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Effects of heat, elevated vapor 
pressure deficits and growing 
season length on growth trends 
of European beech
Christoph Leuschner * and Banzragch Bat-Enerel 

Plant Ecology, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, 
Germany

In recent decades, continued growth decline has been observed in various 
beech forest regions of Central and Western Europe, especially in the warmer 
lowlands, which is not necessarily linked to increased mortality. While earlier 
dendrochronological studies have shown that a deteriorating climatic water 
balance in the course of climate warming can drive negative growth trends, less 
is known about the effects of climatic extremes on tree growth, notably heat and 
rising atmospheric vapor pressure deficits (VPD). Through climate-growth analysis, 
we analyzed the influence of summer heat duration (frequency of hot days with 
Tmax > 30°C) and elevated VPD on the basal area increment (BAI) of dominant 
beech trees in 30 stands across a precipitation gradient in the northern German 
lowlands. Summer heat (especially in June) and elevated VPD are reducing BAI 
in a similar manner as does a deteriorated climatic water balance. While growing 
season length (GSL), derived from thermal thresholds of growth activity, has 
substantially increased since 1980, BAI has declined in the majority of stands, 
demonstrating a recent decoupling of tree productivity from GSL. We conclude 
that heat and elevated VPD most likely are important drivers of the recent beech 
growth decline in this region, while growing season length has lost its indicative 
value of beech productivity.
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1 Introduction

Climate warming is threatening the productivity and health of trees and forests in many 
regions on Earth (Allen et al., 2010; Anderegg et al., 2013). Three climatic factors are exposing 
trees to increasing climatic stress, (1) rising summer temperatures that are associated with 
more frequent and more severe heat extremes, (2) increasing atmospheric vapor pressure 
deficits (VPD), and (3) an increasing frequency and severity of droughts (Adams et al., 2017; 
Hammond et al., 2022). Central Europe with its intensive forest management on most of the 
forested area is particularly vulnerable to climate change-induced destabilization of forests, as 
(i) warming and the increase in heat exposure are proceeding faster than in other northern 
temperate regions (IPCC, 2021; Vautard et al., 2023), and (ii) the pool of native tree species 
and especially the number of valuable timber species is small (Leuschner and Ellenberg, 2017). 
This has prompted intensive research on the climate vulnerability and drought and heat 
response of the major tree species of this region in recent time, notably of European beech 
(Fagus sylvatica L.), Norway spruce (Picea abies Karst.), Scots pine (Pinus sylvestris L.), Sessile 
and Common oak [Quercus petraea (Matt.) LIebl. and Q. robur L.], as well as of introduced 
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Douglas fir [Pseudotsuga menziesii (Mirb.)Franco] (Bose et al., 2020, 
2021; Braun et al., 2021; Debel et al., 2021; Diers et al., 2024; Enderle 
et al., 2024; Gribbe et al., 2024; Leuschner et al., 2024; Martinez del 
Castillo et al., 2022; Obladen et al., 2021; Thom et al., 2023; Walthert 
et al., 2021; Weigel et al., 2023). This research has demonstrated that 
the majority of these species have suffered vitality declines and 
increased mortality in various Central European regions after recent 
severe hot droughts, as in 2003, 2015, and 2018/19 (Arend et al., 2022; 
George et al., 2022; Leuschner et al., 2023; Schuldt et al., 2020; Senf 
et al., 2020; Thonfeld et al., 2022). This has raised concern about the 
future perspective of the forestry sector and timber yield in Central 
Europe (Hanewinkel et al., 2013; Yousefpour and Hanewinkel, 2016), 
which was in various regions hit hard by the extreme 2018/19 hot 
drought (Möhring et  al., 2021). The future health status and 
development of natural forests especially in Central Europe’s warmer 
regions are also questionable.

European beech is the most important tree species of Central 
Europe’s natural forest vegetation, which would dominate for example 
in Germany two third of the forest area in the absence of human 
impact (Suck et al., 2014). Physiological and dendrochronological 
research in the last two decades has demonstrated that the species is 
fairly drought sensitive (Gessler et al., 2007; Lendzion and Leuschner, 
2008; Dorado-Liñán et  al., 2017; Serra-Maluquer et  al., 2019; 
Leuschner, 2020; Martinez del Castillo et al., 2022). In accordance, 
numerous studies have reported declining radial growth rates of beech 
in various Central and Western European regions in recent time that 
were related to climate warming, mostly at lower elevations (Jump 
et al., 2006; Piovesan et al., 2008; Lakatos and Molnár, 2009; Bontemps 
et al., 2010; Charru et al., 2010; Scharnweber et al., 2011; Kint et al., 
2012; Härdtle et al., 2013; Zimmermann et al., 2015; Knutzen et al., 
2017; Braun et al., 2021). For example, a study covering 30 mature 
beech forests in the lowlands of northern Germany found negative 
basal area increment (BAI) trends over the last 20–30 years in about 
60 percent of studied trees, with negative BAI trends increasing 
toward stands with lower summer precipitation (Weigel et al., 2023). 
Premature foliage discoloration and leaf shedding, and crown damage 
and mortality have increased especially in the aftermath of the 
extreme 2018/19 hot drought, as was observed in Switzerland, 
southern Germany, and elsewhere (Braun et al., 2021; Frei et al., 2022; 
Klesse et al., 2022; Neycken et al., 2022). Stands in southern exposition, 
on shallow soils and at forest edges were generally hit hardest (Schuldt 
et  al., 2020). On a forest patch scale, some beech forests suffered 
mortality rates up to 25% or even >80% of the stems (Frei et al., 2022; 
Wohlgemuth et  al., 2020), but mortality rates were lower on the 
landscape scale (usually <5%; see review in Leuschner, 2024). While 
the direct causes of mortality remain unclear in the majority of cases, 
catastrophic hydraulic failure could in some studies be confirmed as 
the main driver (Schuldt et al., 2020; Arend et al., 2022).

