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Investigating climate anomalies 
associated with the sudden 
mortality of balsam fir trees in 
eastern Canada
James Broom 1, Anthony R. Taylor 1 and Loïc D’Orangeville 1,2*
1 Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, 
Canada, 2 Département des Sciences du Bois et de la Forêt, Université Laval, Quebec, QC, Canada

The identification of climate anomalies associated with large-scale stand disturbances 
can help inform climate-focused forest management. In the spring and summer 
of 2018, an unusual spike in balsam fir (Abies balsamea) mortality was reported 
in multiple areas across its southern distribution range limit, from Wisconsin, 
United States, to New Brunswick, Canada. Such an event was previously reported 
in 1986 in the study region and referred to as Stillwell’s Syndrome. To identify the 
role of climate anomalies in the 2018 event, we used monthly climate anomalies 
as explanatory variables in a Random Forest model predicting the presence of 
mortality from air and field-based surveys across the Maritimes region of eastern 
Canada. Results were validated by (1) comparing common climate predictors of 
mortality from this model and a separate Random Forest model fitted on the 
1986 event, and (2) using the 2018 model to predict areas of mortality in 1986. 
Both the 1986 and 2018 models identified multiple common climate anomalies. 
Areas with unusually high water deficit and temperatures in the previous growing 
season, followed by thick April snowpack and high May temperatures the same 
year, were associated with balsam fir mortality. Such climate anomalies have been 
previously associated with water stress and desiccation in trees. When using the 
2018 model to map the occurrence of mortality in 1986 using historical climate 
data, we report a 95% accuracy in prediction (kappa  =  0.88). The approach used 
here in conjunction with mapped records of past stand disturbances could help with 
understanding the impacts of future climate anomalies and adaptive management 
strategies to deal with these events.
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1 Introduction

While mortality is an essential aspect of forest renewal, our capacity to determine specific 
causes is limited because of the many interacting factors that lead to tree mortality (Franklin 
et al., 1987). Nonetheless, improving our understanding of the drivers of tree mortality is 
important under a changing climate. Climate anomalies, such as lower than usual precipitation 
or higher than usual temperatures or a combination of both can lead to droughts which are 
continuing to increase the risk of tree mortality globally (Allen et  al., 2010; Anderegg 
et al., 2013).
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Tree mortality induced by drought can be  caused by carbon 
starvation or hydraulic failure. Carbon starvation occurs when 
drought induced closure of stomata leads to a sustained reduction in 
photosynthate (McDowell et al., 2008). Reduced conductance in the 
xylem of a tree can occur when water loss from transpiration is not 
matched by water uptake in the roots, which increases xylem tension 
and can lead to cavitation and hydraulic failure (McDowell et al., 
2011). Both hydraulic failure and carbon starvation are relevant when 
investigating drought-induced tree mortality, with individual tree 
responses often being species specific (Adams et al., 2017).

In the spring of 2018, the sudden mortality of a high number of 
balsam fir trees was reported in New Brunswick (NBERD, 2018), 
Wisconsin (2019), as well as northern areas of New Hampshire, 
Vermont, and Maine (Maine Forest Service, 2018; Figure 1). Trees 
were found dead with intact tree crowns turned bright red, next to 
healthy fir trees. Mortality in New Brunswick was considered high 
enough to warrant the government to complete a province-wide aerial 
survey. This mortality was unlikely to have been caused by spruce 
budworm (Choristoneura fumiferana), because foliage had no 
evidence of defoliation. Further, mortality from spruce budworm is 
reported to take more than four consecutive years of severe defoliation 
(MacLean, 1980). Anecdotal observations from initial local forest 
health surveys suggested various contributing factors to mortality 
including a bark beetle (Pityokteines sparsus), Armillaria root rot, salt 
exposure (NBERD, 2018; Wisconsin, 2019; Maine Forest Service, 
2018). However, due to the broad scale synchronicity of observed 
mortality, it is likely that climatic conditions played an important role, 
along with local site conditions (Harvey et  al., 2021; Lalande 
et al., 2020).

