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Accurate estimation of aboveground biomass (AGB) in Moso bamboo forests

(MBFs) has garnered significant attention over the past two decades. However,

the remote sensing-based estimation of AGB in MBFs remains challenging

because of the limited understanding of the relationship between Moso bamboo

growth characteristics and remote sensing data, particularly concerning

alternating on-year and off-year cycles. In this study, Sentinel-2 remote sensing

imagery and plot survey data were selected, a novel change detection algorithm

to assess plot level AGB dynamics between 2018 and 2019 was developed, a

hierarchical classifier was proposed to map the spatial distributions of on-year

and off-year MBFs, and a time series model was developed for estimating the

AGB of MBFs to characterize AGB dynamics between November and December.

The results indicated that the AGB of the MBFs exhibited a distinct dynamic

cycle characterized by the rapid accumulation of new bamboo and sharp

reductions due to selective harvesting during the on-year period, alongside a

steady accumulation of lignified bamboo during the off-year period. The AGB

of the MBFs during the on-year and off-year cycles ranged primarily from 30

to 80 Mg/ha, with the AGB of the on-year MBFs generally exceeding that of the

off-year MBFs. This study demonstrated the potential to accurately estimate AGB

and its dynamic changes by accounting for on-year and off-year phenomena.

KEYWORDS

aboveground biomass estimation, Moso bamboo forests, on-year and off-year, remote
sensing, random forest

1 Introduction

Moso bamboo (Phyllostachys edulis) is the most widely distributed and economically
significant bamboo species in China, covering approximately 5,277,600 ha and
constituting approximately 70% of the country’s bamboo forest area. These Moso
bamboo forests (MBFs) are located primarily in the provinces of Zhejiang, Fujian,
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Jiangxi, and Hunan (National Forestry and Grassland
Administration, 2023). The rapid growth of MBFs endows
them with substantial carbon storage and sequestration potential.
Meanwhile, Moso bamboo forests are uneven-aged forests. Almost
all Moso bamboo forests are selectively logged once every two
years. At the same time, humans carry out several management
measures for Moso bamboo forests, such as hill splitting and
fertilization. Compared with other forests, Moso bamboo forests
have more interactions with humans. These human activities also
indirectly increase the carbon storage and carbon sequestration
potential of Moso bamboo forests. Zhou (2006) indicated that
their annual carbon sequestration rate reaches 5.1 Mg/ha, which
is 1.46 times greater than that of Chinese fir during the fast-
growing stage . The carbon stock in China’s MBFs is estimated at
approximately 611.15 ± 142.31 Tg, with Moso bamboo forests
capable of sequestering 10.19 ± 2.54 Tg of carbon annually (Li
et al., 2015). Consequently, the contribution of Moso bamboo to
the global carbon sink has garnered extensive attention from the
scientific community (Chen et al., 2008; Song et al., 2011; Nath
et al., 2015; Li et al., 2019). This significant carbon sequestration
capability positions Moso bamboo as a crucial strategic resource
in China’s forestry industry for combating climate change. Within
the framework of the national dual-carbon strategy and the global
“bamboo instead of plastic” initiative, the carbon sink value of
MBFs is anticipated to remain a major focus of research. Accurate
estimation of the aboveground biomass (AGB) of MBFs is of
considerable scientific and practical importance for evaluating the
potential of this bamboo species as a carbon sink and for enabling
precise carbon trading (Li, 2020). Understanding AGB is central to
assessing carbon cycle processes within MBF ecosystems.

Large-scale AGB estimation for forests is primarily based
on remote sensing imagery and sample plot data for model
construction (Lu et al., 2014; Jurjeviæ et al., 2020). Over time,
the remote sensing data utilized for AGB modeling in MBFs
have evolved from single-source to multisource data (such as
optical, radar, and LiDAR data). Many studies have estimated
AGB using Landsat imagery (Xu et al., 2011; Ahmad et al., 2021).
Meanwhile, radar data are also used for AGB estimation, but
its estimation accuracy is not better than Landsat (Zhao et al.,
2016a). LiDAR data were used for AGB estimation, however,
its expensive data acquisition costs limited its widely use (Cao
et al., 2019; Navarro et al., 2020). The combination of multi-
source data improved the accuracy of AGB estimation (Zhao
et al., 2016a; Gao et al., 2018; Marchesan et al., 2023). Variables
and algorithm selection are two key steps for AGB modeling
(Lu et al., 2014). Spectral bands, vegetation indices, and textures
are often used as variables for modeling (Xu et al., 2011;
Chen et al., 2019). Concurrently, algorithms have transitioned
from traditional multiple-regression models to more sophisticated
machine learning approaches (Zhao et al., 2016b; Gao et al.,
2018; Chen et al., 2019; Talebiesfandarani and Shamsoddini, 2022;
Marchesan et al., 2023; Zhang et al., 2024). However, the current
validation results for remote sensing-based AGB estimation in
MBFs demonstrate relatively low accuracy, which is attributable
to factors such as temporal inconsistencies, optical saturation,
and the distinct phenological characteristics of MBFs (Li et al.,
2018; Zhao et al., 2016b; Gao et al., 2018; Xu et al., 2011;
Yu et al., 2012; Han et al., 2013).

