the M. urundeuva species in the Caatinga 
domain. Ensemble models were predicted for current and future 
conditions at a resolution of 2.5 km2. The ensemble can reduce 
variability in forecasts and minimize the risk of overfitting by leveraging 
the strengths and mitigating the weaknesses of different algorithms. 
Predictions from individual models are combined to produce a final 
forecast. In this study, we use weighted average; for example, instead of 
giving each model the same weight, we assign different weights based 
on each model’s performance during validation. Models with better 
performance are given more weight in the final prediction. Weight was 
assigned using each model’s individual TSS maximized values. Next, 
we conducted estimates for future analyses and projections considering 
the same bioclimatic variables selected in the VIF and projected for 
climate scenarios in 2041–2060 and 2061–2080. These data were 
obtained from the CMIP6 general circulation model (Coupled Model 
Intercomparison Project—phase 6: BCC-CSM2-MR, CNRM-ESM2-1, 
and MIROC6; WorldClim v.2.1) of the sixth assessment report (AR6) 
of the Intergovernmental Panel on Climate Change (IPCC) using 
geodata package (Hijmans et al., 2024). This global climate model was 
selected based on its recent performance in case studies for ecological 
niche modeling, potential distribution, and habitat suitability for many 
plant species in arid climate areas (Bedair et al., 2024). We additionally 
used the shared socioeconomic pathways (SSPs) with low and high 
emission scenarios, SSP126 (optimistic) (van Vuuren et al., 2011b) and 
SSP585 (pessimistic) (Riahi et al., 2011), respectively. The two SSPs 
used in this study represent contrasting climate futures for the Caatinga 
region. SSP126, the optimistic scenario, assumes low greenhouse gas 
emissions and significant global efforts to mitigate climate change, 
resulting in relatively stable temperature and precipitation patterns. In 
contrast, SSP585, the pessimistic scenario, represents a high-emission 
trajectory with minimal mitigation efforts, leading to significant 
increases in temperature and more pronounced variability in 
precipitation. These contrasting pathways provide insights into the 
potential range of impacts on habitat suitability for M. urundeuva 
under future climate conditions (van Vuuren et al., 2011a).

Finally, in each raster file generated by the spatial model, 
we estimated absolute values and percentages of area gain and loss 
compared to the species’ current distribution. In this step, in QGIS 
(version 3.32 LTR, 2023) we reclassify into multiple categories the raster 
files generated using the spatial analysis tools and converted them to 
polygons. Soon after, in the reclassified file and with defined polygons, 
we created a new column of attributes and calculated the sum of areas 
in km2 of each class and the probability of occurrence of the species.

3 Results

3.1 Model performance and current 
potential distribution of Myracrodruon 
urundeuva

The cross-validation results revealed reliable performance metrics 
for each algorithm individually (overall mean AUC = 0.904, 
TSS = 0.84). The GLM showed a mean training AUC of 0.887 
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(TSS = 0.81), followed by GAM with 0.895 (TSS = 0.82), BRT with 
0.924 (TSS = 0.82), and MaxEnt with mean of 0.908 (TSS = 0.83). The 
ensemble model demonstrated a slight improvement over individual 
models, compared to individual TSS values ranging from 0.81 to 0.84. 
This improvement, while modest, underscores the strength of 
ensemble models in integrating predictions from multiple algorithms 
to achieve more robust and consistent results. By combining the 
strengths of each algorithm, the ensemble model reduces variability 
and enhances the reliability of predictions, particularly in regions with 
overlapping or uncertain habitat suitability.

We noted that the Ensemble SDM presents the highest probability 
values of occurrence for M. urundeuva in the central diagonal portion 
connecting the northeast to the south of the Caatinga’s 
phytogeographic domain (approximately −5° to −10° latitude South 
and −36° to −41° longitude West, Figure  2). Large areas in the 
northern portion (approximately between −3° and −7° latitude 
South), northeastern (approximately between −37° and −35° 
longitude West), and central-western (approximately −10° and −13° 
latitude South) parts of the Caatinga are generally dominated by 
vegetation with a low probability of M. urundeuva occurrence (<0.10).

