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Tropical forests, known for their biodiversity and carbon (C) richness, face significant 
threats from biological invasions that disrupt structural and functional processes. 
Lantana camara (Family: Verbenaceae) is an invasive shrub that has spread across 
several Indian landscapes. The present study aimed to assess the changes in tree 
species richness and total ecosystem carbon (TEC) storage in Lantana camara-
invaded (LI) and uninvaded (UI) sites in the tropical dry deciduous forests of 
Madhya Pradesh, India. Significantly lower species richness (SR), C storage of 
juveniles, total trees, and total biomass C were observed in LI sites than in UI sites. 
However, significantly higher C storage of shrubs + herbs (understorey), litter, 
and soil organic carbon (SOC) were found in LI sites than in UI sites. The percent 
allocation of C in tree juveniles, adults, understorey, detritus, and SOC to the TEC 
pool was 2.6, 39.1, 1.4, 5.5, and 51.3 in LI sites and 3.8, 49.7, 0.2, 4.0 and 42.3 in 
UI sites, respectively. The C stocks of tree juveniles, adults, and herbs were lower 
by 23.3, 15.7 and 20.3%, respectively, in LI sites than in UI sites, whereas shrub, 
detritus, and SOC stocks were higher by 95.1, 9.1 and 7.9%, respectively, in LI 
sites than in UI sites. A significant negative relationship was observed between L. 
camara density and SR, tree juvenile C, herb C, understorey C, and total ecosystem 
C storage, while the same had a significant positive relationship with shrub C, 
litter C, and SOC. The present findings revealed that the plant diversity and total 
C pools were altered by shrub invasion and have important implications for their 
quantification in these tropical forests.
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1 Introduction

Plant invasions alter the structural and functional diversity of ecosystems and are the 
major drivers of global change ecology (Ehrenfeld, 2010; Lone et al., 2019, 2022) when present 
in high numbers (Vilà et al., 2011). Invasive exotic species have affected the composition and 
structural diversity of several native ecosystems worldwide (Vitousek et al., 1996; Hughes et al., 
2017). They differ from the native biota in terms of both resource acquisition and resource 
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consumption, which, in turn, alter ecosystem properties, disturbance 
regimes, and elemental cycling (Asner et al., 2010; Mandal and Joshi, 
2015a). The impacts of invasion are often long-lasting, persisting in 
native ecosystems, even after the removal of native species 
(Ramaswami and Sukumar, 2016). Plant invasion is a major driver of 
global change, but studies on its impacts on diversity and ecosystem-
level C storage in forest ecosystems are limited and fragmented 
(Vitousek et al., 1997; Lone et al., 2022). Some studies have suggested 
that plant invasion enhances ecosystem-level C storage (Stock et al., 
1995; Hibbard et al., 2001), whereas few others have reported that 
invasion leads to a decline in diversity, ecosystem C storage, and 
changes in soil physio-chemical properties (Jackson et  al., 2002; 
Gooden et al., 2009a; Kumar et al., 2020). These contrasting outcomes 
may result from differences in the eco-physiological traits of invasive 
species and the characteristics of the ecosystems they invade (Liao 
et al., 2007). In terrestrial ecosystems, there are predominantly six 
major C pools: aboveground and belowground biomass of trees, 
understorey vegetation, deadwood, forest floor litter, and soil (Pearson 
et  al., 2005). Understanding the influence of plant invasion on 
biodiversity and each of the C pools is essential to accurately assess its 
impacts on C cycling (Yang et  al., 2013). Invasive species affect 
diversity, soils, and C dynamics in several ways. They usually possess 
greater reproductive potential and higher competitive ability, which 
help to displace native species (Gooden et al., 2009a; Hughes et al., 
2017). Alteration of plant communities by invasion alters the primary 
productivity and C sequestration potential in forests (Ehrenfeld, 
2010). The C pool sizes of forests are altered by plant invasions due to 
variations in above- and belowground processes, which reflect on C 
fluxes such as rates of photosynthesis, soil respiration, etc. (Nie et al., 
2017), and ultimately ecosystem-level C.

Tropical forests are biodiverse and carbon (C)-rich ecosystems 
and play a crucial part in the global C cycle (Dixon et  al., 1994; 
Sullivan et al., 2017). Overall, 7–10% of the earth’s area is covered by 
tropical forests, but they account for 34% of terrestrial primary 

productivity (Beer et al., 2010). These are huge C repositories, storing 
about 55% of the world’s forest C (471 ± 93 Pg C), and contain the 
highest C stocks (Pan et al., 2011). Among the different tropical forest 
types, dry forests are the most threatened and understudied 
ecosystems, and they are modulated by seasonal ecological processes. 
Seasonally dry forests cover 42% of tropical ecosystems and receive 
250–2,100 mm of rainfall annually (Murphy and Lugo, 1986).