One of the significant challenges in enhancing the accuracy
of remote sensing-based AGB estimation in MBFs is the frequent
cloud cover in subtropical regions; this cloud cover limits the
availability of passive remote sensing data and leads to mismatch
issues in the timing of sample plot surveys and passive remote
sensing data acquisition (Lu et al., 2014; Zhao et al., 2016b). In
most studies, it has been assumed that temporal discrepancies
between two data acquisition times do not significantly impact the
relationship between AGB and remotely sensed variables (Lu et al.,
2014). While this hypothesis may be valid for forests with minimal
stand structure changes over short periods, it does not apply to
MBFs, which exhibit distinct on-year and off-year phenomena.

The on-year and off-year phenomenon in MBFs results in
significant differences in AGB, with on-year MBFs producing
many bamboo shoots, whereas off-year MBFs produce few or
none (Li et al., 2019; Fang et al., 2015). These phenological
cycles encompass distinct periods of bamboo shoot emergence,
young bamboo growth, and leaf phenology, leading to biomass
accumulation at varying rates (Fang et al., 2015). Furthermore, the
spectral characteristics of on-year and off-year MBFs are similar
during certain periods, despite substantial differences in biomass
(Chen et al., 2019). Consequently, the impact of these phases on
model accuracy must be thoroughly considered. Current AGB
estimates, which are primarily derived from static models based on
sample plot data and remote sensing variables, have not effectively
captured the unique physiological and ecological characteristics of
MBFs, particularly during their growth periods (Zhou, 2006; Guo
et al., 2015; Zeng et al., 2016; Zhang, 2016).

To address these challenges, (1) a novel change detection
algorithm to assess plot level AGB dynamics between 2018 and
2019 is developed; (2) the yearly change bamboo index is combined
with a hierarchical classifier to map the spatial distributions of on-
year and off-year MBFs; and (3) the mapped on-year and off-year
MBFs are integrated with a pre-estimated spatial map of AGB to
characterize AGB dynamics. The new contribution of this research
is to better understand the AGB dynamics in bamboo growth
stage, and the impacts of the on-year and off-year phenomena
on AGB estimation.

2 Materials and methods

2.1 Study area

The study area (a rectangle with 54,000 ha) is located in the
northwestern region of Zhejiang Province, spanning Anji County,
Deqing County and Yuhang District (Figure 1A). This area exhibits
significant variations in geomorphologic relief, with elevations
ranging from 12 to 866 m above sea level. It is characterized by
a northern subtropical monsoon climate with an average annual
temperature between 15 and 18◦C and average annual precipitation
totaling 1,100 to 1,900 mm (Li, 2020). The predominant vegetation
types include Moso bamboo forests (Figures 1B, C), coniferous
forests (such as Pinus massoniana and Cunninghamia lanceolata)
and evergreen broadleaf forests. In May, the growth processes of
on-year and off-year MBFs are different (Figure 1E), resulting in
distinct colors in the remote sensing images (Figure 1D).
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FIGURE 1

Overview of the study area: (A) True color composites using red, green and blue spectral bands of Sentinel-2 imagery captured on 4 May 2018; (B,C)
Typical area; (D) On-year and off-year Moso bamboo forests as depicted in Sentinel-2 imagery; (E) A photograph illustrating on-year and off-year
Moso bamboo forests.

