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Tree attributes, such as height (H) and diameter at breast height (D), are essential 
for predicting forest growth, evaluating stand characteristics and developing 
yield models for sustainable forest management. Measuring tree H is particularly 
challenging in uneven-aged forests compared to D. To overcome these difficulties, 
the development of updated and reliable H-D models is crucial. This study aimed 
to develop robust H-D models for Larix gmelinii forest by incorporating stand 
variables. The dataset consisted of 7,069 Larix gmelinii trees sampled from 96 
plots at Northeast China, encompassing a wide range of stand densities, age 
classes, and site conditions. Fifteen widely recognized nonlinear functions were 
assessed to model the H-D relationship effectively. Model performance was 
assessed using root mean square error (RMSE), mean absolute error (MAE), and 
the coefficient of determination (R2). Results identified the Ratkowsky model (M8) 
as the best performer, achieving the highest R2 (0.74), the lowest RMSE (16.47%) 
and MAE (12.50%), at statistically significant regression coefficients (p < 0.05). 
Furthermore, M8 was modified into 5 generalized models (GMs) by adding stand-
variables (i.e., mean height, mean diameter and volume and their combination), 
the results indicate that GM2 was the best model achieving R2 of 0.82% and RMSE 
of 13.7%. We employed generalized nonlinear mixed-effects modeling approach 
with both fixed and random effects to account for variations at the individual plot 
level, enhancing the predictive accuracy. The model explained 71% of variability 
with significant trends in the residuals. The model was calibrated using response 
calibration method, through EBLUP theory. Our findings suggest that incorporating 
stand-level variables representing plot-specific characteristics can further improve 
the fit of mixed- effects models. These advancements provide forest authorities 
with enhanced tools for supporting sustainable forest management.
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1 Introduction

Forest management is essential for the sustainable utilization and 
conservation of forest resources, predicting ecosystem dynamics, habitat 
restoration, carbon sequestration, and promoting sustainable livelihoods 
(Lindner et  al., 2010; Pretzsch et  al., 2015). It encompasses various 
practices like growth and yield modeling (Schneider et al., 2024), biomass 
estimation (Anees et al., 2024), thinning (Sakib et al., 2024), sustainable 
grazing (Roberts et al., 2021), forest mechanism and reforestation (Saha 
et al., 2023a; Saha et al., 2023b). The height (H) and diameter at breast 
height (D) model is an integral part of forest growth and yield models, 
as an essential input for biomass, carbon budget, and several forest 
models used in forest management plans (Vanclay, 1995). The correlation 
between D and H is a pivotal aspect of forestry study, frequently 
employed for estimating forest resources and wood production (Fu et al., 
2018). So, accurately assessing trees H and D is essential for efficient 
forest management (Adame et al., 2008) and modeling growth in stands 
(Calama and Montero, 2004). Measuring D is a quick, easy, and reliable 
process (Lin et al., 2022), while measuring H is difficult, time-consuming, 
and costly (Zang et al., 2016). Moreover, the measurement of H is often 
severely affected by visual impairment, which may produce extensive 
bias (Wang et al., 2019).

Hence, H and D relationship models are widely used to address 
these challenges (Ng'andwe et al., 2019). By this modeling approach, 
H of a few sample trees and D of all trees are measured in a specific 
plot, and the total height of the whole plot is predicted with H-D 
models (Hao et  al., 2016). Developing H-D regression models 
decreases the cost of field-level data acquisition (Bettinger et al., 2016). 
These models facilitate the appropriate formulation of stand structure 
(Dorado et al., 2006), volume, biomass, and other critical parameters 
essential for growth modeling and sustainable forest management 
(Parresol, 1992).

Many H-D relationship models were created and analyzed, 
including simple to generalized models (Temesgen and Gadow, 2004) 
and linear to nonlinear models (Mehtatalo and Lappi, 2020). Simple 
models utilize H as a responsive variable to D as an independent 
variable. The relationship between H and D is not constant and varies 
from stand to stand, making simple models unreliable in estimating 
H from D (Ciceu et al., 2020). Generalized H-D models associated 
with stand-level derivatives, such as mean diameter (MD), Mean 
height (MH), Stand density (Ns), and basal area, can better explain the 
H-D relationship and overcome stand-level variations (Bronisz and 
Mehtätalo, 2020). The addition of stand-level variables better explains 
the influence of climatic and topographic factors on growth by 
capturing variability more effectively (Carrer et  al., 2007). The 
connectivity between H-D exhibits a hierarchical structure, indicating 
that measurements, even those obtained from the same plot or stand, 
are not independent and have variations (Arcangeli et al., 2014). This 
situation becomes more critical in uneven-aged forests, resulting in 
highly correlated data (Ciceu et al., 2020). To overcome this situation, 
mixed effect models consist of fixed effect features applied to the entire 
population (i.e., trees) and random effect features extended to every 
specific sampling tree level (Pinheiro and Bates, 2006). These features 
improve the effectiveness of mixed-effects models, especially for 
making new predictions by utilizing existing available information. 
The mixed-effects modeling strategy addresses the higher variability 
of tree H at the stand level (i.e., sample plot level). It improves the 
model’s accuracy and predicts an unbiased and efficient estimation of 
the H-D growth model (Dorado et al., 2006).

The mixed effect modeling approach is applied to linear and 
nonlinear models to analyze highly complicated data. The 
relationship between H and D mostly shows nonlinear behavior, as 
growth is affected by different ecological factors (Huang et  al., 
1992). Nonlinear mixed effect models (NLME), including 
conventional regression models, utilize fixed parameters to evaluate 
covariate or treatment effects. In contrast, random parameters 
describe the variability and unpredictability of data from recognized 
and unrecognized sources and improve prediction accuracy for 
unmeasured and unrecorded field samples (Dong et al., 2016). Due 
to their flexibility, NLME models are frequently used in forestry for 
growth and yield modeling (Fang and Bailey, 2001; Corral-Rivas 
et al., 2014).