As per the India State of Forest Report (2019), tropical dry 
deciduous forests cover 40.9% of India’s total forest cover. Madhya 
Pradesh has the largest forest cover of tropical dry forests, comprising 
roughly 84% of the state’s forest cover. Lantana camara is a highly 
invasive plant with 650 varieties and occurs in over 60 countries 
(Global Invasive Species Database, 2020).

L. camara is an aggressive, fast-growing, perennial shrub of the 
Verbenaceae plant family. Native to tropical Central and South 
America, it exhibits significant genetic diversity and phenotypic 
plasticity, enabling it to survive under diverse climatic conditions 
(Adhikari et al., 2024). Initially introduced to India for ornamental 
purposes, it has since spread across diverse landscapes, including 
tropical rainforests, semi-arid regions, and mangrove ecosystems 
(Mungi et  al., 2018). Its expansion is particularly pronounced in 
habitats that have experienced disturbances such as fires or floods, 
where native plant species are under stress. With increased canopy 
openings allowing light penetration and availability of soil resources, 
L. camara quickly colonizes the disturbed habitats. Seed dispersal by 
birds and the release of chemicals that inhibit other plants (allelopathy) 
give L. camara a competitive advantage over native species (Mungi 
et  al., 2020). Despite long-term intensive control efforts in India, 
L. camara has only continued an upward trajectory of spread and 
invasion, and the spread has been projected to expand under climate 
change (Bhagwat et al., 2012; Adhikari et al., 2024). It covers over 13 
million hectares, threatening 44% of India’s forest cover by invading 
almost all dry deciduous forests (Sharma et al., 2005; Sharma and 
Raghubanshi, 2006; Goyal et al., 2018; Mungi et al., 2020). L. camara 
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has also extensively invaded Central India’s forest ecosystems (Love 
et al., 2009; Bhagwat et al., 2012; Wagh and Jain, 2018). The main goal 
of this research was to understand the effects of shrub (L. camara) 
invasion on plant species richness and C pools {trees, understorey, 
detritus (deadwood + forest floor litter), and soil organic carbon} of 
Central Indian tropical dry deciduous forests. Our specific objectives 
were: (1) to assess the impacts of L. camara invasion on plant diversity 
and ecosystem-level C pools and (2) quantify changes in these 
parameters due to shrub invasion.

2 Materials and methods

2.1 Study area

The present study was undertaken in three forest study sites in 
Sagar, Madhya Pradesh, Central India (Figure 1; Table 1). The study 
area is located in north-central Madhya Pradesh and is surrounded by 
the Vindhyachal mountain range. The forest type in the study region 
belongs to group 4b as per Champion and Seth’s (1968) classification. 
A subtropical climate with a hot summer (March to mid-June), 

FIGURE 1

Geographical location of the three study sites in Madhya Pradesh, Central India.
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followed by a rainy season (mid-June to September) and a cool winter 
(October to February), prevails in the study region. The mean annual 
minimum temperature is 11.6°C, and the mean maximum 
temperature is 40.7°C, whereas the mean annual rainfall is 1197.6 mm 
in the study area (WorldClim, 2024). The southwestern region of the 
district receives the heaviest rainfall, and the intensity decreases 
toward the north and east. The soil type is clayey to sandy loam in all 
the study sites. All three study sites are comprised of open forests, with 
grazing, firewood, and non-timber forest produce collected by local 
people being observed. Butea monosperma, Tectona grandis, 
Lagerstroemia parviflora, and Diospyros melanoxylon are the most 
prevalent tree species in this forest, which has now been invaded by 
L. camara (Dar et al., 2019).

2.2 Sampling of diversity and biomass

Fieldwork was carried out in 2017 and 2018, and three study sites 
were chosen after an extensive reconnaissance survey 
(Supplementary Figure 2). The study sites were chosen based on the 
differences in altitude, structure, and composition (Table  1; 
Supplementary Tables 1–3). Each site was divided into two sub-sites 
based on the presence or absence of the shrub, L. camara – they were 
classified as uninvaded (UI; L. camara cover absent) and L. camara-
invaded (LI; presence of L. camara cover >50%) following Gooden 
et al. (2009a). In each sub-site, 10 plots of 2,500 m2 (50 m × 50 m) 
were laid randomly in the study site (a total of 60 plots – 30 in UI and 
30 in LI). The study plots were randomized based on a rarefaction 
curve analysis to ensure representative sampling (Figure 2).