2.2 Data preparation

2.2.1 Remote sensing data and preprocessing
The L1C products of Sentinel-2 (orbit number: T50RQU) for

2018 and 2019, obtained from the ESA website.1 Four scenes

1 https://scihub.copernicus.eu/dhus/#/home

of Sentinel-2 multispectral images (Cloud coverage lower than
5%), with acquisition dates (4 May 2018, 10 November 2018, 17
December 2018, 14 May 2019) were selected for Moso bamboo
mapping and AGB estimation. These images are based on a
Universal Transverse Mercator coordinate system, specifically,
Zone 50 North. The images span 13 spectral bands that encompass
the visible/near-infrared and shortwave infrared spectral ranges,
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including three vegetation red-edge bands, which are particularly
effective for monitoring vegetation (Li et al., 2019). The Sen2cor
plug-in released by the ESA was employed for radiometric
calibration and atmospheric correction, transforming the L1C-level
data into bottom of atmosphere reflectance data at the L2A level.
Additionally, 20 m-spatial-resolution Sentinel-2 imagery was used,
and the improved C-correction model (Reese and Olsson, 2011)
along with digital elevation model (DEM) data were applied for
topographic correction.

The ancillary data used in this study included topographic
data and administrative boundary vectors. The topographic data
were DEM, derived slope and aspect directional data. The 20
m-spatial-resolution DEM data were obtained from the Geospatial
Data Cloud,2 and the coordinate projection system employed was
UTM Zone 50. The administrative boundary vector data included
provincial-, city- and county-level vector data for all of Zhejiang
Province. Initially, the DEM data were spatially aligned with the
remote sensing data, ensuring accuracy within one image element,
followed by terrain correction.

2.2.2 Field data
A total of 63 sample plots were surveyed twice, in May 2018

and February 2019, and their spatial distributions are illustrated
in Figure 1A. Each plot measured 20 × 20 m (Figure 2B) to align
with the spatial resolution of the remote sensing imagery (Figure
2A). A compass was employed to determine the direction, and four
control points were established, with PVC pipes buried at these
locations for precise reference. For plots with sloping sides, the side
lengths were adjusted according to the slope angle. Within each
plot, the diameter at breast height (DBH) of the Moso bamboo
samples greater than 5 cm was measured, and their age (degree)
was recorded (Figure 2C). For detailed information, please refer
to the Supplementary material. The first-year Moso bamboo is
designated as 1st-degree bamboo. The second and third-year Moso
bamboo is categorized as 2nd-degree bamboo, and the fourth and
fifth-year Moso bamboo is termed as 3rd-degree bamboo. This
classification system provides a structured way to distinguish Moso
bamboo based on its age, which is crucial for various studies and
management practices related to Moso bamboo forests.

The statistical information regarding the sample plots is
presented in Table 1. A total of 31 sample plots of on-year MBFs
and 32 sample plots of off-year MBFs were analyzed. The DBH of
Moso bamboo ranged from 8.5 to 11.8 cm, whereas the tree height
varied from 8 to 12.1 m. Notably, the average DBH and average tree
height for both on-year and off-year MBFs were largely comparable.

2.3 Methods

The framework for estimating AGB dynamics is illustrated in
Figure 3 and involves four key steps: (1) calculating the AGB of
each individual Moso bamboo plant and detecting AGB changes
in MBFs at the plot level between 2018 and 2019; (2) mapping
the spatial distributions of on-year and off-year MBFs via a
hierarchical classifier; (3) estimating the AGB of MBFs in May by
integrating Sentinel-2 data with sample plot information; and (4)

2 https://www.gscloud.cn/

characterizing AGB dynamics in November and December and
evaluating the modeling results.

2.3.1 Calculation of AGB in the MBF sample plots
Moso bamboo rapidly grows following shoot emergence,

reaching a growth rate of nearly 1 meter per day at its peak.
During this initial period, the height of Moso bamboo continues
to rise, while the DBH remains relatively constant, and biomass
accumulates rapidly. Both the height and DBH of Moso bamboo
subsequently experience a near cessation of growth, with the
biomass increasing slowly and steadily as secondary cell walls
continue to form. A time series three-stage model (Li, 2020)
was employed to calculate the dynamic AGB of individual Moso
bamboo plants (Equation 1). The first stage encompasses the
rapid growth phase of bamboo shoots (Liu et al., 2009), which
occurs from shoot emergence until the height stabilizes, typically
within 100 days postemergence. The biomass during this stage is
correlated with the height and DBH of Moso bamboo. The second
stage occurs when the bamboo height remains unchanged until
May of the following year; during this period, biomass is linked
to the leaf photosynthesis of Moso bamboo forests (Li, 2020). The
third stage begins after May of the following year, when biomass
is associated with the age and DBH of individual Moso bamboo
(Zhou, 2006). With Equation 1, the AGB value of an individual
Moso bamboo plant can be calculated at any time t.