Larix gmelinii (Dahurian larch) is very significant for its 
widespread distribution across northeast Asia, including China, 
Russia, and Mongolia. In Northeast China, it is a dominant tree 
species that covers an area of about 3.14 million ha, with a volume of 
18.4 million m3 (Chen et al., 2017). It is renowned for its adaptability, 
rapid growth, and resistance to very low temperatures (Luo et al., 
2024). Larix gmelinii is very important in forest ecosystems, and 
sustainable forest management (Huang et al., 2024). The impacts of 
climate change on its growth and distribution have made precise 
growth modeling essential for sustainable forestry management in 
China (Luo et  al., 2024). This study aims to evaluate and model 
height–diameter relationships by a nonlinear mixed effects modeling 
approach for L. gmelinii to determine tree heights with higher 
precision and accuracy with suitable variables. This modeling 
framework enhances predictive accuracy and provides both 
macro-and micro-level understandings essential for conservation and 
sustainable management. The prospective objectives are to (1) identify 
the most suitable model from fifteen base H-D models, (2) integrate 
stand-level parameters to create a generalized model, and (3) practice 
a nonlinear mixed-effects modeling approach to improve 
predictive accuracy.

2 Materials and methods

2.1 Study area

The study was conducted at the Cuigang Forest Farm in the 
Daxing’an Mountains of Heilongjiang Province, Northeast China, 
located between 123°20′ to 124°21′E and 52°16′ to 52°47’N (Zhang 
et  al., 2020). This forest region, characterized by low to medium-
elevation mountains, features a distinctive northeast-to-southwest 
orientation with altitudes ranging from 180 m to 1,530 m above sea 
level. The area receives an annual precipitation of 450 mm to 500 mm, 
primarily during summer. Temperatures in the region vary 
significantly, from −52.3°C in winter to 40.6°C in summer. The 
climate is classified as cold temperate with a continental monsoon 
influence, featuring warm, humid, shorter summers and cold, dry, 
longer winters. Snow cover, approximately 50 cm deep, persists for 
about five months during winter. The soil types in this area include 
dark brown coniferous forest soils, which form under the combined 
influence of warmth and moisture in mixed forests, with meadow and 
swamp soils prevalent in lower elevations. The predominant vegetation 
comprises Larix gmelinii in natural forests, along with Betula 
platyphylla, Populus davidiana, Picea platyphylla, Pinus sylvestris, 
Quercus mongolica, and Alnus sibirica.
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2.2 Data compilation and evaluation

In 2022, data were collected from 7,069 larch trees randomly 
selected from 96 sampling plots (20 m × 30 m), representing stand 
densities, ages, and site characteristics of natural Larix gmelinii forests 
(Stehman, 2012). Comprehensive ecological data were accurately 
recorded, including physiographic, climatic, biotic, and edaphic 
factors (Tatian et  al., 2010). H was measured using a ultrasonic 
altimeter (Vertex Laser Geo, 0.1 m), and D was measured with a 
diameter tape (Saliu et al., 2021). Only dominant, mature trees with 
H ≥ 1.3 m and D ≥ 5 cm were considered; trees with deformities or 
damage and missing data were excluded to ensure data accuracy 
(McCarthy et al., 2001). After initially processing and refining data, H 
and D of 7,036 trees were used for model training (n = 4,925) and 
model testing (n = 2,111). Further statistical analysis and modeling 
were conducted in R 4.2.2 (R Core Team, 2024), utilizing nlme, dplyr, 
and ggplot packages. Descriptive statistics for variables are also 
calculated in Table 1.

2.3 Selection of H-D base models

We evaluated 15 models (Table 2) divided into two-parameter 
(n = 9) and three-parameter (n = 6) models widely used in the 
literature to find the best one. Other researchers have widely used the 
mentioned models to assess the association between H and D with 
significant variability.

The M1 was applied in forest growth and yield modeling for 
species with high data variability (Stoffels and Van Soest, 1953). M2 
was widely used in European conifers’ H-D modeling (Näslund, 
1936). M3 was used in secondary-growth Douglas fir stands (Curtis, 
1967), while M4 was applied to model the relationship between H and 
D in managed forests (Schumacher, 1939). M5 designed for single 
species, was influential in analyzing mixed-species forest data (Wykoff 
et al., 1982). M6 was used in forest dynamics, growth, and yield 
analysis of forest data (Strand, 1964) and played a vital role in 
Scandinavian forest growth simulations. The M7 and M8 models were 
documented in several ecological datasets, including H-D data from 
both plantations and natural forests (Peschel, 1938; Ratkowsky and 
Giles, 1990). M9 and M10 were effectively utilized in non-linear H-D 
models of mixed open stands with trees of different ages (Richards, 
1959; Ratkowsky and Reedy, 1986). M11 was used to estimate tree H 
in tropical forests (Molto et al., 2014), and M12 was utilized for forest 
growth assessments to explain species-specific growth patterns (El 
Mamoun et al., 2013). The M13 power equation was applied in forest 
growth modeling to clarify relationships between variables, especially 
when growth patterns show exponential or allometric scaling (Huxley, 

1932), and M14 was employed to analyze forest growth in temperate 
zones (Prodan, 1965). Lastly, M15 was utilized for non-linear data 
fitting (Bates and Watts, 1980).

Furthermore, the models’ significant characteristics are 
considered, as outlined by Lei and Parresol (2001) and Peng et al. 
(2001). Firstly, the desirable mathematical features, such as the 
number of parameters and flexibility, were considered. Secondly, the 
potential biological interpretation of the parameters and the models 
providing accurate predictions for the H-D relationships were 
ensured. Each model presented in Table 2 can be expressed in a more 
generalized format as follows, as described in Equation 1 (Salas-Eljatib 
et al., 2021)

 ( ),i i iY f X θ ε= +  (1)

where iY  represents a set of observations for the dependent variable 
H, while iX  corresponds to observations for the independent variable 
D. The vector θ  denotes the parameters for estimation, and iε  stands 
for a set of random errors. A constant value (1.3) was added to the 
right-hand side of all H-D models to meet the condition that tree H 
should be  1.3 m when tree D is zero. The scatter plots (Figure  1) 
illustrate a significant positive correlation (r = 0.82) between H and tree 
D. This suggests that tree H also tends to increase when D increases.