Beech pursues a more anisohydric regulation of foliar water status, 
tolerating fairly large diurnal and seasonal leaf water potential drops, 
when water is scarce and evaporative demand is high (Leuschner et al., 
2019). With P50 values of mature tree sun-canopy branches usually in 
the range of −2.8 to −3.8 MPa (Herbette et al., 2010; Schuldt et al., 
2016; Weithmann et al., 2022), beech has a fairly embolism-resistant 
branch xylem, which faces catastrophic hydraulic failure only during 
rare extreme droughts (Dietrich and Kahmen, 2019; Leuschner, 2020; 
Walthert et al., 2021). This may happen especially on shallow soils 
with low water storage capacity, when local crown dieback has been 

observed that may have been caused by xylem cavitation (Schuldt 
et al., 2020; Frei et al., 2022; Henkel et al., 2022). However, with respect 
to the widespread growth declines observed in various central and 
western European beech stands during the last 20–40 years, it is 
unlikely that drought-induced embolism is the main cause, as the shift 
from positive (or stable) to negative growth trends occurred gradually 
and not abruptly (Knutzen et  al., 2017; Scharnweber et  al., 2011; 
Weigel et al., 2023). Among the factors that could have caused the 
vitality loss and growth decline are a rise in VPD (which might have 
reduced stomatal conductance and thus photosynthetic carbon gain), 
a continuous lowering of foliar and cambial water potentials due to a 
deteriorating climatic water balance (which could have reduced leaf 
and stem growth), negative heat effects on leaf metabolism, and 
carbon allocation shifts to more root growth at the expense of stem 
growth, triggered by reduced soil water availability in a drying climate 
(Leuschner et al., 2023). Much of this is speculative, as the causes of 
continued recent growth declines in beech (and other temperate tree 
species) are far less understood than those of sudden crown dieback 
and increased mortality (Arend et al., 2022; McDowell et al., 2022).

Physiological measurements suggest that heat may become an 
increasingly important factor impairing the vitality of temperate tree 
species in a warming climate (Ruehr et al., 2015; Teskey et al., 2015; 
Münchinger et al., 2023). In addition, much research has recently 
focused on the role of VPD for tree vitality and growth (Grossiord 
et al., 2020; Köcher et al., 2012; Lendzion and Leuschner, 2008; Novick 
et al., 2024). However, analyses of climate-growth relationships in the 
context of dendrochronological studies have mostly focused on 
temperature means, precipitation sums and the climatic water balance 
of summer months (Debel et al., 2021; Stolz et al., 2021; Weigel et al., 
2023), but have rarely investigated effects of heat and elevated VPD on 
radial growth (Enderle et al., 2024). These omissions may hinder a full 
understanding of the drivers of the recent growth trend shifts that 
were observed in European beech and other Central European 
trees species.

Another factor that should influence annual ring width is the 
length of the growing season, as earlier spring greening in the course 
of climate warming may increase annual canopy carbon gain and 
forest productivity (Keenan et al., 2014; Ren et al., 2019). For example, 
a modeling study predicted an increase in deciduous forest 
productivity by 5.9 g C m−2 per day growing season length extension 
(Baldocchi and Wilson, 2001), which is supported by eddy covariance 
and remote sensing studies (Churkina et al., 2005; Griffis et al., 2003). 
Over longer times spans, extended growing seasons may have the 
potential to trigger changes in species composition, when phenological 
patterns are fundamentally altered. On the other hand, a longer 
growing season may increase transpiration rates, leaving less moisture 
in the soil with negative effects on productivity (Lian et al., 2020), or 
it can increase the trees’ vulnerability to pests and diseases (Thackeray 
et al., 2016; Walther et al., 2002). In the lowlands of northern Germany, 
recent dendrochronological findings suggest for various sites a 
negative rather than a positive relation between GSL and BAI, as 
growth trends have often turned negative, even though growing 
season length has been found to increase with climate warming 
(Menzel and Fabian, 1999; Menzel et al., 2006). A closer look on the 
relation between GSL and growth rate is thus needed.

Here, we analyze the influence of increasing heat, elevated VPD and 
extended growing season length on the basal area increment of beech in 
a sample of 30 stands in the lowlands of northern Germany. This region 
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is characterized by a gradient from a moister temperate-oceanic to a drier 
temperate sub-continental climate, with precipitation decreasing from c. 
850 to 500 mm yr.−1 over 300 km distance. An earlier study has analyzed 
recent growth trends and possible drivers of growth decline in this sample, 
but did not investigate heat, VPD and GSL effects (Weigel et al., 2023). 
We use a 66-yr record of monthly weather data from a dense net of 
stations in this region to analyze long-term trends in the number of hot 
days (days with >30°C maximum temperature), in the year’s maximum 
mean daily VPD, and in growing season length to investigate the influence 
of these heat- and warmth-related variables on BAI trends of beech 
populations that grow under high (>800 mm) to low precipitation 
(<600 mm). We tested the following hypotheses: (1) The recent warming 
has increased the frequency of hot days and of maximum VPD and has 
extended growing season length, but at different rates in oceanic and 
sub-continental climates. (2) As suggested by earlier research (Enderle 
et al., 2024), heat and maximum VPD are important drivers of beech basal 
area increment. (3) Increasing exposure to heat and elevated VPD can 
shift the relation between long-term BAI trend and GSL change from a 
positive to a negative relation.