AGBsinglet =
0.004 ∗ D1.538 ∗ e−0.021t

∗ H1.190 ∗ e0.019t
0 < t < 100

A0+A1 ∗
tanh((t−A2) ∗ A3)+1

2 100 < t < 365

747.787 ∗ D2.771
∗

(
0.148y

0.228+y

)
+3.772 365 < t

(1)

Where AGBsinglet is the AGB (in kg) of an individual Moso
bamboo plant, D is the DBH, H is the height of the Moso bamboo,
t is the number of days after shoot emergence, A0 is the maximum
value of AGB in the first 100 days, A1 is the difference between A0
and the minimum value of biomass after 365 days, A2 is the number
of days corresponding to the bamboo leaf growth, range from 200
to 227, this study is set at 217, A3 is the general coefficient set as
0.011, and y is the age “degree” of the bamboo.

The aboveground biomass of each plot was calculated via
Equation 2, following the determination of the aboveground
biomass value of an individual Moso bamboo at any time t (Li,
2020). A total of 63 plots were classified as either on-year MBF
samples or off-year MBF samples, and the changes in AGB for each
plot were statistically analyzed over the course of one year.

AGBsampleIT =

∑n
i=1 AGBsingleiT

Areasample
∗m (2)

where AGBsampleIT is the biomass (in Mg/ha) of the Ith sample
site. AGBsingleiT represents the individual biomass of the ith Moso
bamboo plant at time T, n represents the total number of Moso
bamboo plants in the Ith sample plot, Areasample represents the area
of the sample plot (400 m2), and m is the biomass unit conversion
factor (converted from kg/m2 to Mg/ha, with a value of 10).

2.3.2 Extraction of on-year and off-year MBF
spatial distributions

Determining the seasonal spectral differences between on-
year and off-year MBFs is a prerequisite for their differentiation.
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FIGURE 2

Schematic layout of the sample plots. (A) On-year MBFs, off-year MBFs, broadleaf forests and coniferous forests, depicted in Sentinel-2 imagery; (B)
sample plots presented at a 20 × 20 m scale; (C) photograph of data collection within a sample plot.

TABLE 1 Statistical information for the sample plots.

Type Number of
sample plots

Range of DBH
(cm)

Average DBH
(cm)

Tree height
range (m)

Average tree
height (m)

On-year MBFs 31 8.5–11.8 10.2 8–11.4 9.7

Off-year MBFs 32 8.5–11.5 10 8.1–12.1 9.8

FIGURE 3

Framework for mapping the aboveground biomass dynamics of Moso bamboo forests.

May was the most pronounced season for the spectral differences
between the on-year and off-year MBFs. The spectral differences
between MBFs and other forests were mainly concentrated in the
wavelength range of 740–865 nm, with the red-edge band and
the near-infrared band identified as the most significant bands
for distinguishing MBFs from other forests in terms of remote
sensing classification (Li et al., 2019). Additionally, the annual
variations in the yearly change bamboo index (YCBI) were used

to distinguish on-year and off-year MBFs (Li et al., 2019). In this
study, we extracted the on-year and off-year MBFs in the study
area for 2018 via a hierarchical classifier. First, the normalized
vegetation index (NDVI) was calculated from two periods of winter
remote sensing images, with a threshold of 0.3 selected to isolate the
vegetated portions of both images, thereby obtaining information
on evergreen vegetation. Second, the YCBI was calculated on the
basis of images from May 2018 and 2019, where forest portions with
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a threshold value exceeding 1.2 were classified as on-year MBFs
and those with a value below 0.8 were classified as off-year MBFs.
100 survey sites were randomly selected in each classification result
(on-year, off-year, and other types), respectively. These points were
combined with Google Earth and high-resolution remote sensing
images to verify their authenticity through visual interpretation and
filled into the confusion matrix. The accuracy of the results was
evaluated using overall accuracy (OA), user’s accuracy (UA), and
producer’s accuracy (PA).