This result is expected because the areas located in the northern 
and discontinuous strips in the northeast are in a state of desertification 
(Torres et al., 2017), and the areas located in the central-west coincide 
with the Chapada Diamantina region and are dominated by forests 
with low floristic diversity and resilient to gravelly soils and rocky 
outcrops. The predictive map also reveals many areas with 
intermediate probability values of occurrence (0.40 < 0.70) in the 
northern and northwestern parts of the Caatinga. These areas may 
suggest ecological tension or transition bands between seasonal 
vegetations within the domain, likely contributing to the intermediate 
values favorable for species occurrence.

3.2 Bioclimatic factors

We observed four distinct degrees of association between the nine 
selected bioclimatic variables and the potential occurrence of 
M. urundeuva in this study: (1) positive (the probability of occurrence 
increases as the factor increases, Figure 3f); (2) negative (the probability 
of occurrence decreases as the factor increases, Figure  3c); (3) 
descending parabolic behavior (the probability of occurrence initially 
increases, but then decreases as the factor increases, Figures 3a,c,g,h); 
and (4) ascending concave parabolic behavior (the probability of 
occurrence initially decreases but then increases as the factor increases, 
Figures 3b,d,e,i). Additionally, these bioclimatic variables can be divided 
into two groups: (1) environmental variables associated with plant 
growth resources (development and establishment), and (2) those 
suggesting climatic disturbances that may affect the development and 
occurrence of tree species on a landscape scale. Resources climate 
variables show slight variation over time and include factors such as 
average annual temperature and precipitation (i.e., providing more 
energy for growth). They provide a general overview of a species’ average 
climate conditions over a typical year. Disturbance variables or climate 
extremes represent extreme climate events or stresses, such as maximum 
temperature, evapotranspiration, and drought indices. These variables 
can cause significant disturbances in the ecosystem, especially in regions 
such as the Caatinga, where plants must face long periods without rain. 
In these areas, high maximum temperatures and high evapotranspiration 

rates can cause significant water stress, affecting the survival and 
distribution of many species. While some variables may reflect both 
resources and disturbances, for the sake of discussion we have associated 
such variables herein with the more relevant of the two categories.

Interestingly, M. urundeuva shows a higher probability of occurrence 
in warmer areas strongly influenced by different temperature range 
metrics. For example, environmental variables associated with climatic 
disturbances, such as temperature seasonality and mean temperature of 
the driest quarter, were positively relevant for the potential occurrence 
of the species (Figure 4) and are among the variables with the highest 
correlational importance (79.2, 48.5%, respectively) (Figure 4). However, 
response curves for isothermality (21.2%) and annual temperature range 
(25.1%) revealed that the probability of species occurrence tends to 
decrease with increased monthly temperature oscillations. On the other 
hand, as expected, annual precipitation above 800 mm (35.9%, Figure 4) 
is a strong indicator of increased species occurrence in the Caatinga 
(Figure  3). Other variables generally indicating ecologically suitable 
habitat for species growth and occurrence were precipitation of the 
coldest quarter (Bio 19–33.5%) and the interaction between temperature 
and precipitation, for example, mean temperature of the wettest quarter 
(Bio 8–10.6%), which indicated variation trends in intermediate range 
bands of potential occurrence data.

3.3 Potential suitability in future climate 
scenarios

The total area of currently suitable habitat for M. urundeuva is 
701,557 km2, representing 81.3% of the total study area (862,818 km2). 
Under the SSP126 scenario (2041–2060), 80,795 km2 of currently 
suitable habitats will be  lost, while 80,530 km2 will become newly 
suitable, resulting in a relatively stable total area (Figure 5). Similarly, 
under SSP585, 11,607 km2 will be lost, and 11,597 km2 will be gained. 
By 2061–2080, the total gain of 375,154 km2 represents the sum of new 
suitable areas emerging across different regions of the Caatinga, driven 
by shifting climatic conditions. Across both scenarios, the species is 
projected to lose approximately 43.47% (375,091 km2) of its currently 
suitable habitat while gaining 43.48% (375,154 km2) of new suitable 
areas by 2061–2080. Despite these shifts, around 13.1% (113,029 km2) 
of the Caatinga domain is expected to remain stable, providing long-
term refugia for the species. Areas of habitat loss are concentrated in the 
central-western and eastern regions, whereas habitat gains are scattered 
and discontinuous but represented throughout the Caatinga (Figure 5).