Phytosociological attributes such as tree richness, frequency, 
density, basal area, and size class distribution were enumerated in all 
the plots. Each 2,500 m2 plot was further partitioned into 25 (100 m2) 
quadrats for easy sampling (Misra, 1968). The stems were considered 
as trees: >3–9.9 cm DBH (juveniles) and ≥ 10 cm DBH (adults) 
(Chaturvedi et al., 2012a; Chaturvedi et al., 2012b; Baboo et al., 2017). 
Tree and liana stem with a diameter greater than 3 cm at breast height 
(DBH) were measured (Knight, 1963). The girths of the 

multi-stemmed trees were measured separately. The above- and 
belowground (AGB and BGB, respectively) C storage was estimated 
following the standard biomass equations using tree DBH, height, and 
wood density (Zanne et al., 2009). The height of all trees was measured 
using a digital Haglof clinometer.

Allometric equations used:
The tree AGB was estimated following Chave et al. (2014):

( )2AGB 0 : 0673 DBH H 0.976ρ= × × ×

The AGB of tree juveniles was calculated following Chaturvedi 
et al. (2012a), Chaturvedi et al. (2012b):

( )( )( )2AGB 3.344 0.443 LN DBH = + × 
 

The woody climber biomass was estimated following Schnitzer 
et al. (2006):

( )( )( )AGB EXP 1.484 2.657 LN DBH= − + ×

Tree BGB was calculated following Cairns et al. (1997):

( )( )( )BGB EXP 1.0587 0.8836 LN AGB= − + ×

The BGB of tree juveniles and climbers was estimated following 
Ravindranath and Ostwald (2008):

BGB AGB 0.26= ×

2.3 Sampling understorey and detritus

To sample the understorey, ten 25 m2 (5 m × 5 m) quadrats were 
laid in each plot to record shrubs (including L. camara) and climbers. 
An additional ten 1 m2 (1 m × 1 m) quadrats were used for herbs. The 
understorey vegetation was clipped at the base during the peak 
growing period. The clipped biomass was weighed fresh on-site with 
a digital balance in the field, and five replicate samples were transferred 

TABLE 1 Study site characteristics of uninvaded (UI) and Lantana-invaded (LI) sites of tropical dry deciduous forests in Madhya Pradesh, Central India.

Parameter Uninvaded (UI) Lantana-invaded (LI)

Site-I Site-II Site-III Site-I Site-II Site-III

Latitude (°) 23.46–23.47 23.19–23.20 24.39–24.39 23.46–23.47 23.19–23.20 24.39–24.39

Longitude (°) 78.77–78.78 79.03–79.04 79.23–79.23 78.77–78.78 79.03–79.04 79.23–79.23

Altitude (m) 536–568 428–476 386–397 535–588 435–460 378–393

Mean annual temperature (°C) 25.2 25.2 24.8 24.7 25.1 25.2

Mean annual precipitation (mm) 1,185 1259.2 1122.8 1189.8 1,247 1126.4

Tree density (No. ha−1) 528 443 400 343 354 300

Tree basal area

(m2 ha−1)
22.5 18.2 18.3 15.2 12.3 16.5

Tree species richness 21 30 17 13 24 17

Genera 20 29 16 12 22 17

Families 13 17 11 8 13 12

Mean tree DBH 20.96 19.8 22.2 21.4 19.3 23.3
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to the lab. These samples were dried in a hot-air oven at 105 ± 5°C for 
72 h and were weighed again for dry mass. The detritus biomass 
(deadwood + litter) was calculated following Ravindranath and 
Ostwald (2008). The estimated biomass was converted to C by 
following the conversion factor (0.5) as per the Intergovernmental 
Panel on Climate Change (IPCC, 2006).

2.4 Soil sampling and laboratory analyses

The soil samples in the LI and UI subsites were collected in all the 
plots. Five random points were chosen in each plot, and standing crop 
litter was cleared before collecting the soil samples. A soil core sampler 
with an internal diameter of 6 cm and a total of 60 soil samples (at a 
depth of 0–50 cm) were collected in labeled polyethylene bags before 
being transported to the laboratory. The samples were air-dried, 
sieved, and ground to a fine powder in the laboratory.

Walkley and Black’s (1934) method was used to estimate soil 
organic carbon (SOC). For bulk density (BD; g/cm3) estimation, three 
replicates of undisturbed soil cores (0–50 cm) were collected in each 
plot. The soil samples were taken to the laboratory, oven-dried at 
105 ± 5°C for 72 h, and then re-weighed. The coarse rocky fragments 
were removed using a 2 mm sieve and re-weighed. Soil BD was 
calculated following Pearson et al. (2005):

 

( )
( )

( ) ( ) ( )

3

3

3 3

Bulk density g / c

Oven dried mass g /

Core cylinder volume – Mass of coarse fragments g / 2.65 g / c

m

m

m m
=

The SOC of soil samples was calculated following Pearson 
et al. (2005).