2.3.3 Estimation of the AGB of MBFs in the base
month

In this study, May was selected as the base month because
of its significance in the onset of bamboo shoot growth and the
clear spectral difference in on/off-year MBFs. A random forest
model was developed using the random Forest package in R
by integrating measured sample plot biomass data with remote
sensing variables. The selection of this package was based on its
wide recognition and rich functionality within the R community,
allowing for extensive customization and optimization to suit
the specific characteristics of our forestry data. Its computational
efficiency and stability in handling large datasets, along with the
comprehensive diagnostic and evaluation metrics it provides, were
also crucial factors in our choice, ensuring the reliable performance
and quality of the model for estimating forest parameters. Given
that the base month influences the accuracy of subsequent dynamic
estimations, the factors associated with on-year and off-year
variations were thoroughly considered, and spatial distributions
were utilized to stratify the remote sensing estimation of the AGB of
MBFs. The remote sensing variables primarily comprised original
bands, vegetation indices and texture indices. The original bands
included all bands from the Sentinel data, whereas the vegetation
indices included the NDVI, EVI, SAVI, GNDVI, SRre, MTCI,
and NDVIre (Table 2). The texture variables consisted of eight
statistical features derived from texture information associated with
the first principal component using a 3 × 3, 5 × 5, 7 × 7 window,
such as the mean, variance, homogeneity, contrast, heterogeneity,
information entropy, second-order moments, and correlation. The
random forest method was used to rank the importance of a
total of 232 candidate variables, including the original spectral
bands, texture, and vegetation indices (Supplementary Table 2).
The feature importance was determined by the degree of decrease
in out-of-bag accuracy, the increment of relative importance in the
model, and the influence on node purity. The variables most closely
related to biomass were selected for modeling. The two most critical
parameters were the number of trees (ntree) and the number of
variables in the binary tree (mtry). The final modeling parameters
were established by iteratively testing different values of ntree and
mtry until the root mean square error stabilized. In this study, ntree
was set to 1,000, and mtry was set to 7.

2.3.4 Dynamic estimation of AGB in MBFs
Owing to the linear accumulation process of AGB in MBFs,

the dynamic estimation model employed in this study is based on
a linear framework given the spatial distribution of ABG in the
base month. This model accounts for the effects of new bamboo
growth, old bamboo logging, and on/off-year phenomena. The time
series-based dynamic AGB model (Equation 3) was constructed

TABLE 2 The vegetation indices used in this study.

Vegetation
index

Formulas References

NDVI
NIR−Red
NIR+Red

Tucker, 1979

EVI
2.5 ∗

(
NIR−Red

)
NIR+6 ∗ Red − 7.5 ∗ Blue+ 1

Liu and Huete,
1995

SAVI
(
NIR−Red

)
(1+ L)

NIR+Red + L
Huete, 1988

GNDVI
NIR−Green
NIR+Green

Gitelson et al.,
1996

SRre
NIR

RedEdge705
Sims and
Gamon, 2002

MTCI
NIR− RedEdge705

RedEdge705 − Red
Dash and
Curran, 2004

NDVIre
NIR− RedEdge705

NIR+ RedEdge705
Sims and
Gamon, 2002

YCBI(yi−yj)m

NIRyj + NIRnarrowyj + RedEdge3yj

NIRyi + NIRnarrowyi + RedEdge3yi
Li et al., 2019

using AGB values from 63 sample plots. The AGB in the target
month was estimated via Equation 3 and the spatial distribution
of the AGB from the base month. In this study, May 2018 was
selected as the base month of the AGB of the MBFs, serving as
the reference for calculating the AGB of the MBFs in November
according to Equation 3, with coefficients a and b set to 1.55 and
1.85, respectively.

The selected logging AGB model (Equation 4) was developed
through a logging analysis of sample plots. Moso bamboo logging
typically occurs in the winter for year-round plots, as these plots
yield substantial new bamboo growth in the spring. A distinct
pattern of selective logging is evident, where bamboo plants
exceeding 3rd-degree are harvested; these 3rd-degree bamboo
plants represent approximately one-third of the entire sample plot.
Consequently, it is assumed that logging occurs in December, with
one-third of the bamboo plants in one-year sample plots selected
for logging. Thus, the coefficient c was established as 2/3 for on-year
MBFs and 1 for off-year MBFs.

AGBj = AGBi+
(
j−i
)
∗ a+b (3)

AGBl = c ∗ AGBj (4)

where AGBi is the AGB in the base month, AGBj is the AGB in
the estimation month, j is the target month, i is the base month,
AGBl is the AGB after selected logging, and a, b, and c are the
model coefficients.