Under the SSP126 scenario (2041–2060), 80,795 km2 of currently 
suitable habitats are projected to be  lost, representing 9.37% of the 
current suitable habitat. Simultaneously, 80,530 km2 of new areas are 
expected to become suitable, effectively balancing the loss with an 
equivalent gain. This results in a net stable distribution area for the 
species. The term “distribution area” encompasses both current and 
newly suitable areas under future scenarios, whereas “habitat” 
specifically refers to areas currently suitable based on ecological 
conditions. Approximately 701,557 km2 (81.3%) of the current habitat 
is expected to remain suitable, resulting in an overall net change of 
18.69% in the species’ distribution area. In 2061–2080, the species is 
projected to lose 28,376 km2 (3.28%), while 805,958 km2 (93.41%) of the 
current habitat remains suitable. Additionally, 28,600 km2 of new areas 
will become suitable, indicating a slight increase over the previously 
unsuitable areas. This results in a modest net range change of 6.59%.
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FIGURE 2

Current habitat suitability of M. urundeuva in Caatinga. The black outline represents the Caatinga domain, and the color gradient indicates 
habitat suitability values, ranging from highly suitable areas (dark blue, >0.9) to extremely unsuitable areas (red, <0.1). The habitat suitability scale 
represents the probability that a given area provides optimal environmental conditions for species occurrence, based on species distribution 
models (SDMs). Higher values (blue shades, 0.7–1.0) indicate regions with optimal conditions, intermediate values (green to yellow, 0.4–0.7) 
suggest moderate suitability, and lower values (orange to red, 0.001–0.3) represent unsuitable environments where species occurrence is 
unlikely.
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In the SSP 585 scenario for 2041 to 2060, a loss of 11,607 km2 
(3.28%) and a gain of 11,597 km2 of new suitable areas are expected, 
effectively maintaining a suitable habitat. About 662,609 km2 (76.8%) 
of current habitat will remain stable, resulting in a net change of 
23.2%. By 2061–2080, habitat loss increases to 165,776 km2 (19.2%), 
while 165,964 km2 of new areas are gained, leading to a net area gain 
of 100% relative to habitat lost. Approximately 531,081 km2 (61.55%) 
of the current habitat remains suitable, reflecting a more significant 
change in this scenario.

4 Discussion

4.1 Modeling and bioclimatic factors

Our findings demonstrate a consensus among the evaluated 
species distribution modeling (SDM) algorithms. Given the absence 
of a single best algorithm, we  employed an ensemble model 
combining four different approaches (Araujo and New, 2007; Hao 
et al., 2019). Ensemble models have proven effective in ecological 

FIGURE 3

Response curves showing the effect of environmental variables on habitat suitability for the species. The solid blue lines represent the model’s response, 
illustrating how habitat suitability changes as a function of each predictor while holding other variables constant. The dashed lines correspond to the 
95% confidence intervals (p = 0.05), providing an estimate of the uncertainty in model predictions. Wider confidence intervals indicate higher variability 
or lower data availability, whereas narrower intervals suggest more reliable predictions. The environmental variables analyzed are: (a) Isothermality (%), 
(b) Temperature seasonality (%), (c) Temperature annual range (°C), (d) Mean temperature of the wettest quarter (°C), (e) Mean temperature of the driest 
quarter (°C), (f) Annual precipitation (mm), (g) Precipitation seasonality (%), (h) Precipitation of the warmest quarter (mm), and (i) Precipitation of the 
coldest quarter (mm). These response curves help interpret the influence of climatic factors on the species’ habitat suitability and distribution.
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niche modeling, particularly for plant species under future climate 
scenarios (Antúnez et al., 2018; Alegria et al., 2023). While each 
algorithm contributed positively, their combined predictions 
significantly improved the discrimination of projected area classes 
and occurrence probabilities. The ensemble’s ROC curve showed a 
robust AUC, indicating excellent separation of occurrence probability 
classes, while the TSS value surpassed individual model 
performances. These results underscore the ensemble model’s 
effectiveness in addressing complex spatial problems, such as 
predicting species occurrence under future scenarios. Sensitivity 
analysis further highlighted model strengths and areas for 
improvement, ensuring reliability and practical utility in 
spatial predictions.