2 Methods

2.1 Study region and regional climate 
gradient

The study was carried out in the lowlands of northern Germany 
on Pleistocene deposits between the Dutch border in the west and the 

Polish border in the east, covering an area of about 138,000 km2 in the 
range of c. 7 °E – 14 °E longitude and 51 °N – 55 °N latitude. At 
elevations of 19–159 m a.s.l., the region comprises with the federal 
states Lower Saxony, Schleswig-Holstein, Bremen, Hamburg, Saxony-
Anhalt, Mecklenburg-Vorpommern, Berlin, and Brandenburg 
roughly 40% of the area of Germany. The study area is characterized 
by a marked climate gradient from the north-west to the south-east 
with a transition from a cool-temperate oceanic climate to a cool-
temperate sub-continental climate (mean annual temperature 
9.0–10.0°C) and a decrease in mean annual precipitation from ca. 
900 mm at the North Sea coast to 500–550 mm at river Oder in the 
east (Deutscher Wetterdienst, 2023). Dystric to eutric Cambisols and 
Luvisols, and dystric Podzols developed in fluvio-glacial deposits or 
moraine till of the penultimate (Saalian) and last glaciation 
(Weichselian) are the dominant soil types. All sites were selected on 
deep sandy to sandy-loamy substrates without groundwater influence. 
The capacity of the soil (0–100 cm profile) for plant-available water 
was estimated from soil texture data determined for all stands 
(Supplementary Table S1).

Forests of European beech (Fagus sylvatica) cover an area of ca. 
401,300 ha in the lowlands of northern Germany (Leuschner et al., 
2023). For characterizing the beech forests by their precipitation 
regime, we subdivided the lowlands into four classes defined by mean 
growing season precipitation (MGSP, April–September): Wettest 
region: 418–448 mm, wet region: 364–417 mm, dry region: 
329–358 mm, and driest region: 306–328 mm. Figure 1 shows the 
location of beech forests within these four MGSP-defined regions, 
marked by different colors. For a more detailed description of the 

FIGURE 1

Distribution of beech forests in northern Germany with assignment to four classes of mean growing season precipitation (wettest: 418–448 mm, wet: 
364–417 mm, dry: 329–358 mm; driest: 306–328 mm). Note the highly fragmented forest cover in the region. Federal states: BB, Brandenburg; BE, 
Berlin; BR, Bremen; LS, Lower Saxony; MV, Mecklenburg-Vorpommern; SN, Saxony-Anhalt; SH, Schleswig-Holstein. Distribution of beech forests after 
Blickensdörfer et al. (2022).
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physiography and stand structure of the 30 beech stands see Weigel 
et al. (2023).

2.2 Analysis of tree-ring data

Thirty monospecific stands of mature beech were selected for 
dendrochronological study, about five stands each in the four MGSP 
classes, which were dispersed over the entire lowland region 
(Supplementary Table S1). Most trees were between 80 and 120 years 
old. All stands had a cohort-like stand structure with only beech 
present, and had a canopy closure >0.9. In each plot, 15 (co-)dominant 
beech trees of the upper canopy layer were sampled by extracting each 
one core at breast height (1.3 m) with a 5-mm increment borer 
(Haglöf, Langsele, Sweden). Measurements of tree-ring widths were 
carried out with an accuracy of 10 μm using a moveable Lintab 5 
measuring table (Rinntech, Heidelberg, Germany) and the TSAP-Win 
software of Rinntech. All further tree-ring statistics were computed 
with the R package dplR (Bunn, 2008). Cross-dating of time series was 
done based on the coefficient of agreement (Gleichläufigkeit; > 0.65) 
(Eckstein and Bauch, 1969). All statistical analyses were performed in 
R version 4.3.2 (R Core Team, 2023).

In order to remove age trends, the tree-ring series were detrended 
with a 30-year smoothing spline and low-frequency cut-off set to 50%, 
using the function “detrend” of the package “dplR.” Subsequently, 
master chronologies were built for every population by calculating 
Tukey’s bi-weight robust mean of the standardized ring width index 
(RWI) series. Within-chronology growth coherence was quantified 
through the mean inter-series correlation (Rbar), and the expressed 
population signal (EPS; ≥0.85) (Wigley et al., 1984). The age of the 
trees was approximated by counting the number of rings from tree 
pith to bark (Supplementary Table S1). Basal area increment (BAI) 
was computed from the ring width series and measured DBH for each 
tree with the “bai.out” function of the “dplR” package.