2.4 Generalized H-D models

Addressing the variability across various stand conditions, the 
initial base model, which solely relies on D as a predictor, was further 
analyzed. This evaluation involves integrating stand-related variables 
into the model to capture the characteristics and conditions of each 
stand. The resulting model was termed a generalized H-D model. 
Staudhammer and LeMay (2000) outline two approaches for 
integrating stand variables into base H-D models. The first approach, 
known as “parameter prediction” or the “two-stage” method, involves 
establishing the relationship between trees H and D for each plot in 
the initial stage. In the subsequent stage, the parameter estimates 
derived are linked to stand variables. The second approach, known as 
the “direct approach,” involves directly incorporating stand variables 
into the model (Parresol, 1992). It is noted that there is no definitive 
preference between these two methods in terms of the quality of the 
best fits. The parameter prediction method might be  preferred 
because it uses additional variables to predict parameters, making the 
model easier to interpret (Staudhammer and LeMay, 2000). However, 
this approach could lead to a complex model with numerous 
coefficients, especially when multiple additional variables are 
included, making it challenging to choose starting values for model 
fitting using nonlinear least squares regression. This observation was 
also apparent in our preliminary analysis. Consequently, we opted for 
the direct method following Adame et al. (2008), Sharma and Parton 
(2007), and Temesgen and Gadow (2004), which allows for the 
creation of a more concise model compared to the parameter 
prediction approach. In this study, stand variables such as mean 
diameter at breast height (MD), mean height (MH), and stand 
volume (V) (Table  1), characterizing the plots, were tested for 
inclusion in the base H-D model. Following the assessment of various 
stand variables, it was determined that integrating additional stand 
variables (MD, MH, DH, and Vs) enhanced the model’s fitness.

TABLE 1 Descriptive statistics of natural Larix gmelinii forests in 
northeast China, where Std is standard deviation, and CV is coefficient of 
variation.

Variables Min Max Mean Std CV (%)

Mean diameter, MD (cm) 9.50 21.10 13.37 2.64 19.75

Mean tree height, MH (m) 8.80 18.20 11.75 2.13 18.21

Stand density, Ns (trees hm−2) 567 2,680 1,466 546.18 37.25

Crown density, Cd (%) 25.48 90 62.60 12.06 19.24

Stand volume, Vs (m3 hm−2) 53.5 223.1 127.5 39.60 31.04
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2.5 Non-linear mixed-effect model

The mixed-effect model simultaneously incorporates both fixed 
and random effects, allowing it to capture overall population trends 
and individual-level variations. This dual capability provides greater 

flexibility compared to traditional nonlinear models. This approach 
enhances significant differences across plot levels by reducing the bias. 
Model assumptions were verified through residual analysis, examining 
residual plots for evidence of random and fixed effect structures or 
patterns that might indicate model performance. In recent years, 

TABLE 2 Alternative models of H and D for Larix gmelinii in northeast China.

Number of parameters Model Expression Name Reference

2 parametric models

M1 1.3Y aX b= + Stoffels Stoffels and Van Soest (1953)

M2 ( )1.3 22Y X aX b= + + − Naslund Näslund (1936)

M3 ( )1.3 1Y aX X b= + + − Curtis Curtis (1967)

M4
1.3Y ae

b
X= +

−
Schumacher Schumacher (1939)

M5
1.3 1Y e

ba
X= +

+
+

Wykoff Wykoff et al. (1982)

M11
aXY

b X
=

+
Molto Molto et al. (2014)

M13 Y aX b= Power Huxley (1932)

M14
XY

a bX
=

+
Pardon Prodan (1965)

M15
1

aXY
X bX

=
+ +

Bates & Watts Bates and Watts (1980)

3 parametric models

M6 1.3
2

2
xY

aX bX c
= +

+ +
Strand Strand (1964)

M7
1.3 11

aY

bX c

= +
+ Peschel Peschel (1938)

M8
1.3Y ae

b
X c= +

−
+

Ratkowsky Ratkowsky and Giles (1990)

M9 ( )1.3 1
1

Y a be cX= + +
−− Logistic Ratkowsky and Reedy (1986)

M10 ( )1.3 1Y a e
cbX= + − − Richard Richards (1959)

M12 xY
b cX

a

a=
+

El Mamoun El Mamoun et al. (2013)

FIGURE 1

Scatter plots for (A) training date and (B) testing data.
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mixed-effects models have gained traction for addressing more 
considerable variability in tree H at the subject level, such as the sample 
plot level, thereby improving prediction accuracy. Unlike conventional 
models that only predict average population outcomes, mixed-effects 
models account for group-specific variations, overcoming this 
limitation. They apply to both individual and generalized H-D models.

Non-linear mixed-effect models offer several advantages over 
standard linear models in uneven-aged forest growth modeling. First, 
they accommodate hierarchical data structures by modeling the 
covariance among random parameters within and between sampling 
units, thereby reducing the interdependence of measurements 
(Calama and Montero, 2004; Demidenko, 2013). Second, these models 
balance the complexity of global models, which have few parameters 
but ignore sampling unit variability, with the specificity of local 
models that often involve many correlated parameters (Pinheiro and 
Bates, 2006). Third, by accounting for parameter variation at each level 
of the sampling hierarchy, mixed-effects models provide unbiased 
parameter estimates even for units with small sample sizes. Finally, 
they can be  efficiently calibrated for new or un-sampled plots or 
stands, especially if random parameters can be  estimated from 
covariates (Lappi, 1991; Lynch et al., 2005).