We identified a clear spatial trend in the potential distribution of 
M. urundeuva across the Caatinga, with high precision. Two key 
conclusions emerged: (1) suitable habitats are strongly influenced by 
temperature seasonality (Bio 4) and the mean temperature of the 
driest quarter (Bio 9), and (2) climate change may expand or contract 
the species’ distribution. These insights enhance our understanding of 
species-level responses to climate change, supporting forest restoration 
and conservation planning.

Temperature seasonality significantly impacts ecophysiological 
processes in plants adapted to arid environments, driving 
functional adaptations (Amissah et al., 2014; Mendes et al., 2022). 
In the Caatinga, annual temperature extremes can exceed 40°C, 
shaping species distribution and photosynthetic efficiency (do 
Nascimento Accioly et al., 2024; Santos e Silva et al., 2019). Higher 
altitudes, however, mitigate these effects through cooler conditions 

(Kwiecien et  al., 2022; Schwartz et  al., 2022). This variability 
supports the climate variability hypothesis, linking temperature 
seasonality to woody plant diversity in dry climates (El-Rawy et al., 
2023; Suarez-Contento et al., 2024). In such extreme environments, 
identifying key climatic variables is crucial, as drought and small 
diurnal temperature variations disrupt species development (da 
Silva et al., 2017b; Torres et al., 2017). Plants in these regions often 
develop adaptations like water storage and dormancy to cope with 
water scarcity and heat (Eamus and Prior, 2001; Mendes 
et al., 2022).

Response curves (Figure 3) reveal pronounced changes at the 
extremes of bioclimatic variables like isothermality (Bio 3) and 
temperature seasonality (Bio 4), likely due to limited data or 
physiological stress thresholds (Elith et al., 2020; Zurell et al., 2020b). 
For M. urundeuva, deviations beyond optimal temperature ranges 
may render habitats unsuitable, with data scarcity increasing 
prediction uncertainty (Guisan et  al., 2017). Future climate shifts 
toward these extremes could further impact habitat suitability, 
emphasizing the need for broader occurrence data and field validation 
(Guisan and Thuiller, 2005).

Temperature range in warm and cold quarters (Bio 7) significantly 
reduces occurrence probability, while mean temperatures of the driest 
(Bio 9) and wettest quarters (Bio 8) show contrasting effects. For 
instance, Drimys angustifolia Miers, a species from southern Brazil, 
exhibits a 79.15% decline in occurrence likelihood under extreme 
scenarios (dos Santos et al., 2020). Such seasonality extremes impact 
photosynthetic efficiency and water conservation, necessitating 
adaptations like increased water use efficiency (WUE) and leaf 

FIGURE 4

Relative contributions of bioclimatic variables to the potential distribution of M. urundeuva as estimated by the ensemble model. The error bars indicate 
the standard deviation of the relative contributions across 100 replicates of the model, reflecting the variability in the importance of each variable 
during cross-validation.
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morphology changes (Lambers et al., 2008). In the Caatinga, high 
WUE reflects adaptations to semi-arid conditions (dos Santos Silva 
et  al., 2019; dos Santos et  al., 2021), potentially mitigating water 
scarcity under elevated CO₂ levels (Lambers et al., 2008; Hatfield and 
Dold, 2019).

Annual precipitation (Bio 12) is a key driver of habitat suitability, 
with species growth and spread increasing with rainfall (Figure 2). 
Precipitation enhances soil moisture, fostering floristic diversity (Yu 
et al., 2020; Guerreiro et al., 2022). Water availability is critical for 
physiological processes like transpiration and photosynthesis (Yang 
et al., 2021; Ievinsh, 2023), with drought-induced wilting threatening 
species survival and food security (Pan et al., 2022; Bedair et al., 2024). 

Seasonal precipitation variability (Bio 15) further influences habitat 
suitability by affecting soil moisture during critical growth phases 
(Reich and Borchert, 1984; Murphy and Lugo, 1986; Dexter 
et al., 2018).