A similar balsam fir mortality event was reported in the 1980s 
across the Maritimes region of eastern Canada (Magasi, 1987). 
Referred to as “sudden death of balsam fir trees” or “Stillwell’s 
syndrome,” this event was mapped in 1986 due to its high severity that 
year (Magasi, 1987). Although sudden balsam fir mortality has been 
historically associated with biotic agents (Magasi, 1987), the rapid 
appearance of symptoms (bright red, intact crowns) also supports the 
hypothesis of hydraulic failure, likely linked to drought (Arend et al., 
2021). Compared to other species in the region, balsam fir has been 
reported to be vulnerable to water deficit, due to losses in hydraulic 
conductance (D’Orangeville et al., 2013; Balducci et al., 2020; Tyree 
et al., 1994). Identifying the broad scale climate anomalies, such as a 
drought, associated with the reported sudden balsam fir mortality in 
2018 could prove useful to determine the likelihood of future mortality 
in response to climate change (Bourque et al., 2005). Therefore, the 
objective of this study was to identify the role of climate anomalies on 
the 2018 mortality event across the Maritimes region of eastern 
Canada. In addition, the similarity of the 2018 and 1986 events was 
assessed by using our analysis of the 2018 event to back cast the 
location of mortality from 1986, to help independently test and verify 
causal drivers.

2 Methods

2.1 Study area

The provinces of New Brunswick (NB), Nova Scotia (NS) and 
Prince Edward Island (PEI) form the Maritime provinces of Canada. 

FIGURE 1

Location of 2018 reports of sudden fir mortality within the current distribution range of balsam fir (Natural Resources Canada, 2015). Reports included 
pictures shown here of the rapid reddening of intact foliage associated with sudden balsam fir mortality in Wisconsin (2019), northern areas of New 
Hampshire, Vermont, Maine (Maine Forest Service, 2018) and New Brunswick (NBERD, 2018). Images of the fir trees are used with permission: © 
Wisconsin Department of Natural Resources (left), Photo taken by Aaron Bergdahl © Maine Forest Service (center), Photo taken by Anthony Taylor © 
Canadian Forest Service (right).
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They are part of the Atlantic Maritime Ecozone, a region strongly 
influenced by the Atlantic Ocean resulting in a cool and moist 
environment. Annual precipitation is between 800 mm inland and 
over 1,500 mm near the coast. In the upland regions, Humo-Ferric 
Podzols and glacial tills are the dominant soils with underlying hard, 
crystalline rocks including granite and gneiss. In lowland areas nearer 
to the coast, deeper Luvisolic soils are formed from the underlying 
sedimentary bedrock (Ecological Stratification Working Group, 1996).

2.2 Response variable

Following multiple public reports of sudden balsam fir mortality 
across NB in the spring of 2018, NB Department of Energy and 
Resource Development (NBERD) undertook a province-wide aerial 
survey in July 2018 to identify and locate recently dead balsam fir—
defined as balsam fir trees with complete crowns of bright red foliage 
(NBERD, 2018). There was a total of 84 flight lines covering New 
Brunswick with lines conducted 5 km apart in northern NB and 11 km 
apart in the south. Of the 115 areas with recorded mortality during 
this survey, 82.6% displayed less than 5% mortality, 14.8% displayed 
between 6 and 30% mortality while the remaining 2.6% displayed 
more than 30% mortality. The distribution of dead fir trees was 
generally scattered (43.5% of areas) or in patches (50.4%), with only 
6.1% of areas showing widespread mortality. The recorded mortality 
was likely underestimated due to the broad flight lines used in the 
aerial survey and subsequent difficulty of aerial surveyors to spot and 
record individual tree mortality. Further, the targeted ground survey 
that features in the NBERD report suggests a higher presence of 
mortality but due to its southern bias we chose to only use the aerial 
survey data. There were also additional reports of sudden balsam fir 
mortality after the aerial survey (Drew Carleton, pers. comm.). 
We therefore deemed the NB absence data to be unreliable and so 
locations in NB with no sudden balsam fir mortality recorded from 
the initial aerial survey were excluded from further analysis. Aerial 
surveys were not flown in the other Maritime provinces due to a lack 
of reported sudden balsam fir mortality, but we  surveyed local 
foresters in neighboring provinces and were able to confirm that the 
same extent of balsam fir mortality seen in NB was not reported in NS 
(Jeffrey Ogden, pers. comm.) and PEI (Mary Myers, pers. comm). For 
the purpose of this study, both NS and PEI were therefore defined as 
areas with no sudden balsam fir mortality (absence data) given the 
absence of reported cases in 2018 (Figure 2).