In essence, a nonlinear mixed-effects model applied at the plot 
level can be represented in matrix form, as described in Equation 2 
(Pinheiro and Bates, 2006). This matrix formulation allows for the 
modeling of both fixed effects, which capture tree-level trends, and 
random effects, which account for variation at the plot level (Timilsina 
and Staudhammer, 2013).

 

( )

( )
( )

,

0,
0,

θ ε
θ

ε

 = +
 = +
 ∼
 ∼

i i i i

i i i i

i

i i

Y f X
A b B u

u N D
N R  

(2)

where iY  represents a response vector for H measurements for the 
i-th plot, and iX  includes predictor variables for that plot. In the 
equation, èi = iA b + i iB u  represents fixed effects, i iB u  represents 
random effects, and ( )0, )ε ∼i iN R  represent residual error. iA  was the 
design matrix that links fixed parameters to the observed data. b 
represents the fixed-effect parameters, capturing population-level 
trends in H as influenced by predictor variables. iB  was a design matrix 
that links random effects to the data, allowing for flexibility in plot-
specific variation. iu  denotes the random effects vector for the plot i, 
which was assumed to follow a multivariate normal distribution with 
mean zero and a variance–covariance matrix ( )( )0,iD u N D∼ . The 
random effects iu  capture unobserved variability between plots, and the 
elements D represent variances and covariances rather than 
correlations. iε  represents the residual errors for the plot i, which was 
assumed to follow a normal distribution with mean zero and iR  plot-
specific variance–covariance matrix of the observation error 
components in iε .

2.6 Performance evaluation

We applied model M1-M15 growth equations to our dataset 
based on their suitability, model structure and their potential to 

accurately capture the growth dynamics in our study. Each model 
was parameterized estimating optimal parameters (a, b, and c) and 
their respective standard errors (SE). Subsequently, we assessed the 
effectiveness of each developed model through performance on the 
basis of three main criteria: (i) Root Mean Square Error (RMSE) 
was employed goodness-to-fit criteria to evaluate the accuracy of a 
model or estimator by quantifying the disparities between the 
projected values and the observed values (Anderson and Burnham, 
2004), (i.e., minimum the value higher the performance). (ii) Mean 
absolute error (MAE) to explain variations in model predictions 
(Hodson, 2022). (iii) Coefficient of determination (R2) provides a 
comprehensive measure of model reliability.

We assessed each model’s precision, accuracy, and reliability in 
predicting the H of Larix gmelinii. The measured H of Larix gmelinii 
trees are compared with the H estimated by each model. Equations of 
Statistical indicators can be expressed in matrix form Equations 3–5, 
respectively.

 

( )21

1

1% 100

ˆn
j jj

n
jj

H H

n kRMSE
H

n

=

=

−

− −= ×

∑

∑
 

(3)

 

1

1

ˆ
% 100

n
j jj

n
jj

H H
MAE

H
=

=

−
= ×
∑
∑  

(4)

 

( )
( )

2
12

2
1

1
ˆn

j jj
n

j jj

H H
R

H H

=

=

−
= −

−

∑
∑  

(5)

The Akaike Information Criterion (AIC), as described in 
Equation 6 (Tanovski et al., 2023) Bayesian Information Criterion 
(BIC), as described in Equation 7 (Sclove, 1987) and log-likelihood, 
as described in Equation 8 (Joreskog, 1969) are utilized to evaluate 
the disparity between a simple base model and a sophisticated 
nonlinear mixed-effects model (Aho et al., 2014); (iv) AIC addresses 
model accuracy with parsimony, proving it effective for choosing 
models that excel with larger dataset. Reduced AIC values indicate 
superior models (Burnham et al., 2011). (v) BIC supports simpler 
models compared to AIC, particularly with bigger datasets, 
rendering it optimal for emphasizing explanatory power over 
complexity (Claeskens and Hjort, 2008). (vi) The log-likelihood 
represents the probability of the observed data according to the 
designated model, contingent upon its parameters. Elevated 
log-likelihood values signify a superior fit (Fuchs, 1982).

 ( )ln 2AIC n RMSE p= + +  (6)

 ( ) ( )2logBIC L klog n= − +  (7)
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( ) ( )2

2log log 2
2 2
n RSSL πσ

σ
= − −

 
(8)

The mixed-effects H-D model was calibrated and validated 
utilizing the empirical best linear unbiased prediction (EBLUP) theory 
model (Pinheiro and Bates, 2000; Sharma et al., 2019b) to improve 
predictive precision. The training dataset encompassed trees of various 
ages and D classifications. The validation dataset primarily consisted 
of middle-aged and mature forest stands, leading to a reduced number 
of stems per plot. Calibration entailed estimating random effects by 
utilizing past information regarding the H-D relationship inside each 
plot (Hall and Bailey, 2001; Sharma et al., 2019b). To estimate the 
random effects, five to twelve randomly selected trees per plot were 
utilized, contingent upon the number of accessible trees, hence 
resolving the issue of plots containing fewer than twelve trees of a 
specific species in the validation dataset (Sharma et al., 2019a). The 
calculated random effects were integrated into the fixed component of 
the mixed-effects H-D model, producing plot-specific H-D curves and 
improving the model’s predicted accuracy and robustness for 
Larix gmelinii.

3 Results

3.1 Optimal base model outcomes

An optimal base model was initially chosen by evaluating 
statistical parameters from the 15 base models (Table 2). These models 
were trained and tested using R software’s “nls” function. Based on the 
findings, the M8 provided the most accurate results with the highest 

2R  value of 0.74, along with RMSE and MAE of 16.47 and 12.50%, 
respectively. The M8 emerged as the most effective in estimating tree 
H. This conclusion was further supported when the models were 
applied to testing data. The RMSE, MAE, and R2 values across selected 
base models varied from 16.47 to 17.3%, 12.5 to 13.16%, and 0.72 to 
0.74, respectively. All 15 models exhibited similar levels of 
performance, and estimated regression coefficients for parameters a, 
b, and c were statistically significant (p < 0.05) (Table 3).