( ) ( ) ( )( )1 3SOC Mg C ha BD g / m Depth cm C 100−  = × × ×  

Soil moisture (M%) was measured using the gravimetric method, 
while soil pH (1:2.5 ratio of soil to water) was determined using a 
digital pH meter. Climatic variables, such as minimum and maximum 
temperatures, mean annual temperature (MAT), and mean annual 
precipitation (MAP), were obtained for all plots from the WorldClim 
dataset (WorldClim, 2024) using the sp. and raster packages in R 3.6.2. 
Additionally, topographic variables, such as slope and aspect, were 
derived using R 3.6.2.

2.5 Statistical analyses

Ecosystem-level carbon storage was calculated by summing 
carbon stored in trees, the understorey, detritus, and soil organic 
carbon (SOC) (Ravindranath and Ostwald, 2008; Kothandaraman 
et al., 2020). A one-way analysis of variance (ANOVA) was used 
for statistical analysis. Tukey’s HSD test tested the differences in 
mean ± standard error of diversity, vegetation C stocks, and SOC 
(p < 0.05). All the statistical analyses were conducted using SPSS 
22.0 (SPSS Inc, 2013). Linear correlations were conducted to assess 
the relationships of L. camara density with other descriptor 
variables (Supplementary Table 5).

3 Results

3.1 Impact of L. camara on richness and 
species diversity

Significantly lower (p < 0.05) species richness (SR, 98 species) 
was observed in LI sites than in UI sites (132 species). The mean SR 
of trees was significantly (p < 0.05) lower in LI sites (saplings - 13, 
juveniles - 30, and adult trees - 29) than in the UI sites (saplings - 
21, juveniles - 33, and adult trees - 40). For saplings, juveniles, and 
adults, the total SR was 55, 72, and 54 in LI, and 71, 98, and 76 in 
UI sites, respectively (Figure  3; Supplementary Table  1; 
Supplementary Figures 5–9).

3.2 Carbon stocks of trees, understorey 
and detritus

The mean aboveground total tree C stock (juvenile carbon + 
adult carbon) was significantly (p = 0.032) lower in LI sites 
(48.1 ± 3.6 Mg C ha−1) than in UI sites (66.7 ± 4.8 Mg C ha−1; 
Figure  4). The total tree aboveground C ranged from 43.1 to 
50.6 Mg C ha−1 in LI sites and 59.4 to 72.2 Mg C ha−1 in UI sites. 
The belowground C stock also showed the same trend as the latter, 
which has been calculated from the former. Significantly (p < 0.001), 
higher mean shrub C stock was observed in LI sites (1.87 ± 0.13 Mg 
C ha−1) than in UI sites (0.008 ± 0.004 Mg C ha−1) sites. Overall, 
significantly (p < 0.001) higher total understorey C stock (shrub 
C + herb C) was observed in LI sites than in UI sites. The total 
understorey C ranged from 1.7 to 2.4 Mg C ha−1 in LI sites and from 
0.08 to 0.41 Mg C ha−1 in UI sites.

The mean litter C stock was significantly (p < 0.0001) higher in LI 
sites (1.8 ± 0.1 Mg C ha−1) than in UI sites (1.5 ± 0.1 Mg C ha−1). 
Overall, the mean detritus C stock (litter carbon + deadwood carbon) 

FIGURE 2

Rarefaction curves with a 95% confidence interval of estimated 
species richness to sample plots.
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was higher in LI sites (8.1 ± 1.3 Mg C ha−1) than in UI sites 
(6.2 ± 0.7 Mg C ha−1), although non-significant. The mean total 
biomass C stock of all the pools (tree C + understorey C + detritus C) 
was found to be significantly (p < 0.05) lower (69.2 ± 3.4 Mg C ha−1) 
in LI sites than in UI sites (88.5 ± 5.9 Mg C ha−1; Figure  4; 
Supplementary Table 4).

3.3 Soil organic carbon (0–50 cm)

SOC stocks were significantly (F = 10.67, p < 0.001) higher in 
LI sites than in UI sites. In LI sites, SOC stocks ranged from 64.6 to 
84.1 Mg C ha−1, with a mean of 73.1 ± 2.7 Mg C ha−1, whereas, in 
UI sites, the SOC stocks ranged from 55.7 to 76.1 Mg C ha−1, with 
the mean of 65.2 ± 2.8 Mg C ha−1 for a depth of 0–50 cm 
(Supplementary Table 4). L. camara density was related to changes 
in soil properties. The values of BD (g cm−3) and pH were 
significantly (F = 12.96, p < 0.05) lower in LI sites than in UI sites, 
whereas moisture (M%) was significantly (F = 68.55, p < 0.001) 
higher in LI sites than in UI sites. The SOC and soil total nitrogen 
(STN) stocks were significantly (F = 48.3, p < 0.001; F = 51.7, 
p < 0.001) higher in LI sites than in UI sites (Figure 5).