2.3 Climate data

Temperature, precipitation and snow depth data were acquired for 
the study region from Natural Resources Canada (McKenney et al., 
2011). These data were derived from monthly averages of daily 
maximum temperature (TMAX), minimum temperature (TMIN) and the 
monthly sum of precipitation, interpolated at 2 km resolution from 
meteorological weather station data for the 1950–2018 period using 
thin-plate smoothing splines, implemented in the ANUSPLIN climate 
modeling software (McKenney et al., 2011). As deeper snow depths 
combined with earlier melting in spring have been positively 
correlated with balsam fir growth (Duchesne et al., 2012) and shown 
to influence crown health (Man et al., 2013), 1979–2018 monthly 

snow depth data were acquired from the National Center for 
Environmental Prediction North America Regional Reanalysis 
(Mesinger et  al., 2006) at ~32 km resolution. Temperature and 
precipitation values were aggregated to a mean value that matched the 
coarser resolution of the snow depth data using the “raster” package 
in R (Hijmans, 2024).

To identify climate anomalies across the study area we developed 
standardized climate indices for each 32 km cell that reflected 
deviations from the local climate normal. Precipitation data was 
normalized using the Standardized Precipitation Index (SPI; McKee 
et al., 1993). The 69 years of precipitation data (1950–2018) were fitted 
to a gamma distribution and then transformed into a normal 
distribution with SPI values that represent the standard deviation 
from the median (which is a SPI value of 0). Positive SPI values 
indicate higher than average precipitation with negative values 
indicating drier than usual conditions. We also used the same process 
to standardize the 40 years of snow depth data (1979–2018), which 
we refer to as the Standardized Snow Depth Index (SSDI). Periods 
without any snow can be common, so we fitted a gamma distribution 
to the data in the same way as the precipitation data (Skaugen and 
Melvold, 2019). The 69 years of temperature data (1950–2018) were 
also standardized in a similar method as the SPI, which is referred to 
as the Standardized Temperature Index (STI; Zscheischler et al., 2014), 
but, as temperature was normally distributed we fitted the data to a 
log-logistic distribution. The SPI, SSDI and STI all have units of 
standard deviations from the long-term average. The “spei” package 
(Beguería and Vicente-Serrano, 2023) was used to standardize the 
climate data and the “raster” package (Hijmans, 2024) was used to 
convert the standardized climate data back to a spatial format in R.

2.4 Data preparation

The presence-absence of sudden balsam fir mortality was then 
scaled to the ~32 km grid cell resolution of the climate data using the 

FIGURE 2

Individual and groups of balsam fir trees with symptoms of sudden 
mortality were identified from a systematic aerial survey of New 
Brunswick (NB) indicated by ‘+’ symbols. Areas of NB with no 
reported mortality from the aerial survey were omitted to avoid false 
negatives. Nova Scotia and Prince Edward Island had no mortality 
reported, which was confirmed by a survey of local foresters and 
became the absence data.
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gridRecords function in the “fuzzySim” package in R (Barbosa, 2016). 
If one or more point occurrences of sudden balsam fir mortality were 
in a ~ 32 km cell, then that cell was assigned as a presence cell. Only 
climate data from the previous 15 months prior to widespread sudden 
balsam fir mortality being reported was included, ranging from March 
2017 to May 2018, which ensured a full growing season was 
investigated. This resulted in 15 monthly climate variables for TMAX, 
TMIN and precipitation respectively, and nine variables for snow depth 
(only winter and spring months were included). This gave a total of 54 
monthly climate variables.