The optimal fit lines of two-parameter and three-parameter base 
models were derived, and the predicted H against D was displayed to 
represent the correlation between them (Figure 2). The comparison 
between observed and estimated tree H indicates that the M8 provides 
the most accurate estimations of total tree H based on D measurements 
and is selected as the most suitable model out of the 15 base models 
evaluated. The regression lines of most models exhibit similar patterns, 
except for M1, M4, M6, M9, and M13, which display deviations 
compared to those of the other models (Figure 2).

This outcome suggests that employing models solely based on D 
to forecast the total H of trees might not be sufficient for elucidating 
the variations in tree H across different stands and forest sites, and it 
may not meet the requirements for effective forest management. 
When just measurements of the diameter are available, these models 
could be  utilized. However, their ability to predict might 
be compromised. This is because, regardless of the stand conditions, 
all trees with the same diameter within a plot would receive the same 
predicted H. Consequently, it is recommended to incorporate 
additional stand variables to enhance the accuracy of H predictions.

3.2 Generalized model outcomes

The base H-D model (M8) was extended to encompass generalized 
independent variables (stand variables) to refine H estimations and 
account for variations between stands. Initially, multiple models 
incorporating different combinations of stand variables were evaluated 
(Table 4).

The generalized models (GM) are trained and tested to 
evaluate goodness-of-fit with the coefficients and related 
statistical indicators. The results show that GM2 was the best-
performing model, exhibiting the lowest RMSE and MAE and the 
highest value of R2 in both the training and testing phases 
(Table  5). Furthermore, GM1, GM4, and GM5 exhibit higher 
RMSE and MAE with lower R2 values, indicating poorer 
predictive performance compared to GM2 and GM3. However, 
GM3 demonstrates a moderate R2 value in the testing phase, 
indicating a reasonable level of explanatory power despite its 
slightly higher errors. Hence, GM2 represents the most accurate 
predictions of tree H based on the given dataset. However, this 
model may have limitations in capturing the underlying patterns 
and variability within plots.

3.3 Mixed-effect model outcomes

The classical model required three fundamental assumptions 
(i.e., normality, independence, and homogeneity of variance). The 
generalized model (GM2) was trained and tested using a nonlinear 
mixed-effects modeling approach, incorporating both fixed and 
random parameters. The fixed-effects (Table  6A) reveals 
statistically significant contributions from all parameters, with 
coefficient estimates of a (12.56 ± 0.30), b (9.80 ± 0.48), c 
(1.96 ± 0.31), and d (0.05 ± 0.0009). Each parameter exhibits a 
highly significant p-value (< 0.001) and strong t-values (ranging 
from 6.31 to 48.89), indicating that these predictors are robustly 
associated with the response variable. The substantial magnitudes 
of a and b suggest that these factors have pronounced impacts, 
while the precision and significance of d, despite its smaller 
magnitude, highlight its potential regulatory role. The large 
sample size (DF = 4,650) further supports the reliability of these 
estimates, emphasizing the importance of these predictors in 
explaining variability within the model.

Random-effects (Table 6B) were specified for levels of D, with 
correlation structure and variance function accounted for to 
address potential correlations and heteroskedasticity. The 
variances on the diagonal (a: 0.85), (b: 1.22), (c: 0.85), and (d: 
0.005) demonstrate major variability for parameters a, b, and c 
whereas d was very small. The off-diagonal covariance shows 
strong association, such as the strong positive correlation between 
a and b (0.85) and the moderate negative correlation between c 
and d (−0.238). The structured variance–covariance matrix 
provides evidence of the model’s flexibility and robustness in 
accommodating complex data relationships, thereby supporting 
its superiority over simple models. The statistical calculations 
(Table 6) demonstrated improved results with the inclusion of the 
stand variable (MH) in the generalized nonlinear mixed-effects 
model (GM2).
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TABLE 3 Values of estimated parameters (a, b, c) and Statistical parameters; RMSE (Root mean square error), MAE (Mean absolute error), and R2 
(Coefficient of determination) for 2 and 3 parametric models, respectively.

Number of 
parameters

Model Parameters values (P-
values)

Goodness-of-fit

a b c Training Testing

RMSE% MAE% R2 RMSE% MAE% R2

2 parametric models

M1
1.83 

(0.00)

0.68 

(0.00)
16.61 12.57 0.74 16.88 12.50 0.73

M2
0.19 

(0.00)

1.362 

(0.00)
16.65 12.66 0.74 16.78 12.56 0.73

M3
2.00 

(0.00)

0.33 

(0.00)
16.59 12.55 0.74 16.85 12.47 0.73

M4
21.74 

(0.00)

8.45 

(0.00)
17.13 13.16 0.72 17.18 12.03 0.72

M5
3.14 

(0.00)

10.14 

(0.00)
16.89 12.90 0.73 16.97 12.80 0.72

M11
33.11 

(0.00)

22.00 

(0.00)
16.52 12.53 0.74 16.71 12.43 0.73

M13
2.48 

(0.00)

0.62 

(0.00)
16.56 12.52 0.74 16.82 12.44 0.73

M14
0.64 

(0.00)

0.03 

(0.00)
16.52 12.53 0.74 16.71 12.43 0.73

M15
1.50 

(0.00)

−0.95 

(0.00)
16.52 12.53 0.74 16.71 12.43 0.73

3 parametric models

M6
0.02 

(0.00)

1.11 

(0.00)

−1.69 

(0.00)
16.71 12.63 0.74 16.92 12.52 0.72

M7
37.21 

(0.00)

0.03 

(0.00)

0.99 

(0.00)
16.48 12.50 0.74 16.69 12.38 0.73

M8
33.02 

(0.00)

22.3 

(0.00)

7.09 

(0.00)
16.47 12.50 0.74 16.67 12.40 0.73

M9
18.71 

(0.00)

4.74 

(0.00)

0.14 

(0.00)
16.54 12.62 0.73 16.77 12.55 0.73

M10
25.41 

(0.00)

0.03 

(0.00)

0.93 

(0.00)
16. 55 12.50 0.74 16.68 12.39 0.73

M12
0.83 

(0.00)

0.52 

(0.00)

0.02 

(0.00)
16.49 12.50 0.73 16.70 12.38 0.73

The parameters a, b, and c represent model coefficients, with associated p-values in parentheses indicating statistical significance. A p-value below 0.05 suggests that the corresponding 
coefficient is statistically significant, indicating that the variable has a meaningful contribution to the model.