3.4 Ecosystem-level carbon storage

The total ecosystem C (TEC) storage, comprising tree juveniles, 
adults, understorey (shrubs + herbs), detritus (litter + deadwood), and 
SOC, varied significantly (p < 0.001) among LI sites and UI sites 
(Supplementary Table 4). Significantly (p < 0.05) lower TEC pool was 
found in LI sites (mean 142.4 Mg C ha−1) than in UI sites (mean 
153.7 Mg C ha−1).

3.5 Carbon allocation patterns

The C allocation pattern among the different ecosystem components 
was markedly different in LI sites from those of UI sites. Overall, tree 
juveniles, adults, understorey, detritus, and SOC contribute 3.7, 55.5, 
2.0, 8.0, and 73.1 Mg C ha−1, and 5.9, 76.1, 0.21, 6.27, and 65.3 Mg C 
ha−1 in LI sites and UI sites, respectively (Supplementary Table 4). The 
percent allocation of tree juveniles, adults, understorey, detritus, and 
SOC to the total ecosystem C pool was 2.6, 39.1, 1.4, 5.5 and 51.3% in 
LI sites and 3.8, 49.7, 0.2, 4.0 and 42.3% in UI sites, respectively 
(Figure 6). In LI sites, carbon stocks of tree juveniles, adults, and herbs 
were reduced by 23.3, 15.7, and 20.3%, respectively, compared to UI 

a

b

a
b

a

b

a

b

FIGURE 3

Species richness (SR; No. of species) of tree saplings, juveniles, herbs, and total plants (trees, herbs, and shrubs) in uninvaded (UI) and Lantana-invaded 
(LI) sub-sites. Different letters show (p < 0.05) different means significantly between them by Tukey’s HSD post hoc test.
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sites. Conversely, shrub, detritus, and SOC stocks increased by 95.1, 9.1, 
and 7.9%, respectively (Supplementary Figures 1,4).

3.6 Diameter class-wise distribution and 
percent change in carbon stock

In all three LI sites, the 20.1–30 cm diameter class held the highest 
carbon stock, followed by the 30.1–40 cm diameter class (Figure 7A). 
The C stocks were low by 35, 23.7, 23, and 21.8% in the 60.1–70, >80.1, 
0–10, and 30.1–4-40 cm diameter classes, respectively, in LI sites than 
UI sites (Figure 7B).

3.7 Relationships of L. camara density with 
descriptor variables

A significantly negative relationship has been found between 
L. camara density and plant diversity (r = −0.459), tree juvenile C 
(r = −0.475), herb C (r = −0.384), understorey C (r = −0.686), and 

total ecosystem C storage (r = −0.208). On the other hand, a significant 
positive relationship was observed with shrub C (r = 0.645), litter C 
(r = 0.425), and SOC (r = 0.89; Table 2). The SOC, STN, and M% 
showed significant positive correlations, whereas soil pH correlated 
significantly negatively with L. camara density. Soil bulk density had a 
non-significant negative relationship with L. camara density.

The Principal Components Analysis (PCA) assessed the 
relationships among diversity, structural attributes, and environmental 
factors with L. camara density (Supplementary Figure 3). Eigenvalues 
of the dominant axis were 6.25, 4.92, 3.93, 2.03, and 1.04, respectively, 
and the corresponding percentage variances were 28.4, 22.4, 17.9, 9.2, 
and 5.8. These values reflect variations in elevation, mean annual 
precipitation, slope, moisture, and pH, which accounted for 83.7% of 
the variation in L. camara density.

4 Discussion

Biological invaders represent a major change element in forest 
ecosystems (Vitousek et al., 1996). They are known for their impacts 
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FIGURE 4 (CONTINUED)
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on the community structure, species composition, and diversity of 
both above- and belowground communities, with significant changes 
in functioning and processes (Gaertner et al., 2009; Ehrenfeld, 2010; 
Vilà et al., 2011; Richardson et al., 2011; Gioria et al., 2014). The C 
stocks of different pools are greatly impacted by shrub invasion by 
changing their structure, above- and belowground biomass, litter 
production, and SOC (Tilman et al., 2001; Liao et al., 2008a, b; Fornara 
and Tilman, 2008). L. camara is a widely distributed invasive weed and 
has engulfed the maximum area of tropical dry forests in the Central 
Indian landscape (Mungi et  al., 2020). Thus, the invasion could 
drastically alter the structural and functional processes. Any such 
change by invasion would significantly influence regional and global 
C cycling, exacerbating the effects of climate change.