Three preliminary screening processes were used to reduce the 
large number of initial monthly climate variables to avoid overfitting 
when building our predictive model (Supplementary Table 1). First, 
each climate variable was averaged across presence and absence areas. 
Next, only climate variables that displayed a greater anomaly in 
presence areas were retained, thus leaving us with 32 climate variables. 
Second, a simple logistic regression model was built for each retained 
climate variable and was used to predict the presence-absence data. A 
Cohen’s kappa value was obtained from this prediction and only 
variables that had a significant logistic regression model (p < 0.05) 
were retained. The kappa value was chosen as the accuracy metric as 
it gives a more conservative measure of accuracy because it accounts 
for chance in a binary prediction (Cohen, 1960). Third, collinearity 
between the remaining 24 explanatory climate variables was 
determined through Pearson correlations and visualized through the 
“corrplot” package in R (Wei et al., 2017; Supplementary Figure 1). 
Each pair of climate variables was then ordered by the strength of their 
correlation (≥ ± 0.7) and the variable with the higher kappa value from 
its prediction of presence-absence data (through its logistic regression 
model), was retained. Faced with the unique situation of two variables, 
December TMAX and August precipitation, with identical kappa values, 
we retained August precipitation as we expected a greater influence of 
growing season climate on mortality. These three preliminary 
screening processes resulted in 11 final explanatory climate variables 
(which all had correlations under ±0.7) that were then used in our 
final modeling analysis (Supplementary Table 2). There were also 8 
cells across the study area that had to be removed because of a lack of 
snow depth data in May, which resulted in a final total of 126 cells 
across the study area with 42 classed as presence cells and 84 absence 
cells (~33% presence).

2.5 Random forest modeling

To analyze the presence-absence of sudden balsam fir mortality 
based on our set of explanatory climate variables, we employed the 
machine learning algorithm Random Forest (RF; Breiman, 2001). RF 
analysis accommodates many of the violations of conventional, 
parametric statistics that are common for observational data, 
including departures from normality and homogeneity of variance, 
and are well suited for the analysis of ecological data (Elith, 2019). The 
probability of mortality reported through the random forest modeling 
analysis is based on the count of the number of trees across the 
ensemble of decision trees that vote for one of two classes of ‘presence 
of mortality’ or ‘absence of mortality’. The default 0.5 threshold was set 
to determine which class a data point falls within. The reported 
probability of mortality is the probability of one or more dead balsam 
fir trees occurring in a ~ 32 km grid cell.

The “caret” package in R (Kuhn, 2009) was used to determine the 
optimum mtry hyperparameter, which defines the number of 
explanatory variables that are randomly sampled at each node split in 
each decision tree of the RF model. The train function used 25 
bootstrap resamples (with replacement) of the data to evaluate how 
different mtry values (1:11) altered the predictive performance of the 
RF model. Once the optimum mtry value was determined, then a final 
RF model was run using the “randomForest” package in R (Liaw and 
Wiener, 2002). The ntree (number of trees) parameter was set at the 
default (500) to determine when the out-of-bag error stabilized, and 
then rerun with the appropriate reduced number of trees (Elith, 2019). 
The node size, which specifies the minimum number of observations 
in a terminal node in each decision tree, was kept at the default for 
classification of 1.