2.3 Analysis of climate data

We used monthly climate data of the last 70 years (1951–2020) 
that were provided in gridded form (spatial resolution of 1 km) for 
the northern German lowlands by the Climate Data Centre (CDC) 
of the German Weather Service (Deutscher Wetterdienst, 2023). 
We retrieved monthly values of precipitation sums, mean relative 
air humidity (RH) and mean air temperature, and mean daily 
maximum and minimum air temperatures for the 70-year period at 
the 30 beech forest sites by download from the CDC data base using 
the rdwd package in R (Boessenkool, 2023). Vapor pressure deficit 
(VPD) was computed from air temperature and RH using the 
Magnus formula (Tetens, 1930). Climatic water balance was 
expressed through the 3-months Standardized Precipitation-
Evapotranspiration Index (SPEI-3) calculated on a monthly basis, 
using the SPEI package in R (Vicente-Serrano et  al., 2010), to 
indicate long-term change in the climatic water balance and 
identify abnormally dry (SPEI <0) and wet (SPEI >0) months 
compared to the long-term average. Since hourly temperature data 
are not available for the 70-yr period, we  approximated the 
frequency and severity of heat and VPD extremes through the 
analysis of long-term change in mean monthly maximum 

temperature, the number of hot days (Tmax > 30°C) per year, mean 
temperature of the year’s warmest day, and mean VPD of the year’s 
driest day. The 30°C threshold is best suited to reveal long-term 
heat trends in the 66-year observation period, as a higher threshold 
(e.g., 35°C) would have left too few hot days in the cooler first 
decades to analyze.

Long-term trends in climate variables were analyzed by regressing 
the different monthly parameters against calendar year. This was done 
separately for the periods 1951–1980 (before the recent warming) and 
1981–2017 (the warming period), as well as for the entire (66-yr) 
period. Testing for significance was done with a Mann-Kendall 
trend test.

2.4 Climate response analysis

A climatic response analysis was carried out using the “treeclim” 
package in R (Zang and Biondi, 2015) to investigate the relationships 
between ring width index data and selected climatic variables in the 
66-yr observation period (1951–2017), notably monthly mean 
temperature, mean monthly maximum and minimum temperatures, 
monthly VPD means and precipitation totals, and mean monthly SPEI 
(based on 3-month SPEI) for the current year (January – September) 
and the previous year (April – December). In addition, the relation 
between RWI and the number of hot days (Tmax > 30°C) in a year, the 
mean temperature of the year’s hottest day, and the mean VPD of the 
year’s driest day was analyzed. The strength of the correlation was 
expressed with Pearson’s r. Previous-year months were included in the 
analysis to account for carry-over effects of the last growing season on 
beech growth. A 1,000-fold bootstrapping procedure was used for 
significance testing of the RWI–climate relationships.

2.5 Calculating growing season length

A widespread approach to model growing season length of beech 
and other Central European deciduous trees bases on the analysis of 
phenological data compiled by Menzel (1997). It uses an empirically 
determined critical temperature for beech growth activity and local 
daily temperature data for prediction. In accordance, growing season 
length was computed for the 30 sites from the daily temperature data 
of the CDC data base (Deutscher Wetterdienst, 2023) using the 
“vegperiod” package in R (Nuske, 2022), which applies temperature 
thresholds for bud burst and leaf fall. Based on the empirical data 
assembled by Menzel (1997), bud burst was assumed to happen, when, 
for the first time in the year, five consecutive days with daily 
temperature means >5°C occur. The end of the vegetation period was 
computed according to von Wilpert (1990), who set the threshold to 
the occurrence after mid-summer of five consecutive days with daily 
mean temperature < 5°C (Menzel, 1997). For the date of bud burst, an 
error margin of 4–8 days was assumed according to the authors. 
We attempted to compute the standard error of our calculated growing 
season extension by adding the model error (Menzel model) and the 
observation error to obtain the total error = √((observed 
error)^2 + (model error)^2).

Pearson correlation analysis was further employed to analyze 
relationships between different climate variables, between growing 
season length and BAI, and between growing season length and the 
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number of hot days. A significance level of p < 0.05 was used 
throughout the paper.

3 Results

3.1 Long-term trends in heat exposure and 
VPD

For the earlier 1951–1980 period, the climate data do not show 
any significant trends in the studied thermal and hydrometeorological 
parameters for the northern German lowlands (Figure 2). Yet, mean 
summer temperature decreased slightly (but non-significantly) from 
1951 to 1980 (Supplementary Figure S1). In contrast, mean annual 
(and summer) temperature has significantly increased by 0.3–0.4°C 
decade−1 since 1980 in all parts of the lowlands (Figure 2A). This is 
also valid for the mean temperature of the year’s hottest day as a proxy 
of heat extremes (increase by 0.4°C decade−1) (Figure 2C). A different 
picture emerges for the number of hot days (Tmax > 30°C) per year, 
which is a measure of heat duration: It rose much faster in the dry and 
driest regions of the lowlands (by 1.9–2.0 decade−1) than in the wet 
and wettest regions (by 0.3–0.7 decade−1) (Figure 2B). The three maps 
in Figure 3A demonstrate that the number of hot days has changed 
only little from 1951–1960 to 1981–1990, but there has been a marked 
increase since then especially in the states of Saxony-Anhalt and in the 
central and southern part of Brandenburg with warmest climate, while 

the North Sea and Baltic Sea coastal regions faced the smallest 
increase. The number of hot days is closely related to other thermal 
and hydrometeorological parameters, especially to the mean 
temperature of the warmest day in July (Tmax-Jul) 
(Supplementary Figure S2D), the mean VPD of the year’s driest day 
(Supplementary Figure S2B), and SPEI-Jul and SPEI-Aug 
(Supplementary Figures S2G,H).