2.3.5 Accuracy assessment
The coefficient of determination (R2), root mean square error

(RMSE), and relative root mean square error (RMSEr) are effective
metrics for assessing the predictive capability of a model (Guan
et al., 2023). These metrics (Equations 1–5) were employed to
evaluate the accuracy of the biomass model in this study. The
leave-one-out cross-validation method was utilized, which involves
leaving one sample out for later testing while using the remaining
samples for training. Consequently, if there are k samples, the
model is trained and tested k times. This method is not influenced
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by the manner in which random samples are divided, and the
resulting evaluation is often regarded as more reliable than that
based on other methods (Sammut and Webb, 2010).

R2
=

∑n
i=1(̂yi − y)2∑n
i=1(yi − y)2 (5)

RMSE =

√√√√ 1
n

n∑
i=1

(̂yi − yi)2 (6)

RMSEr =
RMSE

ȳ
× 100 (7)

where ŷi is the estimated value; yi is the actual value; ȳ is the average
of the actual values; and n is the number of samples.

3 Results

3.1 Time series variation in the AGB of
Moso bamboo forests at the plot level

The AGB of month-by-month sample plots over a two-year
period was calculated via Equations 1, 2. Figure 4 shows the time
series distribution of the AGB for the 63 sample plots during this
period. During the one-year growth stage, the AGB of the Moso
bamboo forest rapidly increased, increasing from 52 to 65 Mg/ha
during the shoot growth phase (May–November). The AGB of the
MBFs subsequently sharply decreased from 65 to 41 Mg/ha during
the selected logging period (December), resulting in a total biomass
reduction of approximately one-third. This decline was followed
by a steady growth rate during the shoot-bearing phase (January–
April). In the same year, the MBFs entered the off-year stage,
characterized by a slow increase in biomass, with no new bamboo
shoots or selective logging occurring throughout the year. The AGB
variations between the on-year and off-year stages were markedly
different, with the AGB of the on-year MBFs generally exceeding
that of the off-year MBFs, primarily due to the accumulation
of new bamboo biomass. Thus, the AGB of the Moso bamboo
forest samples dynamically varies, and these dynamic changes, as
captured by the time series of AGB in this study, can be integrated
into remote sensing-based AGB estimation.

3.2 Spatial distribution of on/off-year
Moso bamboo forests and AGB
estimation in May

The hierarchical classifier method based on the YCBI achieved
high accuracy in classifying the 2018 on-year and off-year MBFs,
with both producer and user accuracies exceeding 93%. MBFs
are the most widely distributed bamboo forests in the study area
and are predominantly located in the central region, extending
in the northeast-southwest direction of the mountain range
(Figure 5A). The distribution of on-year and off-year MBFs is
heterogeneous, with the total area of MBFs at approximately 26,000
ha, accounting for 48% of the study area. The area of off-year MBFs
is approximately 20,000 ha, which is 3.5 times larger than that of

on-year MBFs. Elevation and topographic information can be used
to explore the distinct distribution characteristics of MBFs across
different regions. For example, in the high-elevation areas of the
central mountain range, the MBFs are more homogeneous, whereas
in lower-elevation areas, such as those in the northwest, south, and
east, Moso bamboo is sparsely distributed. The MBFs are primarily
found on slopes ranging from 10 to 40◦, with forests on slopes in
the 20–25◦ range being the most prevalent.

All remote sensing variables were ranked by random forest
method, and ten variables with high importance value, such as
5 ∗ 5 texture dissimilarity in green band, vegetation SRre, etc
(see Supplementary material), were selected to build AGB model
of MBFs. SRre can sensitively reflect the photosynthetic capacity
of Moso bamboo leaves. Therefore, it can serve as an excellent
indicator of biomass in the modeling process. Under a 5∗5 window,
the texture dissimilarity in the green band can provide intuitive
spatial structure information of the Moso bamboo forest, thus
playing a unique role in biomass modeling. The AGB results for
the MBFs in May, derived from Sentinel-2 data, are illustrated in
Figure 5B. Accuracy validation indicated that the RMSE of on-
year MBFs was 16.59, whereas for off-year MBFs, it was 11.76.
The AGB of on-year MBFs in May was generally greater than
that of off-year MBFs, with on-year AGB primarily concentrated
in the 45–50 Mg/ha range, occasionally exceeding 60 Mg/ ha. In
contrast, the AGB of the off-year MBFs was predominantly within
the 40–50 Mg/ha range.