2.6 Model validation

Machine learning techniques usually require data to be split into 
a training dataset, which is used to build a model, and the model is 
then validated on a withheld testing dataset (on data unseen during 
the training process). However, when a dataset is relatively small, as 
in the current analysis, then the testing/training splitting procedure 
can omit potentially useful data when the model is being trained. RF 
modeling is useful in this situation as there is an internal training and 
testing procedure. For each individual decision tree, a new training set 
is sampled with replacement, where each unique data point can 
be randomly chosen multiple times. This is known as a bootstrap 
sample and typically includes 2/3 of the original data observations 
(Efron and Tibshirani, 1997; Gareth et al., 2013). The remaining 1/3 
that was not selected then forms the out-of-bag dataset, which is used 
for testing purposes. The predicted class (presence or absence of 
mortality) for a data point is then calculated by a majority vote from 
the decision trees that did not contain that specific data point (~32 km 
cell) in the respective bootstrap sample. The overall accuracy of the RF 
model is based on the proportion of out-of-bag samples that were 
incorrectly classified across the ensemble of decision trees and is 
referred to as the out-of-bag error.

The autocorrelated nature of climate data (Dormann et al., 2007) 
leads to spatially dependent testing and training datasets (Ploton et al., 
2020). This limits our ability to properly evaluate the performance of 
the final RF model based on the out-of-bag error. Due to this spatial 
autocorrelation, we chose to use mapped records of a similar sudden 
balsam fir mortality event from 1986 to independently test the 2018 
RF model. Areas of high, medium and low frequency of sudden 
balsam fir mortality were recorded in 1986, as well as areas of mortality 
absence (Magasi, 1987). High and medium frequency areas were 
combined due to the small relative size of medium frequency areas 
and the subsequent overlap of climate data with high frequency areas. 
First, we used the 2018 RF model to predict (1) areas of medium and 
high mortality from 1986, and (2) areas of low, medium and high 
frequency. Next, we fitted a separate RF model for 1986 using the same 
11 monthly climate explanatory variables used in the 2018 RF model 
but limited the presence areas to the high and medium frequency 
areas only (excluding low frequency areas).

The final step investigated the partial dependence plot (PDP) for 
each climate variable generated for both the 2018 and 1986 RF models. 
A PDP gives a graphical representation of how, across the range of 
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values for a single climate variable, the probability of the presence of 
sudden balsam fir mortality changes. The comparison of the PDPs 
meant that the level of agreement across the two RF models could 
be  visually interpreted to determine if the effect of each climate 
variable on mortality probability was consistent for each mortality 
event. The variable importance for each RF model used the mean 
decrease in Gini Importance (also referred to as the Mean Decrease in 
Impurity). This is the average decrease in node impurity, based on 
each split in a decision tree for a specific variable, across all the 
individual decision trees that make up a random forest model (Liaw 
and Wiener, 2002). Inflated impurity-based variable importance 
related to a varied scale of measurement or number of categories was 
avoided because the climate explanatory variables were continuous 
and standardized (Strobl et al., 2007).

3 Results

3.1 Seasonal climate trends from March 
2017 to May 2018

The following seasonal descriptions are based on the 
non-standardized mean averages for monthly climate variables across 
presence areas to aid interpretation (Supplementary Table 3). Spring 
2017 was initially cold and dry in March with a reduced snow depth 
(Figure  3), then temperatures increased with April and May 
TMIN + 2.0°C and + 1.2°C warmer than normal. Precipitation was also 
higher than the average in both April (+11.1 mm) and May 
(+53.5 mm). Summer 2017 TMAX was warmer than normal with June, 
July and August +0.5, +0.4 and + 0.5°C above the average, respectively. 
This was combined with lower than average precipitation, dropping 
43% to 42.6 mm and 38% to 34.7 mm in July and August, respectively. 
The warm wet spring and dry warm summer were followed by an 
exceptionally warm fall in 2017 with TMAX in September and October 
+3.2 and + 4.7°C above normal. TMIN was also warmer than the average 
in September at +2.6°C and October at +2.8°C. Winter 2017–2018 
tended to have higher precipitation rates than usual. The initial cold 
conditions in December, with TMAX and TMIN -2.0°C and − 1.6°C below 
the average, were followed by warm conditions in February, with TMAX 
and TMIN + 3.5°C and + 3.0°C above the average, which resulted in a 
reduction in snow depth, 23% below normal. The 2018 spring leading 
up to widespread reports of sudden balsam fir mortality began with a 
warm March (+3.3°C in TMIN), followed by a cool April (−1.2°C for 
both TMAX and TMIN). The combination of cool temperatures and high 
precipitation in April (+34.2 mm) led to an exceptionally high snow 
depth, 94% above normal. The cold April was then followed by a warm 
May, with TMAX + 2°C higher than the average.