Precipitation and temperature variables (e.g., Bio 18 and Bio 19) 
interact synergistically, shaping species occurrence patterns. Suitable 
habitats likely result from the co-limitation of these factors (Liang 
et al., 2022), a common concept in plant ecology (Eskelinen and 
Harrison, 2015). Our findings align with previous studies highlighting 
the joint role of water and temperature in net primary productivity, 
with water availability dominating in warmer, flatter regions 
(Cabrerizo et al., 2020; Liang et al., 2022).

FIGURE 5

Potential distribution of M. urundeuva in decades 2041–2060 and 2061–2080 predicted using the spatial ensemble model for habitat suitability under 
climate change scenarios. These maps represent areas of habitat suitability, which inherently reflect changes compared to the current situation. 
Regions gaining or losing suitability can be identified by comparing the maps across scenarios and time periods.
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4.2 Impacts of climate change on 
Myracrodruon urundeuva

Habitat suitability maps derived from ensemble model 
predictions reflect the probability of M. urundeuva occurrence but 
do not necessarily indicate optimal growing conditions. Suitable 
habitats align with the species’ ecological requirements, though they 
may include areas where populations persist under suboptimal or 
stressful conditions, such as extreme temperature variability or 
limited water availability (Rito et al., 2017; Moura et al., 2023). This 
highlights the need to incorporate additional ecological metrics, like 
physiological performance and reproductive output, into future 
models to better assess habitat quality.

The ensemble map reveals climatically suitable habitats for 
M. urundeuva in areas influenced by topography, characterized by 
high temperatures and rainfall (Figure  2). Notably, the species is 
absent in regions with severe desertification, high aridity, or gravelly 
and rocky soils, such as the Chapada Diamantina, suggesting local 
extinction or insufficient floristic data. However, projections indicate 
a potential increase in occurrence probability in these areas. Under 
the optimistic SSP126 scenario, habitat expansion is predicted for 
2041–2060 and 2061–2080. Conversely, the SSP585 scenario for 
2061–2080 shows localized habitat loss due to severe climatic 
changes, though gains in newly suitable areas offset these losses, 
resulting in net stability or expansion. This suggests that extreme 
climate changes do not necessarily reduce overall habitat suitability, 
emphasizing the importance of evaluating multiple scenarios and 
timelines to understand climate change impacts.

Climate change-induced habitat gains and losses have been 
documented for plant species in dry and endemic ecosystems globally 
(Rodrigues et al., 2015; Manchego et al., 2017; dos Santos et al., 2020). 
For instance, species in the Middle East (Erfanian et al., 2021; Bedair 
et al., 2024), India (Chitale et al., 2014), Sardinia (Fois et al., 2018), 
Namibia (Thuiller et al., 2006), and (Thuiller et al., 2006) and several 
other plant species in some European countries (Thuiller et al., 2005a, 
2005b) have shown habitat expansions under climate change. In the 
Caatinga, while higher altitudes support habitat gains across 
scenarios, lower altitudes face losses under pessimistic scenarios 
(Figure 5). The SSP585 scenario shows that extreme climatic shifts 
render some areas unsuitable but create new suitable regions, partially 
offsetting losses. In contrast, SSP126 leads to gradual unsuitability in 
marginal areas without significant gains (Santos e Silva et al., 2019). 
These dynamics underscore the role of regional climatic variability in 
shaping species distribution under climate change (Santos et al., 2014).

Projections for 2041–2060 and 2061–2080 are independent, 
reflecting distinct climatic conditions for each period (Torres et al., 
2017). Areas unsuitable in 2041–2060 may regain suitability by 2061–
2080 due to shifts in precipitation or temperature, while others may 
become unsuitable only in the later period as climate change intensifies 
(Santos et al., 2014).

M. urundeuva occurrence data show lower concentrations in 
northern coastal Caatinga regions, with higher frequencies in interior 
areas characterized by greater temperature seasonality and reduced 
precipitation (Figure  1). This reflects the species’ adaptability to 
diverse environmental conditions. However, no records exist below 
100 m altitude, suggesting local extinction due to timber extraction 
or historical disturbances like land-use changes and grazing (Araujo 
et al., 2023). Despite increasing desertification in arid and semi-arid 
habitats under pessimistic scenarios, M. urundeuva demonstrates 

significant adaptive potential and resilience to climate change, 
supported by its current distribution patterns.