FIGURE 2

Fitness lines for two-parametric (A) and three-parametric models (B).
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TABLE 4 Generalized nonlinear models for M8.

Model Variables Expression

GM1 MD ( )
1.3

MD
Y ae

b d
X c= +

−
+

+

GM2 MH ( )
1.3

MH
Y ae

b d
X c= +

−
+

+

GM3 MD and MH ( )
1.3

MD MH
Y ae

b d
X c= +

−
+ +

+

GM4 V
1.3Y ae

b d
X c V= +

−
+

+

GM5 MD, MH, and V ( )
1.3Y ae

d MD MHb
X c V= +

+−
+

+

MD is Mean diameter at breast height, MH is Mean height, V is stand volume.

TABLE 6 Statistical summary of fixed and random Effects in a Generalized Nonlinear Mixed-Effects Model. 6A: Fixed Effects – Displays estimated 
coefficients (Value), standard errors (SE), degrees of freedom (DF), t-values, and p-values for each fixed-effect parameter. 6B: Random Effects – Displays 
variance–covariance structure for each random-effect parameter.

6A: Fixed effects

Parameters Value SE DF t-value p-value

a 12.56 0.30 4,650 41.48 < 0.001

b 9.80 0.48 4,650 20.35 < 0.001

c 1.96 0.31 4,650 6.31 < 0.001

d 0.05 0.0009 4,650 48.89 < 0.001

6B: Random effects

Parameters
Variance–covariance structure

a b c d

a 0.85

b 0.85 1.22

c 0.77 0.98 0.85

d −0.75 −0.32 −0.24 0.005

TABLE 5 Coefficients of generalized mixed effect models.

Model Parameters values (P-values) Goodness-of-fit

a b c d Training Testing

RMSE% MAE% R2 RMSE% MAE% R2

GM1
16.04 

(0.00)

11.31 

(0.00)
2.69 (0.00) 0.03 (0.00) 15.22 11.62 0.78 43.80 33.12 0.20

GM2
12.79 

(0.00)

10.14 

(0.00)
2.16 (0.00) 0.05 (0.00) 13.77 10.46 0.82 13.84 10.50 0.81

GM3
13.88 

(0.00)

10.27 

(0.00)
2.21 (0.00) 0.02 (0.00) 14.52 11.08 0.80 37.57 28.76 0.41

GM4
511.98 

(0.17)

478.35 

(0.04)

114.19 

(0.001)

−29.22 

(0.00)
15.36 11.52 0.77 15.04 11.35 0.78

GM5
16.09 

(0.00)

11.27 

(0.00)
2.61 (0.00) 0.03 (0.00) 15.24 11.64 0.78 43.77 33.10 0.20

RMSE [Root mean square error (RMSE)], MAE (Mean absolute error) and R2 (Coefficient of determination).
The parameters a, b, c, and d represent model coefficients, with associated p-values in parentheses indicating statistical significance. A p-value below 0.05 suggests that the corresponding 
coefficient is statistically significant, indicating that the variable has a meaningful contribution to the model.
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3.4 Validation of the model

The comparison of models M8 and GM2 was conducted using 
AIC, BIC, and log-likelihood values to assess model fit. Both AIC and 
BIC favor GM2, which has an AIC of 18224.35 and a BIC of 18269.87, 
over M8, which has an AIC of 20031.07 and a BIC of 20070.09. These 
lower values for GM2 indicate a better model fit, achieving an optimal 
balance between accuracy and complexity. Additionally, GM2 
demonstrates a higher log-likelihood value (−9105.177) compared to 
M8 (−10009.54), providing further evidence of a superior model fit. 
Based on these criteria, GM2 emerges as the more suitable model, 
offering an improved fit over M8.

In addition to these statistical indicators, examining predicted 
H and residuals revealed similarities in the residual values between 
the two models: M8 as a basic nonlinear model and GM2 as the 
mixed effect model. However, differences in distribution patterns 
were observed. The patterns of residuals exhibited similarities with 
variations in distribution. The distribution of residuals followed a 
regular circular type pattern, indicating that errors were evenly 
spread across tree H predictions. The residuals tend to 
be positioned negatively for trees ranging from 8 to 15 meters in 
H. This observation holds for the predicted tree H residuals 
concerning D (Figure 3).

In M8, the positive residual errors were more pronounced for 
trees with both smaller and larger diameters. This phenomenon could 
be due to the limited number of mature trees with large diameters and 
the considerable variability in tree H within the plots with large 
diameters (Figure 4).

The calibrated mixed-effects model produced simulated H-D 
curves, which were assessed for all sample plots in the validation 
dataset (Figure 5). In the majority of plots, the model-predicted curves 
closely corresponded with the observed height measurements, 
accurately reflecting the variation for Larix gmelinii. Furthermore, tree 
height demonstrated a notable positive correlation with increases in 
MH for a specific D (Figure 6).

4 Discussion

Tree H is a critical parameter in modeling to understand forest 
productivity, health, and resilience for sustainable forest management. 
Consequently, developing and selecting effective models for tree H 
estimation is essential in sustainable forest management (Chenge, 
2021) and supporting forest management decisions for resource 
allocation and conservation strategies. This study evaluated and 
compared 15 H-D model functions to predict tree H, focusing on 

FIGURE 3

Residuals plots for predicted heights with the optimal base model M8 and generalized mixed-effect model GM2.