3.2 The 2018 RF model

The best performing 2018 RF model (mtry = 3, ntree = 250) was 
accurate with an out-of-bag error rate of 1.6%. The 2018 RF model 
identified a series of seasonal climate anomalies which can exacerbate 
water stress. According to the 2018 RF model variable importance 
scores, the 2017 summer drought was the best predictor of mortality. 
Low August precipitation was ranked as the most important predictor 
of sudden balsam fir mortality (Table 1) with over three times the 

score of the 2nd highest ranked predictor. Dry conditions in March 
2017 (63 mm) were also considered important in the 2018 RF model, 
ranking 3rd. The water deficit was likely exacerbated by unusually 
high summer temperatures in 2017, although only high temperatures 
in July were included in the RF model, which were ranked 7th. The 
thicker than usual snow depth in April 2018 was considered the 
second most important variable in the RF model with the warmer 
than usual TMAX in May ranked 5th.

3.3 Model validation through the 1986 
event

When using the 2018 RF model to map the occurrence of 
mortality (medium and high frequency) in 1986 using historical 
climate data, we report a 95% accuracy in prediction (kappa = 0.88) 
with 103 out of 108 raster cells correctly classified (Figure 4). When 
the model was applied across the whole province (which included the 
low frequency as well as the medium and high frequency areas), the 
accuracy dropped to 89% (kappa 0.77), with higher mortality 
probability in areas that matched the high and medium frequency 
regions (Figure 4). The lower predictive ability of the 2018 RF model 
when areas of low frequency were included justified removing these 
areas from our focus with the 1986 RF model. This was further 
confirmed when only low frequency areas formed the presence data 
with the accuracy further dropping to 87% (kappa 0.69).

3.4 Similarity between the 1986 and 2018 
balsam fir mortality events

Both 1986 and 2018 models identified multiple common climate 
anomalies. The two most important climate variables in the 2018 RF 
model were prior August precipitation and spring snow depth, which 
also had similar effects on mortality probability within the 1986 RF 
model (Figure 5). In addition, five out of the 11 climate explanatory 
variables from both 2018 and 1986 RF models displayed similar effects 
on mortality (Supplementary Figures 3, 4). The 1986 and 2018 RF 
model importance score rankings also displayed important similarities. 
Notably, both models had prior-year August precipitation as the most 
important variable (Table 1). Drier conditions in March of the previous 
year and previous year minimum August temperatures (TMIN) also 
substantially increased mortality probability for both events. In the 
current year that mortality was reported, both events demonstrated a 
higher mortality probability for areas with a deeper than usual 
snowpack in April followed by a warmer than usual TMAX in May.

4 Discussion

Climate-focused forest management hinges on a better 
understanding of key climatic thresholds for tree species health (Law 
et al., 2018). Here, we took advantage of aerial mortality surveys of a 
recent balsam fir mortality event to model the probability of mortality 
as a function of climate anomalies. Not only do we find clear climatic 
stressors associated with mortality, but our model calibrated on the 
2018 mortality was able to accurately predict the areas of balsam fir 
mortality from the previous event of 1986. This research demonstrates 
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the feasibility of using recent tree dieback episodes to better 
understand historic episodes of tree dieback through readily available 
interpolated historic climate data.