4.3 Study limitations and broader 
implications

This study utilized geographic and bioclimatic data to develop 
potential distribution maps for M. urundeuva in the Caatinga. 
However, data limitations, such as incomplete coverage or resolution, 
constrain the analysis.

First, soil characteristics were excluded due to the lack of dynamic 
soil data under future climate scenarios (Raes and Aguirre-Gutiérrez, 
2018). Unsuitable soil conditions, such as low fertility, poor water 
retention, or high salinity, could limit species expansion despite 
favorable climates. Future studies should integrate high-resolution soil 
data to improve predictions, especially in semi-arid regions like the 
Caatinga. However, static soil data may bias results by conflating soil 
and climate effects, so we focused solely on dynamic climate variables.

Second, species presence data pose quality limitations. Small or 
discontinuous occurrence records may not capture climatic and 
topographic variability. The choice of scale depends on the study’s 
objectives, with global distribution models requiring different scales than 
local habitat assessments (Guisan et  al., 2017; Zurell et  al., 2020b). 
Presence-only data, often from herbarium or museum records, lack 
information on sampling effort, complicating habitat availability 
definitions. Cavalcante and Sampaio (2022) suggest a minimum of 17–30 
records for narrow and widespread species, respectively, in the Caatinga. 
Integrating forest inventory data (Blundo et  al., 2021) can enhance 
occurrence area coverage, though field sampling remains a challenge.

Third, species distribution models (SDMs) are sensitive to spatial 
and temporal scales, as well as extent (Domisch et al., 2015; Lee-Yaw 
et al., 2022). Climate change projections are uncertain due to model 
discrepancies, emission trajectories, and natural variability. SDMs 
often overlook biotic interactions, dispersal, adaptation, and soil-
vegetation dynamics, limiting their ability to fully capture species 
responses (Guisan and Thuiller, 2005; Doninck et al., 2020; Cavalcante 
et al., 2024). Inadequate soil and vegetation characteristics can render 
climatically suitable areas uninhabitable, restricting habitat tracking 
as climates shift (Zuquim et al., 2020). Soil–plant-water relationships 
are critical in the Caatinga (Pinheiro et al., 2016; Paloschi et al., 2021), 
and large-scale soil and vegetation data are essential for understanding 
climate change impacts.

Lastly, SDMs are widely used but criticized for their assumptions, 
such as species-environment equilibrium and perfect sampling (Wiens 
et  al., 2009). Species respond dynamically to global changes, 
influenced by physiology, demography, dispersal, interspecific 
interactions, and land-use changes (Zurell et al., 2020b). Ignoring 
these processes can distort predictions, highlighting the need for 
improved modeling approaches. Therefore, while this study provides 
insights into M. urundeuva’s potential distribution, it underscores the 
importance of critically evaluating SDM assumptions and addressing 
limitations to enhance predictive accuracy.

5 Conclusion

Our findings highlight the potential risks and uncertainties posed 
by climate change to the suitable habitats of M. urundeuva. The species’ 
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distribution is strongly influenced by temperature metrics, with 
suitable habitats primarily found in areas receiving over 500 mm of 
annual precipitation. Projections indicate significant habitat gains in 
the central-northern Caatinga, driven by the species’ adaptability to 
future climatic conditions. The ensemble modeling approach effectively 
captured the synergistic effects of temperature and precipitation at local 
scales, providing reliable spatial predictions. However, our analysis is 
limited to the Caatinga domain, as inferences beyond the sampled data 
range and other ecosystems are not supported.

The observed habitat shifts underscore the need for localized and 
regional conservation strategies to mitigate climate change impacts 
on M. urundeuva. The Caatinga, a seasonally dry tropical forest, is 
highly resilient to extreme climatic conditions but faces threats from 
desertification and high aridity. Species like M. urundeuva have 
evolved adaptive traits, such as deep root systems and modified 
leaves, to cope with water scarcity. These adaptations not only support 
local biodiversity but also offer insights for ecological restoration and 
climate change mitigation in other arid regions. We  recommend 
prioritizing conservation efforts in stable habitats identified in this 
study, as they serve as critical refuges for the species amidst escalating 
climate challenges.
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