3.3 Estimation of AGB dynamics in MBFs

By integrating the AGB estimation results from May with the
time series dynamic AGB model (Equation 3), the AGB of the MBFs
was estimated for November (Figures 6A, C, D). The difference
in AGB between the on-year and off-year MBFs in November
was relatively small. The AGB of on-year MBFs was primarily
concentrated in the range of 50–60 Mg/ha, whereas off-year MBFs
in the western and southeastern regions predominantly presented
AGB values within the 40–55 Mg/ha range.

On the basis of the AGB results from November and the
selected logging AGB model (Equation 4), the spatial distribution of
the AGB in the MBFs in December was determined. In December,
after the harvest of mature bamboo, a marked difference in AGB
between on-year and off-year MBFs became evident (Figures 6B, E,
F). The aboveground biomass in the northern central on-year MBFs
was generally less than 40 Mg/ha, with sporadic distributions in
the 40–45 Mg/ha range, indicating a significant decrease compared
with the ABG in November. In contrast, the AGB of the off-year
MBFs remained primarily concentrated in the 50–60 Mg/ha range,
showing no significant changes from that in November.

Given the differences between on-year and off-year conditions,
the results of the AGB accuracy validation for the MBFs in
November demonstrated superior performance. The R2 values for
the AGB of the MBFs in the on-year and off-year periods were
0.82 and 0.85, respectively, indicating a strong linear relationship
between the estimated and actual values. The RMSEs of AGB
estimation for the on-year and off-year MBFs in November ranged
from 6.56 to 11.88 Mg/ha, with RMSEr values between 13.61 and
19.03%. The prediction results were evaluated via scatter plots
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FIGURE 4

Time series of the AGB of the MBF sample plots.

of the estimated versus actual values (Figure 7). The biomass
of the MBFs tended toward low-value overestimation and high-
value under-estimation. Specifically, the AGB of on-year MBFs
in November was underestimated when it exceeded 50 Mg/ha,
whereas the AGB of off-year MBFs was overestimated when it
surpassed 40 Mg/ha (Figure 7A). In December, the R2 of validation
for the AGB of off-year MBFs was 0.60, whereas that for on-year
MBFs was only 0.11, indicating a poor relationship between the
estimated and actual values, with the linear relationship no longer
holding (Figure 7B). This was particularly evident in the severe
overestimation of above-ground biomass below 25 Mg/ha.

4 Discussion

4.1 Impact of ecological characteristics
and human management on the AGB
dynamics of MBFs

MBFs exhibit unique ecological characteristics, such as on/off-
year cycles and biennial leaf-shedding processes, which lead
to significant fluctuations in AGB. The on/off-year cycles are
characterized by alternating periods of high and low bamboo
shoot production, which directly influence biomass accumulation
within these forests. In addition to these natural cycles, human
management practices—such as selective logging, bamboo shoot
harvesting, and culm top cutting—play crucial roles in shaping the
AGB dynamics of MBFs (Chen et al., 2019). As a monocotyledon
species, bamboo lacks a vascular cambium, resulting in relatively
stable DBH and plant height over time. Consequently, the AGB
accumulation in MBFs differs from that in other forest types, as
the biomass of individual bamboo plants is related primarily to age

and DBH. Furthermore, the on/off-year phenomena, along with the
annual growth of new bamboo and the selective logging of older
bamboo, contribute to significant AGB variations within a single
year. Thus, on/off-year phenomena and human-driven selective
logging are the primary factors influencing the dynamic estimation
of aboveground biomass in MBFs. Accurately determining the AGB
variation pattern of MBFs at the plot scale is essential for achieving
accurate large-scale remote sensing-based AGB estimation. The
results of this study indicate that the AGB in the on-year plots
displays a wider range, between 42.1 and 61.9 Mg/ha, than that
in off-year plots, ranging between 45.7 and 48.7 Mg/ha. Stratified
modeling based on on-year and off-year phenomena represents a
potential method to improve the accuracy of large-scale dynamic
AGB estimation (Chen et al., 2019).