The total carbon stocks of adult trees (above- and belowground) 
were 15.4% lower in LI than in UI sites, though this difference was not 
statistically significant (p = 0.060). This insignificance in total adult 
tree biomass C could be attributed to the predominance of Tectona 
grandis trees with almost similar densities, basal areas, and 
representation in higher diameter classes (≥ 60 cm DBH). Similar 

results were obtained by Litton et  al. (2006), who reported 
insignificantly higher aboveground tree biomass stocks between native 
and Pennisetum setaceum-invaded tropical dry deciduous forests in 
Hawaii, and Gaudel et al. (2016), who reported lower aboveground 
tree biomass and C stocks in areas that are highly invaded by Mikania 
micrantha compared to medium- and lowly invaded areas in Parsa 
Wildlife Reserve, Nepal.

In the present study, biomass C stocks of juvenile trees were 
significantly (p < 0.0001) lower by 22.9% in LI sites than in UI sites 
(Supplementary Table 4). Our results confirm with Litton et al. (2006) 
and Gaudel et al. (2016), who reported significantly lower biomass C 
stocks in tree seedlings in areas invaded by Pennisetum setaceum and 
Mikania micrantha, respectively. This significant difference in juvenile 
tree biomass and C stock may be  due to the presence of greater 
L. camara density/cover, which was above the threshold limit (> 70% 
cover) in these sites (Gooden et al., 2009a), which could have impacted 
the growth of tree saplings and juveniles, thereby reducing their density 
and basal area. Plant invasion can result in changes in the structure, 
composition, diversity, evenness, and regeneration potential of forests 

a
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a

a

a

b a b

FIGURE 4

Variation in carbon stocks (total tree C, shrub+herb+understorey C, litter+deadwood+detritus C, SOC) in uninvaded (UI) and Lantana-invaded (LI) sub-
sites. Different letters show (p < 0.05) different means significantly between them by Tukey’s HSD post hoc test.
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(Saxena and Singh, 1985; Saxena, 1991; Ambika et al., 2003; Taylor 
et al., 2012; Kumar et al., 2020). The higher density of L. camara alters 
the structure, species composition, diversity, and biomass of native 
plants. The impacts of invasion by woody plants on native tree juvenile 
and adult biomass C stocks are reported to be greater than those of 
non-woody and non-nitrogen-fixing plants (Liao et al., 2008b).

Total tree biomass and carbon stocks were significantly lower 
(by 17.5%; p < 0.05) in LI sites compared to UI sites. Invasion could 

exert positive, negative, or neutral impacts on different C pools, 
depending on the type of invader and its characteristics and the type 
of community undergoing invasion (Hughes et al., 2017). In the 
present study, the lower total tree biomass and C stocks in LI sites 
than UI sites are due to the lower tree densities and basal areas in 
LI sites. The invasion of L. camara has altered the structural 
diversity, changing the size of saplings and juveniles and their 
relative dominance (Ens and French, 2008; Fisher et  al., 2009). 

b b

b

b

a a
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b
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FIGURE 5

Soil organic carbon (SOC; Mg C ha−1), soil total nitrogen (STN; Mg C ha−1), moisture (M; %), pH, and bulk density (BD; g cm−3) in uninvaded (UI) and 
Lantana-invaded (LI) sites. Data are presented as mean values. Different letters show significant differences at a p-value of <0.05.
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Invasive plants impact native plants by changing their structural 
composition (Mason and French, 2008). Hejda et al. (2009) reported 
a reduction in structural diversity in invaded plots compared to the 
uninvaded plots. High L. camara invasion suppresses the growth 
and recruitment of vegetation by changing the microenvironment 
and inhibits germination by the release of allelochemicals in soil 
(Gentle and Duggin, 1997; Lewis et al., 2004). L. camara thickets 
impede the recruitment of smaller individuals by outcompeting 
them for essential resources, including light and space (Gooden 
et al., 2009b; Ramaswami and Sukumar, 2011, 2016; Sundaram and 
Hiremath, 2012). This reduces basal area, which is an indicator of 
biomass C (Litton et  al., 2006; Adomako et  al., 2019; Raha 
et al., 2020).