The mean VPD of the year’s driest day has increased in all regions 
by ca. 0.4 kPa decade−1, when the whole study period (1951–2017) is 
considered, but in the recent 1981–2017 period, there is only a 
tendency for an increase, which is not yet significant (Figure 2D). The 
maps in Figures 3B,C show that the temperature and VPD of the year’s 
warmest and driest days as indicators of heat and VPD extremes has 
increased since 1980 at a rather uniform rate across most of the 
lowlands, except for the direct coastal regions with slower change.

3.2 Trends in growing season length

Growing season as derived from assumed temperature thresholds 
for bud burst and leaf fall is generally longer in the drier regions of the 
lowlands with a more continental climate (Supplementary Figure S3). 
It has decreased from 1951 to c. 1975 by 5–10 days especially at the 
drier sites, related to the (non-significant) decrease in mean summer 
temperatures in this period (see Supplementary Figure S2), but has 
rapidly increased by up to 10 days since then in all regions to reach a 

FIGURE 2

Change in mean annual temperature (A), the number of hot days per year (daily maximum temperature > 30°C) (B), mean temperature of the year’s 
hottest day (C), and mean VPD of the year’s driest day (D) in the 1951–2017 period in the northern German lowlands. Shown are the mean curves of all 
stations assigned to the four precipitation classes Wettest (mean growing season precipitation, April–September: 418–448 mm), Wet (364–417 mm), 
Dry (329–358 mm) and Driest (306–328 mm) with trend lines for the periods 1951–1980 and 1981–2017 (solid line: significant trend according to a 
Mann-Kendall test; dashed line: non-significant trend). The vertical dashed line (1980) separates the two periods.
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FIGURE 3

Spatial distribution of the number of hot days (Tmax > 30°C) (A), mean temperature of the year’s warmest day (B) and mean VPD of the year’s driest day 
(C) in the three periods 1951–1960, 1981–1990 and 2011–2020 (decadal means) in the northern German lowlands. BB, Brandenburg; BE, Berlin; BR, 
Bremen; HA, Hamburg; LS, Lower Saxony; MV, Mecklenburg-Vorpommern; SH, Schleswig-Holstein; SN, Saxony-Anhalt.
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peak at around 2010 (Figure 4; Supplementary Figure S4). During the 
last decade (2010–2020), a slight decrease seems to materialize 
(Figure  4). From the 1951–1980 to the 1981–2020 period, mean 
growing season length has increased by on average 11 days in the 
wettest and the dry region, and by about 10 days in the wet region, and 
about 8 days in the driest region (Figure 5). At the site level, variation 
in growing season extension in this 35-year period was high (range: 
6.5–12.0 days), even though all sites are located at similar elevation 
(70–140 m a.s.l.) (Supplementary Figure S5).

3.3 Climate-growth relationships and the 
role of heat

Of the tested thermal and hydrometeorological climate variables, 
SPEI of current June and July, and of previous July–September, had 
the most consistent influence on beech growth (Figure  6E), 

highlighting the growth-promoting effect of a positive climatic water 
balance in these summer months. Mean monthly VPD and monthly 
precipitation in current May and June and previous June/July had also 
a significant positive effect, but the signal was less consistent than for 
SPEI (Figure  6D). Interestingly, a negative effect of elevated June 
temperature (current year) and July–September temperatures 
(previous year) was more pronounced at the drier sites (Figures 6B,C). 
Elevated mean monthly minimum temperature had a positive effect 
in current May (most regions) and February (only wettest region) 
(Figure 6A), suggesting negative effects of spring and winter frost 
on growth.

That extended heat periods are impeding growth is suggested 
by the negative correlation between growth and the number of hot 
days per year (significant for previous year’s influence in the wet, 
dry and driest regions; significant for current year’s influence in 
the driest region) (Figure 7A). The mean temperature of the year’s 
hottest day had a significant negative influence only in the driest 
region (Figure 7B). More influential was the VPD of the year’s 
driest day, which impacted growth negatively in all regions 
(previous year’s influence) (Figure  7C). While the correlation 
coefficients were generally higher for the monthly mean climate 
variables than for the annual heat and VPD extremes, the extremes 
displayed more clearly the contrasting behavior of the stands in 
the driest region.

3.4 Growth as influenced by growing 
season length

Growing season length did not influence BAI in the wettest and 
wet regions, but showed a significant negative relation in the dry 
region, and a marginally significant one in the driest region 
(Supplementary Figure S6), indicating a growth decrease with an 
extension of growing season length. The significant positive relation 
between growing season length and the number of hot days in a year 
in the dry region (Supplementary Figure S7) suggests that heat is a 
main factor causing growth to decline with growing season extension. 
Interestingly, BAI was independent of growing season length, when 
the growing season varied between 130 and 150 days, but growth 
decreased when growing season length exceeded 150 days (Figure 8).

4 Discussion

4.1 Long-term heat and VPD trends

Since long-term hourly climate data, that would reflect climate 
extremes much better than daily means, were not available for the 
study region, we used the frequency of hot days with temperature 
maxima >30°C as a proxy for the occurrence of heat. Clearly, this 
measure does reflect the length of summer heat periods rather than 
the severity of heat events in a given year. Nevertheless, heat period 
length and heat intensity may often be  correlated, and long-term 
trends in heat duration together with the mean temperature of the 
year’s hottest day can give physiologically relevant information on the 
growing exposure of the trees to heat during the last three to four 
decades. Since these data are available in the study region at high 
spatial resolution, we could also analyze regional differences in the 

FIGURE 4

Change in growing season length in the four regions differing in 
mean growing season precipitation in the period 1951–2020. The 
vertical dashed line (1980) separates the two periods. Curve 
smoothing was done with a smoothing spline.