4.2 Error sources in AGB
estimation models

Currently, the estimation of AGB in MBFs at the local or
regional scale requires the integration of remote sensing data and
plot data (Lu et al., 2014; Jurjeviæ et al., 2020). Ensuring temporal
consistency between these data sources is crucial for achieving
satisfactory results, particularly given the high canopy density and
significant dynamic characteristics of MBFs. The AGB estimation
results for MBFs remain suboptimal because of the saturation
effect of optical remote sensing data. MSFs’ spectral saturation
value is approaching around 75 Mg/ha, which is lower than other
forests, such as Pine forests with 159 Mg/ha, broadleaf forests with
123 Mg/ha, mixed forests with 152 Mg/ha (Zhao et al., 2016b).
Although some researchers have attempted to synchronize the
timing of data collection between remote sensing data and sample
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FIGURE 5

Classification results for on-year and off-year MBFs as well as AGB on 4 May 2018. (A) Classification results of on-year and off-year MBFs on 4 May
2018; (B) spatial distribution of the above-ground biomass of MBFs on 4 May 2018.

plots (Chen et al., 2019; Li, 2020), the accuracy of the estimation
results has only improved slightly, and the problem of spectral
saturation has not been solved. In this study, a simplified ecological
growth model was employed to monitor dynamic changes. The
model estimates AGB via remote sensing data from May and
subsequently projects AGB for November and December on
the basis of the dynamic AGB patterns of MBFs. Overall, the
fitting results for November were more favorable than those for
December. The poor estimates of AGB following the thinning of
bamboo forests in December was largely attributed to the actual
distribution of three-year-old bamboo in the sample plots, as the
assumed 1/3 thinning was insufficient to accurately reflect the true
age distribution and the corresponding reduction in aboveground
biomass. To further improve the accuracy of biomass simulations,
this approach should be enhanced through the integration of
growth simulation models that encompass the entire growth
process of MBFs, including individual bamboo growth and human
management practices. Meanwhile, deep learning models can be
enhance the accuracy of remote sensing variable selection in the
future study, and the dynamics of AGB should be investigated via
high-resolution remote sensing products.

Relying solely on models that integrate remote sensing and
plot data to estimate the AGB of MBFs may not be the effective
approach. The analysis conducted at the plot level in this study
revealed a strong correlation between bamboo stand density
and AGB. Specifically, bamboo stand density is highly related
to the AGB distribution within a bamboo forest. Furthermore,
postharvest biomass changes are predominantly influenced by
the number of three-year-old bamboo plants, making the age
distribution within the forest a critical factor for accurate AGB
estimation. Hence, identifying the number of Moso bamboo
plants from remote sensing data, whether it is optical data or
LiDAR data, is a better choice for AGB estimation of MBFs. For
example, methods based on Airborne LiDAR or handheld LiDAR
are promising for acquiring three-dimensional information about
individual bamboo plants, such as their height and age (Cao et al.,
2019; Campbell et al., 2021; Xu et al., 2022). Unmanned aerial
vehicle (UAV) is a good platform for estimating the number of
Moso bamboo plants at the regional scale (Lu et al., 2023; Lv
et al., 2024). The theoretical feasibility of integrating drone-based
LiDAR measurements with optical data for estimating AGB has
been demonstrated (Duncanson et al., 2020; Talebiesfandarani
and Shamsoddini, 2022; Lu and Jiang, 2024). In the future,
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FIGURE 6

AGB spatial distributions of the MBFs in November and December. (A) AGB of the MBFs on 15 November; (B) AGB of the MBFs in December; (C–F)
typical spatial distribution of AGB.

FIGURE 7

Validation results of the AGB of the MBFs in November and December. (A) Scatter plot between the on-year and off-year MBFs in November; (B)
scatter plot between the on-year and off-year MBFs in December.

combining these technologies with Sentinel-2 data could enable
their application over larger areas, thereby enhancing the accuracy
of AGB estimation in Moso bamboo forests (Zhang et al., 2024).

5 Conclusion

In this study, Sentinel-2 data and field survey data were
integrated to capture dynamic changes and develop a dynamic
model for estimating the AGB of MBFs in north-western Zhejiang

Province. The distributions of on-year and off-year bamboo forests
are spatially heterogeneous. The AGB of the MBFs exhibited a
distinct dynamic cycle characterized by the rapid accumulation of
new bamboo and significant reductions due to selective harvesting
during the on-year period, whereas a steady accumulation of
lignified bamboo occurs during the off-year period. The AGB of
Moso bamboo forests in the on-year and off-year cycles ranged
from 30 to 80 Mg/ha. By incorporating the specific characteristics
of the on-year and off-year phenomena into the initialization
process of the biomass model and integrating these factors with the
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linear equation derived from sample plot-measured biomass, it was
possible to accurately estimate the AGB and its dynamic changes in
Moso bamboo forests.
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