The shrub C stock was significantly more at 95.1% in LI sites than 
in UI sites, whereas the herbaceous C stock was significantly less at 
23.2% in LI sites than in UI sites. The significantly (p < 0.0001) higher 
C stocks of shrubs in LI sites are due to the presence of higher density, 
basal area, and biomass of L. camara in these sites than in the UI sites. 
However, Lantana density did not significantly correlate with shrub 
biomass, excluding L. camara (R2 = 0.10). Our values of shrub biomass 
and C stocks are in concurrence with the findings reported by Mandal 
and Joshi (2015b) in the subtropical deciduous forests of western 
Himalaya, India (3.82 Mg C ha−1), Pande (2005) from tropical dry 
deciduous teak forests (0.69–3.77 Mg ha−1), Oraon (2012) in tropical 
dry deciduous forests, Chhattisgarh (1.15 and 6.79 Mg ha−1), Jhariya 
et al. (2014) in the tropics of Chhattisgarh, India (2.48–5.88 Mg ha−1), 
but lower than the values reported by Jhariya (2017) from Bhoramdeo 
Wildlife Sanctuary, Chhattisgarh, India (6.82–15.71 and 2.93–
6.76 Mg ha−1 biomass and C, respectively), Singh and Singh (1991) 
from tropical dry forest of Vindhyan region (7.1 and 20.98 Mg ha−1) 
and Swamy et al. (2010) from tropical evergreen forests of Western 

Ghats (38.1–86.3 Mg ha−1). The significantly (p < 0.0001) lower C 
stock of herbs in LI sites could be due to the lower herb density, basal 
cover, and evenness. L. camara canopies are known to intercept the 
incoming sunlight, causing shade (Asner et al., 2008, 2010), inhibiting 
the recruitment of understorey herbaceous vegetation by displacing 
them through competition for resources (water, nutrients, light, space, 
etc.), allelopathy and by altering soil properties (Walck et al., 1999; 
Vila and Weiner, 2004; Yurkonis et al., 2005; Bjerknes et al., 2007; 
Pejchar and Mooney, 2009; Timsina et al., 2011). Similarly, Hughes 
et al. (2006) have also reported a decline in herbaceous C pool due to 
Prosopis glandulosa encroachment in the Southern Great Plains of the 
United States.

Significantly (p < 0.001), higher litter and deadwood C stocks 
(non-significant) were recorded in LI sites than in UI sites. Litter and 
deadwood C were higher by 9.1 and 14.5%, respectively, in LI sites. 
The higher litter C stocks in LI sites are due to a large accumulation of 
L. camara litter and non-extraction of deadwood timber by the local 
people and the forest department. L. camara thickets also hinder 
entering the forest for timber extraction. High L. camara density 
might be the reason for higher detritus biomass and C stocks in LI 
sites than in UI sites because the latter are relatively open and have less 
surface litter.

More SOC stocks in LI sites than in the UI sites could have been 
due to significantly higher litter inputs with varying litter composition, 
higher nitrogen concentration, higher moisture content, and lower 
lignin and cellulose content that might have enabled rapid 
decomposition of L. camara litter (Ehrenfeld, 2003; Liao et al., 2008a; 
Li et al., 2016). This implies that the litter quantity and quality may 
alter soil nutrients.

The TEC stocks and allocation patterns showed significant 
changes between LI sites and UI sites. Invasion by woody plants tends 
to have considerable impacts on C stocks and profoundly alters the 
allocation patterns (Liao et  al., 2008a). In this study, the greater 
allocation of C stocks in shrubs, detritus, and soil is due to higher 
L. camara density, non-extraction of deadwood, and greater litter 
inputs, which may have resulted in higher allocation in these 
components. On the other hand, lower allocation of C stocks in tree 
juveniles, adults, and herbs could be because high L. camara density 
could have inhibited their growth and recruitment by intercepting 
light, releasing allelochemicals, resource competition, and so on, as 
suggested by Asner et al. (2010).

In the present study, SOC showed significant positive 
correlations with L. camara density, basal area, biomass, and litter. 
Similarly, Sharma and Raghubanshi (2006, 2007) have found a 
positive relationship between L. camara cover and SOC in tropical 
dry deciduous forests in India. Mandal and Joshi (2014, 2015b) have 
found a strong relationship between L. camara biomass and SOC in 
the central Himalayas, India. Gómez-Rey et al. (2013) have also 
found a positive relationship between shrub density and soil organic 
matter in Mediterranean oak woodland.