FIGURE 5

Growing season length extension from the 1951–1980 to the 1981–
2020 period at the 30 locations in the northern German lowlands 
that were assigned to four growing-season precipitation classes 
(Wettest, Wet, Dry, and Driest). Given are the means of the four 
classes and the standard error of measurements (solid line) as well as 
the estimated total error, i.e., observed error plus model error 
(dashed line).
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FIGURE 6

Climate-growth relationships for beech in the 1951–2017 period in the 30 stands that were assigned to four growing-season precipitation classes 
(Wettest, Wet, Dry, Driest) for the variables mean monthly minimum temperature (A), monthly mean temperature (B), mean of the monthly averaged 
daily maximum temperature (C), monthly precipitation total (D), monthly mean VPD (E), and monthly mean SPEI (F). Given are the Pearson correlation 
coefficients (r) for the relationships between ring width index (RWI) values and the monthly climate variables in the 18-month window from previous 
year’s April to current year’s September (small letters: previous year, capital letters: current year). Significant correlations (p < 0.05) are indicated by 
asterisks (*).

long-term development of heat exposure. This situation is similar for 
VPD, where our daily mean values clearly miss the short-term vapor 
pressure deficit peaks that occur around noon and are most stressful 
to the plants. Again, by analyzing long-term trends in the mean VPD 
of the year’s driest day, we studied a proxy variable that likely correlates 
well with VPD maxima. Mean VPD of the year’s driest day increased 
since 1980 by about 0.18 kPa (12–20%) in our region; this increase 
was, however, not significant due to marked inter-annual fluctuation. 
This is similar to the global mean on the land surfaces, where average 
daily maximum VPD has increased in the 1980–2020 period by ca. 
0.18 kPa, or by 0.021 hPa yr.−1 in the temperate zone (Novick et al., 

2024). It is very likely that this increase has impacted the trees’ water 
status and growth rate (Köcher et  al., 2012; Zweifel et  al., 2021; 
Hammond et al., 2022).

The regional analysis of long-term thermal trends (Figure  3; 
Table  1) shows that the warming in the 1981–2020 period has 
proceeded at a similar rate in the wetter oceanic and the drier 
sub-continental regions of northern Germany. This is also valid for the 
mean temperature and mean VPD of the year’s hottest and driest day, 
suggesting in all sub-regions similar long-term trends for these 
climatic extremes. In contrast, the duration of heat periods as reflected 
in the number of hot days has increased faster in the drier 
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(sub-continental) regions than in the wetter (more oceanic) regions, 
which could result from the establishment of more stable high 
pressure cells during heat episodes in the continental interior than 
near the coast. Atmospheric circulation patterns in summer in 
Western Europe are characterized by an increasing frequency of 
southerly inflows of air masses (Vautard et  al., 2023). Moreover, 
weather conditions with an anticyclonic anomaly over the northern 
Atlantic (Labrador Sea and Greenland) and a cyclonic anomaly to the 
East of the British Isles, which drive calm and dry conditions over 
Western-Central Europe, have increased since the 1950s, favoring 
summertime heat waves especially in the more continental regions of 
Central Europe (Faranda et al., 2023). In our region, the more rapidly 
increasing heat exposure of the vegetation in the drier, more 
continental regions in comparison to the wetter, more oceanic regions 
is driven by two factors, (i) the on average higher temperatures with 

greater heat extremes in these regions, and (ii) the faster increase in 
the length of heat periods. Both have the potential to drive the trees of 
the drier regions faster toward their thermal limits.

4.2 Heat and VPD effects on basal area 
increment

It is increasingly recognized that heat and high VPD are exposing 
temperate trees to stress during hot drought episodes (Williams et al., 
2013; Novick et al., 2024). Since these extremes typically last only for 
several hours of a day over a few days, their principal effect will be on leaf 
metabolism, while the longer-term impact on wood growth is less 
certain. Our study belongs to the few dendrochronological studies that 
have addressed the influence of heat and high VPD on radial growth. As 
higher temperatures are usually associated with higher atmospheric 
saturation deficits, both climatic factors are difficult to disentangle in 
dendrochronological studies, even though they are impacting plant 
metabolism in quite different ways. While drought is often acting in 
concert with heat, heat stress can independently harm plant metabolism 
(Adams et al., 2017; Kim and Portis, 2005). Particularly sensitive to high 
temperatures is the photosynthetic apparatus with photosystem II, where 
heat can negatively affect electron transport rate, Rubisco function, and 
thylakoid and cell membrane fluidity, increase photorespiration rate, and 
induce the production of reactive oxygen species (Salvucci and Crafts-
Brandner, 2004; Teskey et al., 2015). The demonstrated increase in the 
number of hot days in the course of climate warming makes direct heat 
damage of adult and juvenile trees more likely (Williams et al., 2013).