The climatic drivers identified in this study revolve around water 
deficit. Warm spring conditions in 2017 likely induced an early start 
to the growing season, which is associated with an extended period of 
low water availability in the summer (Buermann et al., 2013). Then, 
the unusually dry summer, combined with temperature anomalies in 
the summer and fall including unusually high July maximum 
temperature, likely exacerbated water deficit, leading to more negative 
xylem tension in fir trees through higher evaporative pull (Grossiord 
et  al., 2020) and reduced available water. The warm temperature 
anomalies in September and October could have prolonged the low 
water anomalies, while such high temperatures also raised respiration 
rates, reducing carbohydrate reserves in already stressed trees 
(Olesinski et al., 2012). Following this warm fall, fir trees likely entered 
winter dormancy in a water stressed condition. In the spring, the 
unusually high snow depth would have maintained low soil 
temperatures while air temperatures were rapidly increasing. Such 
conditions typically exacerbate water stress. Indeed, air warming is 
associated with recovery of photosynthesis and respiration in boreal 
trees (Bergeron et  al., 2007; Tanja et  al., 2003), while the higher 
viscosity of water in cold soils and low root temperatures would have 
inhibited replacement of the water lost through transpiration 
(Kaufmann, 1975; Wang and Hoch, 2022). Foliage desiccation has 

been shown to be  more severe in years with higher snowfall and 
delayed melting (Cairns, 2001), and late snowmelt has been previously 
associated with foliage damage in balsam fir in Ontario (Man et al., 
2013). Thick spring snowpack was also associated with mortality 
during the 1986 event. Interestingly, 1982 was another year with a 
thick spring snowpack and high balsam fir mortality across the 
Maritimes (Magasi, 1983), but a lack of mapped occurrence data 
restricted our ability to include this event in our analysis.

The unusual climate anomalies observed may have also led to 
damages to the balsam fir hydraulic transport system through cavitation 
(Sperry et al., 1998), but the exhaustion of non-structural carbohydrates 
cannot be excluded (McDowell et al., 2008), or a combination of both 
(Sevanto et al., 2014). Compared to other coniferous tree species in the 
region, balsam fir displays higher respiration rates (Hunt et al., 1999) 
and a greater vulnerability to cavitation that is induced by xylem tension 
(Balducci et al., 2020; Sperry and Tyree, 1990; Tyree and Dixon, 1986; 
Tyree and Sperry, 1989). Large legacy effects from drought anomalies 
have been reported before for balsam fir (D’Orangeville et al., 2018; 
D’Orangeville et al., 2013). Combined with the high average moisture 
balance of the region, which inhibits drought adaptations (Jump et al., 
2017; Reich et al., 2016), such traits may increase the risk of high balsam 
fir mortality during drought conditions. Accordingly, balsam fir is 
projected to display a strong decline across the Maritime provinces 
under future warming (Bourque et al., 2010; Dombroskie et al., 2010; 
Taylor et al., 2017). Our study highlights this vulnerability of balsam fir 

FIGURE 3

Monthly climatic anomalies over the 2017-2018 period for precipitation (A), snow depth (B), Tmax (C) and Tmin (D). The range of historic anomalies 
(maximum-minimum) is in light grey. The interquartile range of the historic time series is in dark grey. Climate data is limited to presence areas only.
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with both drought and warm spring conditions predicted to increase 
under future warming scenarios (Albert et al., 2023). Forest stakeholders 
should use this information to support the diversification away from 
balsam fir (as part of climate-focused forest management). Based on our 
results, forest stakeholders responsible for the management of balsam 
fir should be  made aware of the negative impact of drought and 
warming conditions on tree water balance and health. Further, our 
results highlight the importance of a better understanding of species-
specific climatic thresholds in the context of increasing 
climate anomalies.

Although it was not possible to analyze other events due to a lack 
of mapped records of mortality, anecdotal reports from other regions 
where fir mortality was reported do highlight the climate stressors 

identified in our modeling. Maine (US) experienced a widespread 
drought anomaly in 2017 (United States Drought Portal, 2017a). In 
Wisconsin, a drought started in September 2017, along with the 
delayed melting of the snowpack in April 2018 followed by a rapid 
transition to warm conditions in May 2018 (United States Drought 
Portal, 2017b; Wisconsin, 2019). A delay in spring warming with 
some late snowfall was also observed in Vermont in April 2018 before 
rapidly warming in May (Vermont Department of Forests Parks and 
Recreation, 2018a,b).