The distribution of different size classes indicates the C storage 
and regeneration potential of any forest landscape. Small, medium-
sized, and large trees are important in C storage in any forest 
ecosystem (Brown et al., 1997; Baishya et al., 2009; Borah et al., 2013). 
In the present study, C stocks were reduced in most of the diameter 
classes in LI sites. This could be due to lower density and basal area in 
the invaded sites. L. camara impedes the recruitment of small-sized 
tree individuals into larger diameter classes and the growth of large 

FIGURE 6

Percent allocation of different ecosystem components in uninvaded 
(UI) and Lantana-invaded (LI) sites of tropical dry deciduous forests in 
Madhya Pradesh, Central India.
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DBH classes, causing a reduction in density and basal area (Alemu 
and Terefe, 2015). The conversion of these forests to shrublands will 
reduce the tree C pools (Jaramillo et al., 2003; Bonino, 2006).

Mitigating the spread of L. camara using fire and biological 
control has been recorded as early as 1921 in India (Troupe, 1921; 
Bhagwat et al., 2012). However, fire is known to facilitate further 
expansion of this invasive shrub (Hiremath and Sundaram, 2005). 
However, chemical control followed by planting fast-growing 
native species has yielded positive results in Punjab, India (Luna 
et  al., 2009). There have also been efforts to contain L. camara 
spread while boosting economic benefits by using it as a green 
compost and using the stems to make baskets (Nanjappa et al., 
2005; Sharma et  al., 2005). Love et  al. (2009) developed a new 
strategy to manage L. camara invasion in Indian forest ecosystems, 
which is to first remove the L. camara plants by cutting rootstock 
method followed by weeding of its saplings under the trees (to 
prevent further seed dispersal) and ecological restoration of 
grasslands/forests as per the stakeholder needs. Cost–benefit 
analyses of different management options need to be considered 
while devising the appropriate control plan (Negi et  al., 2019). 
Successful management of L. camara invasion required an 
integrated approach involving all stakeholders, including state 
governments, national networks, and, where necessary, global 
coordination (Adhikari et al., 2024).
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(A) Diameter class-wise distribution of saplings, juveniles, and adult trees in terms of stem density, and (B) Percent (%) change in C stocks in different 
DBH classes in uninvaded (UI) and Lantana-invaded (LI) sites of tropical dry deciduous forests in Madhya Pradesh, Central India.

TABLE 2 Correlations (r-values) between Lantana density and other 
descriptor variables.

Descriptor r-value Descriptor r-value

Tree juvenile C −0.475* SOC (0–50 cm) 0.890*

Tree adult C −0.116 Total ecosystem C −0.208*

Total tree C −0.293 Diversity

Shrub C 0.645* Tree saplings −0.720*

Herb C −0.384* Tree juveniles −0.280

Understorey C −0.686* Tree adults −0.261

Litter C 0.425* Total trees −0.110

Deadwood C 0.394 Herbs −0.385

Detritus C 0.413

r-values with an asterisk represent a significant (p < 0.05) relationship between the variables 
after Bonferroni correction. Tree C includes both above- and below-ground C stock.
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The invasion of L. camara in tropical dry deciduous forests 
significantly alters diversity, biomass, and C pools, as well as their 
allocation patterns, in Central Indian forests. However, it is 
important to note that this study is based on a one-time survey, 
meaning that the invaded sites may have had lower diversity and 
carbon levels even before the invasion. However, efforts were made 
to ensure that the study design adequately captured the differences 
between uninvaded and invaded sites. For example, the UI plots 
were captured at distances of 50–100 m from LI plots under similar 
site conditions. These findings emphasize the critical need for long-
term monitoring and effective management of L. camara to prevent 
its further spread and mitigate future ecological and biodiversity-
related challenges.

5 Conclusion

In the present study, LI sites had lower diversity and biomass C 
stocks in tree juveniles and herbs but higher SOC and litter C compared 
to UI sites. The density of L. camara was negatively correlated with 
plant diversity, tree juvenile C, herb C, and total ecosystem C storage, 
while it was positively correlated with litter C and SOC. These findings 
reveal that plant species richness and C pools tend to be altered by 
invasion, which has important implications for C cycling. As L. camara 
reduces tree regeneration, it could gradually shift diversity patterns 
across the landscape. Furthermore, although shrub biomass may 
increase due to L. camara invasion, the reduction in tree regeneration 
is likely to disrupt the overall balance of ecosystem-level C pool 
partitioning in the long run. This study improves our understanding of 
how shrub invasion impacts diversity and ecosystem-level carbon 
storage, highlighting the need for long-term monitoring, conservation, 
and restoration efforts to mitigate these effects.

To effectively manage the spread of this invasive shrub, an 
integrated approach should be adopted, involving a thorough analysis 
of the cost–benefit dynamics and the ecological and socioeconomic 
consequences. Additionally, more research is needed to understand 
periodic changes in plant diversity and C pool partitioning following 
L. removal, which could inform more effective management and 
restoration strategies.
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