FIGURE 4

Residuals plots for Diameter at breast heights with the optimal base model M8 and generalized mixed-effect model GM2.
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Larix gmelinii in Northeast China. `In our study, two parametric 
models, M11 (Molto) and M14 (Pardon), and three parametric 
models, M7 (Peschel), M8 (Ratkowsky), and M10 (Richard), 
performed well among the base models. The M8 demonstrated the 
best-fit performance, with the highest R2 and the lowest RMSE and 
MAE values. Additionally, the M8 model explained 74% of the total 
variance in H-D relationships and further demonstrated the highest 
predictive accuracy based on statistical fit.

Previous studies had demonstrated high goodness-of-fit of M8 in 
predicting tree H across various forest types, including temperate oak 
forests (Misik et al., 2016), broad-leaf mixed forests (Cao et al., 2024), and 
Larix olgensis forests (Xie et al., 2020). Our results are similar to previous 
findings that three-parameter models generally provide better evaluation 
results in large datasets if compared to two-parameter models and have 
only minor differences observed between them (Mehtätalo et al., 2015; 
Lebedev and Kuzmichev, 2020). Particularly, the differences between 
two-parameters and three-parameters were not as pronounced, however 
three-parameters models may be much more meaningful when integrated 
other stand variables into the base model, which may can helpful to 
diversify the application scenarios of the final generalized model. Stand 
characteristics and environmental factors notably influence the prediction 
accuracy and performance of the H-D model (Ng'andwe et al., 2019). Due 
to the effects of competition, several studies (Sharma and Yin Zhang, 

FIGURE 5

Sample plot predicted height to diameter (H-D) curves overlaid on 
the validation data. Curves were produced with the calibrated mixed-
effects H-D model using the sample plot-mean height as covariate 
variable and allowing individual tree D of each sample plot. The 
mixed-effects H-D model was calibrated with the random effect 
predicted using H-D measurements from Larix gmelinii depending 
on the availability of their numbers per sample plot in the validation 
of data set through EBLUP.

FIGURE 6

Effects of different mean heights on the H-D curves for natural Larix gmelinii forests.
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2004; Solonenko et al., 2021) have found that trees in dense forests are 
expected to have higher H but lower D (higher sharpness) than those in 
sparse forests; Thus, maintaining stand density in a reasonable range can 
be meaningful to maximize timber production or other ecosystem service 
objectives (Dong et al., 2024).

Including stand characteristics as independent variables in H-D 
models improved tree H prediction accuracy (Sánchez et al., 2003; 
Sharma and Yin Zhang, 2004; Temesgen and Gadow, 2004). It 
indicates a need for further refinement of the local model to 
incorporate the effects of different stand variables (Ng'andwe et al., 
2019). Tree H and D generally rise with tree age and are influenced by 
stand density (Sumida et al., 2013; Li et al., 2015). So, models that 
predict H growth for a stand are suggested to use variables that 
describe the stand rather than stand age and density. However, 
we prioritized prediction over investigating the factors affecting the 
H-D relationship, thus avoiding estimating additional parameters.

To enhance the accuracy of H prediction at the plot level, 
incorporating stand variables using metrics such as mean height 
(MH), mean diameter at breast height (MD), volume (V), and their 
combinations proved essential. Models with MD and V as stand 
variables (GM1, GM3, and GM5) had higher RMSE and lower R2 
values in the test data compared to the training data. It shows that the 
models were less accurate at predicting the future and unable to 
generalize. GM4 achieved a moderate R2 score, offering an adequate 
level of explanation and slightly elevated error levels.

Among the models incorporating MH as a stand variable, GM2 
outperformed the others, showing an improved R2 (i.e., 0.82) and 
reduced RMSE (i.e., 13.81%). Models that include MH as a stand 
variable at plot level compared to dominant height (TH), which 
required measurement of fewer trees. Previous studies recommended 
using TH to obtain significant results for generalized mixed-effect 
H-D models, thereby fostering stronger correlations with stand-level 
characteristics. Though determining TH requires fewer measurements, 
accurately estimating TH in uneven-aged forests seems challenging 
due to the potential misclassification of dominant trees (Florin et al., 
2010). Therefore, we selected MH as an appropriate variable to use in 
place of TH, especially for uneven-aged forests that require more 
widespread measurements (Ciceu et al., 2020). This approach provides 
a more consistent and representative average, reduces observer bias, 
and enhances the reliability of assessments in uneven-aged forests. In 
this study, we employed pre-existing tree height data gathered for 
model evaluation to measure MH. The results may suggest that 
increasing MH of a stand through reasonable density controls are 
beneficial for promoting the total yield of stand volume and carbon 
stocks, mainly due to both of them are jointly controlled by H and D 
variables (Dutcă et al., 2019). The parameters for all five generalized 
H-D models showed significant deviations close to zero (Bronisz and 
Mehtätalo, 2020), except for GM4.

Generalized models work well in handling population-level 
variability (Bolker et al., 2009) but lack variation within the plot level 
(Dorado et al., 2006). The generalized mixed effect H-D model is a 
predictive tool for forecasting tree H in emerging stands (Huang et al., 
2009). To develop a nonlinear mixed-effects model with both fixed 
and random parameters required to enhance predictive accuracy 
(Bergstrand et  al., 2011). Fixed effects in nonlinear mixed-effects 
models typically offer higher predictive accuracy (Jiang and Li, 2010). 
Moreover, predictions based on fixed effects were often improved by 
incorporating random effects to capture plot-level variability when 

new H measurements were available (Fu et al., 2020; Skudnik and 
Jevšenak, 2022).

This study used fixed and random effects during data testing and 
training to evaluate model accuracy (Bell and Jones, 2015) and found 
that both approaches yielded significant results. The correlation 
matrix for fixed effects revealed a range of correlations between 
variables, from highly positive linear relationships to weak negative 
correlations. Random effects were modeled at the D level, accounting 
for potential correlations and heteroscedasticity through correlation 
structure and variance functions, resulting in greater H prediction 
accuracy than fixed effects alone. However, the number of measured 
trees and D influence prediction accuracy (Li et al., 2015). When fewer 
trees were sampled, the performance of fixed effects was weaker, 
whereas increasing the number of samples improved performance 
(Gottard et al., 2023).