Individual tree mortality is a complicated process with many 
predisposing, inciting and contributing factors (Manion, 1981; 
Sinclair, 1965). While our evidence suggests that climate was the 
tipping point, local biotic factors such as the presence of balsam fir 

TABLE 1 2018 random forest (RF) model and 1986 RF model variable importance rankings for 11 climate explanatory variables used in RF modeling 
(Pcp, precipitation; SnoD, snow depth; TMIN, minimum temperature; TMAX, maximum temperature).

Variable 2018 1986

Rank Mean decrease gini Rank Mean decrease gini

Pcp Aug 2017 / 1985 1 26.06 1 12.32

SnoD Apr 2018 / 1986 2 7.89 7 1.02

Pcp Mar 2017 / 1985 3 5.90 4 4.28

TMIN Aug 2017 / 1985 4 5.11 5 2.10

TMAX May 2018 / 1986 5 2.25 6 1.48

Pcp Apr 2018 / 1986 6 1.88 11 0.07

TMAX Jul 2017 / 1985 7 1.74 9 0.32

TMAX Apr 2018 / 1986 8 1.67 3 4.86

Pcp Jun 2017 / 1985 9 1.28 2 9.94

TMAX Mar 2017 / 1985 10 0.96 10 0.08

SnoD May 2018 / 1986 11 0.87 8 0.46

FIGURE 4

Observed (black horizontal lines) and predicted (coloured) sudden balsam fir mortality from 1986 in Atlantic Canada. The observations correspond to 
the area of combined medium and high frequency of occurrence as reported in Magasi (1987), while predictions represent the probability of mortality 
for one or more balsam fir trees in 1986 using the 2018 RF model.
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bark weevil (Pissodes dubius) and Armillaria root disease may have 
acted as predisposing factors responsible for the sporadic nature of 
mortality within stands. Both were anecdotally observed on dead fir 
trees during the 1982–1986 event (Magasi, 1987). There was also 
reports of a heavy cone crop for balsam fir in 2017 which could have 
also reduced carbohydrate reserves (Bouchard and Pernot, 2020). In 
addition, climate stress prior to 2017, such as sequential multiyear 
droughts, could have also acted as predisposing factors (Sánchez-
Pinillos et al., 2021).

It is notable that the sudden mortality of balsam fir trees in 2018 
occurred outside of a spruce budworm outbreak. This contrasts with the 
1986 event where there had been a spruce budworm outbreak across 
Maritime Canada throughout the 1980s with trees in the recovery stage 
experiencing sudden mortality (Magasi, 1987). These trees were probably 
weakened by the defoliation and predisposed to the subsequent climate 
stress observed. In contrast, we have no documented evidence that the 
balsam fir that experienced mortality in 2018 had suffered injuries from 
specific biotic stressors across the study region. However, we cannot 
exclude the presence of predisposing factors, which could be secondary 
biotic agents such as the balsam fir bark beetle, Armillaria root rot or 
additional climatic stressors prior to 2017 (NBERD, 2018; Wisconsin, 
2019; Maine Forest Service, 2018).

Given the projected increase in climate anomalies with climate 
change, spatial records of tree mortality are increasingly important to 
determine the importance of climatic drivers of species health. Here, 
the analysis of the 1986 event was made possible because of the Forest 
Insect and Disease Survey, a Canada-wide tree health monitoring 
program that ceased in 1995 (Hurley and Magasi, 1996). Such annual 

spatial surveys of tree diebacks and declines, coupled with historic 
climate data, is critical to improve our understanding of species-
specific vulnerabilities across forested landscapes and to help inform 
climate-focused management practices.
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