That summer heat harms beech basal area increment in the study 
region, is suggested by the significant negative correlation between BAI 
and (i) mean maximum temperature in current June (only at the dry 
and driest sites; Figure 6C), (ii) mean temperature of the year’s hottest 
day (Figure 7B), and (iii) the number of hot days in the previous and 
current year (Figure 7A). The dendrochronological study of Enderle 
et al. (2024) in North-West and South-West German beech forests 
revealed a significant effect of the number of previous-year hot days 

FIGURE 7

Climate-growth relationships for beech in the 1951–2017 period in the 30 stands that were assigned to four growing-season precipitation classes 
(Wettest, Wet, Dry, Driest) for the variables annual number of hot days (Tmax > 30°C) (A), mean temperature of the year’s hottest day (B), and mean VPD 
of the year’s driest day (C). Given are the Pearson correlation coefficients (r) for the relationships between ring width index (RWI) values and monthly 
climate variables either for the previous year (April–December) or current year (January–September) (averaged over the respective months). Significant 
correlations (p < 0.05) are indicated by asterisks (*).

FIGURE 8

Dependence of the mean basal area increment of beech trees in the 
four growing-season precipitation classes (wettest: dark blue, wet: 
light blue, dry: orange, driest: red) on mean growing season length in 
the 1981–2017 period. While no relation appears for growing season 
lengths <150 days, a highly significant negative relation emerges for 
growing season lengths >150 days. For the latter case, the linear 
relationship with the 95% confidence interval is shown.
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on growth, but not of current-year hot days; this is confirmed in our 
study for the wettest, wet and dry regions, but not for the driest region. 
Here, the influence of current-year heat was clearly dominant over 
previous-year heat. A similar picture emerged for the influence of VPD 
extremes (mean VPD of the year’s driest day): in the driest region, 
current-year atmospheric drought was more important than previous-
year VPD (Figure 7C). We speculate that the dominating negative heat 
and high-VPD effects in previous summer in all regions except for the 
driest sites are partly mediated through the stimulation of beech mast 
fruiting by these conditions, which reduces radial growth in the 
subsequent year (Hacket-Pain et  al., 2015; Müller-Haubold et  al., 
2015). In the driest region, it is plausible that heat effects on current 
photosynthesis and growth are so strong that they are overlaying 
previous-year, mast fruiting-related effects of heat and VPD.

Fluorescence measurements on leaf discs suggest that the 
photosynthetic apparatus of beech is with T5 and T 50 values of 44.1 
and 55.8°C, respectively (5 and 50% reduction of Fv/Fm, the ratio of 
variable to maximum fluorescence), somewhat more heat-sensitive 
than that of temperate light-demanding broad-leaf trees (Kunert and 
Hajek, 2022), but more heat-resistant than the needles of temperate 
conifers (Münchinger et al., 2023). From the correlation coefficients 
of the BAI − climate correlation analysis in our study, it appears that 
heat in current June can impact beech growth as severely as a 
reduction in the climatic water balance. This underpins that heat 
deserves more attention in the study of climate change effects on the 
health of beech and other temperate tree species.

Elevated VPD can negatively influence plant productivity 
through several causal pathways, among them lowered carbon gain 
due to reduced stomatal conductance and lowered leaf and cambial 
water potentials that reduce growth rate (Lendzion and Leuschner, 
2008; Köcher et al., 2012; Grossiord et al., 2020; Novick et al., 2024). 
From the observation that beech growth was positively related to 
the climatic water balance (SPEI) in generally more summer 
months than it was to precipitation (Figures 6D,E), we conclude 
that VPD must act independently from precipitation on the water 
status and thus metabolism of beech, since SPEI is determined by 
both precipitation and VPD. Even though the long-term increase 
in the VPD of the year’s driest day was statistically weaker than was 
the increase of the heat-related variables, we  assume from the 

largely different VPD influence on growth between the driest and 
the wetter regions (Figure  7C) that increasing VPD has the 
potential to impair beech growth. In accordance, air humidity 
manipulation experiments with beech saplings have demonstrated 
that increased VPD levels can reduce growth, independently of soil 
moisture availability (Lendzion and Leuschner, 2008).

4.3 Growth decoupling from growing 
season length

Until recently, it was assumed that temperate forest productivity is 
primarily limited by low temperatures and low radiation (Nemani et al., 
2003). In accordance, the substantial growth increase in Central 
European tree species during the last 100 years was largely attributed to 
rising temperatures and extended growing seasons (Spiecker et al., 2012; 
Pretzsch et al., 2014). Since growing season length is calculated with 
thermal parameters, rising temperatures are extending GSL, as the 
period with cold-limitation of growth shortens (Menzel et al., 2001; 
Linderholm, 2006). In contrast, climate cooling, as has happened in the 
study region in the 1951–1980 period, is associated with a GSL 
reduction. The slight GSL decrease calculated for the most recent decade 
in the study region relates to somewhat cooler spring and autumn 
temperatures in the years between 2008 and 2013 (as is indicated by 
Supplementary Figure S1). However, it is questionable whether growing 
season length can be deduced from temperature thresholds of growth 
onset and termination alone, especially in times of rapid climate 
aridification. Detailed monitoring of cambial activity in seven temperate 
tree species has shown that annual stem growth occurs only on 30–80% 
of the days within the growing season, when growth conditions are 
favorable (Etzold et al., 2022). Indeed, the radial growth of temperate 
trees occurs mainly at night, when VPD is lowest (Köcher et al., 2012; 
Zweifel et al., 2021) and it may cease in unfavorable periods during 
summer. This suggests that other factors than low temperatures are 
negatively impacting growth in much of the growing season. Among 
the most probable agents are soil and atmospheric drought as well as 
heat, all of which tend to increase in importance with climate warming. 
This must weaken the relation between GSL as defined by temperature 
thresholds and cumulative growth.