The residual analysis of models M8 and the mixed effects model 
shows that, despite similar residual values but differing distribution 
patterns, M8 displays more pronounced positive residuals for smaller 
and larger diameter trees, likely due to the limited number of large-
diameter trees and variability in tree H. Perhaps, the thinning 
influences correlation between diameter and H by impacting the 
increments in tree growth. It is due to anthropogenic disturbance, 
environmental factors, and plot variations, which affect the H-D 
relationship, influencing growth increments (Li et al., 2015).

Mixed-effects regression models are powerful in modeling 
variation in the H-D relationship among trees within unevenly aged 
forests (i.e., trees of different ages and growth stages) (Jha et al., 2023). 
Such variability arises as trees with the same D may have differences 
in H based on stand (i.e., age, species composition) and site factors 
(i.e., environmental conditions). These models include significant 
stand-level predictors that affect tree H (Peng, 2000). Such inclusion 
of variables enables the mixed-effects models to more closely represent 
the natural variability of H within the forest. Accounting for both fixed 
effects (i.e., stand-or plot-specific variations) and random effects (i.e., 
with-in plot or trees-level) provide better prediction of H compared 
to simpler models (Ciceu et  al., 2023). Stand-level predictors are 
usually easier to measure than individual tree characteristics, making 
the field data collection faster and less expensive (Tian et al., 2020). 
Such efficiency saves resources for forest management (i.e., both in 
terms of time and money) to estimate H. Generally, mixed-effects 
models increase the robustness of H predictions in complex forest 
structures, given the importance of forestry practices that depend on 
accurate stand-level data for decision-making.

According to the mixed-effects model theory (Pinheiro and Bates, 
2006), the mean response of the model was quantified using the fixed 
components, which were expected to be statistically significant, while 
site-specific variances were measured using random components, thus 
significances on these random components were usually not a key 
problem. For application, many previous studies (Wang et al., 2021; 
Patrício et al., 2022; Xie et al., 2022) had suggested that measuring the 
height of just 3 to 5 trees are generally sufficient to estimate random 
parameters accurately, thereby reducing survey time and costs. Hence, 
developing mixed-effects models tailored to these predictors was 
critical for cost-effective and efficient forestry surveys, enhancing the 
robustness of height predictions in complex forest structures—a key 
factor for forestry practices that depend on precise stand-level data.

In future research, incorporating additional stand variables into 
H-D modeling enhances its utility for forest managers and policymakers 
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by deepening their understanding of forest dynamics and supporting 
decisions that promote long-term ecosystem sustainability. At the micro 
level, the model provides detailed, stand-specific insights crucial for 
optimizing forest operations. This includes precise timber volume 
estimation for better harvesting planning, accurate biomass calculation 
for carbon trading and ecosystem balance, and analysis of canopy 
structure for managing light availability, species diversity, and forest 
health. Additionally, it reveals growth dynamics and aids in the 
optimization of silvicultural practices. At the macro level, the model 
informs broader strategies for sustainable forest management, 
contributing to environmental and conservation goals. It supports 
sustainable harvesting by predicting future growth and yield, ensuring 
activities do not exceed the forest’s production capacity. The model 
enhances carbon sequestration estimates and is essential for climate 
change mitigation by refining predictive accuracy for carbon storage 
across diverse habitats. It incorporates random and fixed effects to 
account for variability in plot data, enabling more accurate estimates of 
biomass and carbon stored in vegetation. This approach ensures that 
carbon estimates accurately reflect actual ecosystem conditions, which 
is vital for reliable climate projections and mitigation strategies while 
also playing a pivotal role in conservation planning. These models will 
significantly influence the development of regional and national policy 
decisions by effectively balancing economic, ecological, and social goals. 
In the future, this modeling approach will be necessary for sustainable 
forest management, enhancing our understanding of regeneration, 
growth, species diversity, carbon sequestration, and long-term 
utilization of forest resources.

5 Conclusion

This study explored a comprehensive model framework for 
predicting H-D relationships in Larix gmelinii forests in Northeast 
China, contributing valuable insights into sustainable forest 
management strategies. From the systematic evaluation of 15 growth 
equations, this study identified the M8 model as the best base model 
based on R2, RMSE, and MAE. In the M8 model, stand variables were 
incorporated to create a generalized model; among them, GM2 
demonstrated superior performance by including MH as a stand 
characteristic. Integrating nonlinear mixed-effects modeling with 
fixed and random effects enhanced prediction accuracy by accounting 
for site-specific variability, aligning with the growth dynamics typical 
of uneven-aged forest stands.

Furthermore, our findings highlight that a model relying solely on 
D measurements may fail to capture the essential structural complexity 
within diverse forest ecosystems. By incorporating stand-level 
parameters, our model achieved more precise H predictions across 
various growth stages, making it especially useful for applications in 
the quantification of forest structure, biomass estimation, yield 
forecasting, and carbon sequestration—critical indicators of forest 
productivity and ecosystem health. This adaptability across diverse 
stand conditions underscores the model’s utility in supporting 
sustainable resource management.

Incorporating stand-level variables enhanced prediction accuracy 
and demonstrated significant potential for reducing field measurement 
costs while facilitating informed decision-making in conservation 
planning. Our approach supports balanced ecological, economic, and 
social goals by providing forest managers with a robust tool (i.e., forest 

modeling) for sustainable harvesting, biodiversity conservation, and 
carbon trading. These insights contribute to a broader understanding of 
forest ecosystem resilience, emphasizing the importance of H-D models 
in advancing sustainable forest management and ecological stability in 
the face of climate variability. Future research could further explore the 
model’s applicability to other forest types and management objectives, 
reinforcing its role in fostering long-term ecosystem sustainability.
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