TABLE 1 Results of Mann-Kendall tests on trends in mean annual temperature, the number of hot days (Tmax > 30°C) per year, mean temperature of the 
year’s hottest day and mean VPD of the year’s driest day in the periods 1951–1980 and 1981–2017 in the northern German lowlands, analyzed 
separately for the wettest, wet, dry, and driest sites of the region.

Mean 
annual temperature

Number of hot days 
(Tmax >30°C)

Mean temperature of 
hottest day

Mean VPD of driest 
day

Groups Trend 
(r)

p-
value

Slope Trend 
(r)

p-
value

Slope Trend 
(r)

p-
value

Slope Trend 
(r)

p-
value

Slope

Wettest Period 

1951–

1980

0.001 0.876 <0.001 0.049 0.240 0.06 0.000 0.932 <0.001 0.003 0.759 <0.001

Wet 0.001 0.861 <0.001 0.029 0.370 0.07 0.000 0.972 <0.001 0.002 0.817 <0.001

Dry 0.002 0.820 <0.001 0.013 0.554 0.06 0.006 0.672 −0.01 0.002 0.832 <0.001

Driest 0.002 0.820 <0.001 0.007 0.658 0.04 0.006 0.678 −0.01 0.012 0.567 <0.001

Wettest Period 

1981–

2017

0.208 0.005 0.03 0.008 0.589 0.03 0.199 0.006 0.04 0.065 0.127 <0.01

Wet 0.172 0.011 0.03 0.027 0.327 0.07 0.220 0.003 0.04 0.072 0.108 <0.01

Dry 0.234 0.002 0.04 0.122 0.034 0.19 0.224 0.003 0.04 0.011 0.528 <0.001

Driest 0.229 0.003 0.04 0.145 0.020 0.20 0.216 0.004 0.04 0.016 0.459 <0.001

Given are the r- and p-values and the slope of the relationship. Significant trends (p < 0.05) are highlighted in bold font.
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In fact, despite a marked warming since about 1980  in our 
region, our data do not show recent positive basal area increment 
trends of beech in the majority of stands (Supplementary Figure S8). 
Consequently, we  did not find the anticipated positive relation 
between temperature-defined GSL and BAI. Rather, a negative GSL–
BAI relation became visible in the full data set, when growing season 
length exceeded 150 days. A closer look revealed that this 
unexpected outcome was caused by growth decreases with growing 
season extension in the dry and driest regions, while no significant 
relationships existed in the wet and wettest regions. This is a clear 
hint that cambial activity has in recent decades indeed been 
constrained by additional factors than low temperature alone. 
Different GSL–BAI relationships in the wet and wettest regions as 
compared to the dry and driest regions support this finding. This 
discrepancy makes it likely that, in the drier, more continental 
climates, drought and/or heat have shifted the GSL–BAI relationship 
from a positive to a negative one in the recent past. Here, advancing 
climate warming does not only weaken low-temperature constraints 
on growth, but it apparently increasingly hampers growth despite an 
extended thermal growing season. This suggests that delimiting 
beech growing season length exclusively by means of thermal 
thresholds is not feasible in our region, but other growth controlling 
factors such as heat and drought have to be considered as well. The 
fact that GSL is in the dry region most tightly correlated with the 
number of hot days suggests that heat should be one of the additional 
growth-constraining factors, while drought is also plausible.

It should be mentioned that beech growth likely is influenced not 
only by climatic but by edaphic and demographic factors as well. 
While all stands were of relatively similar age and stocked on soils 
without groundwater influence, soil texture differed from sandy to 
loamy with related variation in soil water storage capacity. However, 
soil texture varied not systematically along the precipitation gradient 
and thus cannot explain the growth response pattern found between 
the wettest and driest sites.

5 Conclusion

The pronounced warming and drying of climate during the last 
40 years has driven more than half of the dominant beech trees in the 
studied 30 northern German stands to negative growth trends. Yet, 
mortality rates have risen only slightly compared to the long-term 
mean, and only in the driest regions. Our climate-growth analysis 
suggests that the widespread growth decline likely is driven by heat 
and VPD extremes, besides the effect of a deteriorating climatic water 
balance in summer as a main cause. We therefore predict that further 
climatic warming will increase the stress exposure of these stands, at 
least in the upper canopy. Clearly, our dendroecological study has the 
shortcoming that the findings base on correlations, which do not allow 
firm conclusions on underlying mechanisms. Moreover, detecting the 
impact of climatic extremes on radial increment is likely complicated 
by the temporal mismatch between a short-term climatic trigger and 
a growth response that incorporates the influence of external and 
internal driving factors over a much longer time span. Future research 
should therefore combine dendrochronological studies with 
physiological research in mature trees and sapling experiments to 
deepen our understanding of the mechanisms through which heat and 
elevated VPD are reducing beech growth. This requires shifting some 

attention from the recent research focus on tree mortality to processes 
that drive long-term tree vitality decline, which may eventually lead 
to death as well. Further, systematic monitoring of canopy surface 
temperatures in different forest stands during heat episodes is needed 
to link weather station data to biologically meaningful temperature 
maxima and to assess the heat exposure of the foliage. Our study 
provides further evidence that growing season length, as computed 
from thermal thresholds, has lost its indicative value for tree and forest 
productivity in northern Germany.
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