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Soil available phosphorus and pH
are key factors a�ecting the site
index of Larix kaempferi

plantations in China
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and Shougong Zhang*

State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation

of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of

Forestry, Beijing, China

Assessing the quality of forest sites is crucial for evaluating the potential

productivity of forests and formulating e�ective management strategies.

Therefore, it is essential to understand how environmental variables a�ect

the site quality. This study focuses on quantifying the e�ects of 44 di�erent

environmental variables including climate, topography, and soil properties on

the site index of Larix kaempferi plantations in three di�erent climate regions

in China, utilizing the random forest algorithm. L. kaempferi site index was

determined from stem analysis data by felling dominant trees from 51 even-aged

stands. The results indicated that the proposed random forest model explained

∼59.47% of site index variations. Among many environmental variables, available

phosphorus, pH, degree-days above 5◦C (DD5), and spring mean maximum

temperature (Tmax_MAM) had significant e�ects on the site index (P < 0.05),

and the importance of soil chemical properties generally exhibits relatively

larger e�ects on the site index than climate variables and topography variables.

The partial dependence analysis revealed that the L. kaempferi plantations had

maximum values at ∼30 mg/kg of available phosphorus in the first soil layers, 30

mg/kg of available phosphorus in the second soil layers, 20 mg/kg of available

phosphorus in the third soil layers, the DD5 between 2,600and 3,000◦C, and

Tmax_MAM ∼15◦C. Our findings attempt to provide a better understanding of

the site–growth relationship.

KEYWORDS

Larix kaempferi, site index, environmental variables, climate, topography

Introduction

A forest site is the environmental condition in which trees grow and develop. The
identification of site quality offers the opportunity to assess the potential productivity
of a given forest or other vegetation type under a certain site condition, which is
mainly evaluated by the impact of forest natural attributes on forest utilization capacity
or suitability (Fonweban et al., 1995; Shen et al., 2018; Zhu et al., 2019). Site quality
assessment is a prerequisite for the management measures of suitable land and trees and
plays a very important role and significance for the realization of scientific afforestation
and forest management (Mäkinen et al., 2017; Mensah et al., 2022; Lee and Choi,
2022). Because of more concerns on current climate change with projections of warmer
temperatures, increased carbon dioxide concentrations, and longer growing seasons, it
is necessary to consider climate and topography factors for site quality assessment.
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Themost commonmethods of site quality assessment are based
on the site index, which corresponds to the dominant height at a
reference age for forest stands (Martín-Benito et al., 2008; Sabatia
and Burkhart, 2014; Oddi et al., 2022). The dominant tree height
of the stand is responsive to the site conditions, and the growth
competition in the upper layer of the stand is less affected by human
activities (Li and Zhang, 2010; Shen et al., 2018; Sharma, 2022).
Estimation of the stand site index is generally accomplished by
utilizing the top height growth curves determined for particular
species (Duan et al., 2022). However, the height growth curve of
dominant trees under different site conditions is not isomorphic,
that is, the growth speed, curve shape, and asymptote maximum
of dominant trees under different site conditions may be different
(Wang et al., 2007; Albayrak et al., 2020). A reasonable site index
model should meet the characteristics of different asymptotes and
polymorphisms at the same time (Calegario et al., 2005).

Alternative site index determination methods based on
relationships between site index and environmental factors have
been widely used in forest productivity studies and had varying
degrees of success (Ercanli et al., 2008; Bravo-Oviedo et al.,
2011). The models of the relationship between site index and
ecological factors may be applied in the estimation of the potential
productivity, particularly for non-forest areas in which the use
of the traditional site index estimation method is impossible or
more difficult (Klinka and Chen, 2003; Seynave et al., 2005; Gülsoy
and Cinar, 2019). Traditional statistical models, for example,
correlation analysis andmultiple regressions, have beenwidely used
to establish a quantitative link between site index and ecological
variables in many of the early modeling studies (Li et al., 2022).
Due to the rapid development of artificial intelligence, there
has been growing interest in using different machine-learning
algorithms (e.g., artificial neural network—ANN, random forest
model—RF, boosted regression tree—BRT) to explore the complex
interactions between site index and the potential driving factors
due to the non-linear trends and variable variances displayed by
many ecological variables without requiring statistical assumptions
and predetermined mathematical equations (Moisen and Frescino,
2002; Aertsen et al., 2010; Gavilán-Acuña et al., 2021). Many studies
have proved that machine-learning algorithms are better suited for
predicting site indexes than traditional statistical models (Aertsen
et al., 2011).

Climate, topography, and soil factors have been found to
be important drivers of forest productivity and related to site
index because ecological factors such as water availability, nutrient
content, temperature, and other environmental conditions play a
crucial role in the growth and functioning of forest trees (Wang and
Klinka, 1996; Wang et al., 2004; Paulo et al., 2015; Özel et al., 2021).
Climatic factors are important site factors influencing the site index
(Monserud et al., 2006; Bravo-Oviedo et al., 2010; Hemingway and
Kimsey, 2020). Topography can influence climate, which together
with geological substratum affects soil-forming processes. Themost
commonly used topography factors are aspect and slope, which
have a significant impact on factors limiting plant growth, such as
light, heat, and water (Lindgren et al., 1994; Socha, 2008). Site index
has also been found to be related to soil physical properties such as
soil depth, soil drainage, coarse fragment, and chemical properties
such as pH, potassium, and phosphorus (Curt et al., 2001; Subedi
and Fox, 2016). Due to the differences in regions and species,

the site factors that are critical to explaining site index variation
are different.

Larix kaempferi (Lamb.) Carr. is native to the mountainous
areas of central Honshu and has been one of the most successful
introduced tree species for wood production and pulp and
paper (Hoshi, 2004). Because of L. kaempferi rapid growth,
wide adaptability, fast forestation, and wide use of wood, it has
wide ecological amplitude, growing successfully across a range of
climatic conditions and site types. The growth of L. kaempferi is
generally better than that of local larch in the same area and shows
greater growth advantages (Jose-Maldia et al., 2009). Considering
the changes in climatic patterns among the regions in the study,
it is crucial to develop a site index model for L. kaempferi based
on the correlated site factors and helps to evaluate site quality of
non-forest land. In the previous studies, researchers conducted site
classification study of L. kaempferi in the region and compiled a
site index table (Li, 2011). However, the fundamental relationship
between site productivity and site quality variables of L. kaempferi

across various climatic regions is not well understood, and the
effects of climatic factors and soil chemical properties at different
soil depths have not been thoroughly explored. Therefore, we
attempted to integrate different influencing factors to quantify their
impact on the site index of L. kaempferi. The main objectives of this
study were to (1) estimate site index for plots based on dynamic
site index models; (2) employ the random forest model based on a
total of 44 potential driving factors including climate, topography,
and soil chemical properties; and (3) clarify the relative importance
on the site index and partial dependences of these variables. The
results of the study will try to provide a basis for the evaluation of
the site quality and the improvement of the site quality of the L.

kaempferi plantation.

Materials and methods

Study area

Study sites in three different climate regions in China are
located in Liaoning province (mid-temperate region), Gansu
province (warm temperate region), and Hubei province (north
subtropical region) (Figure 1). The three zones have various
precipitation and temperature regimes. Dagujia Forest Farm in
Qingyuan County, Liaoning Province (42◦22′-44◦16′N, 124◦47′-
125◦12′E), has a mid-temperate East Asian continental monsoon
climate, with an average annual temperature of 5.4–7.2◦C,
an average annual precipitation of 400–800mm, and a frost-
free period of 125–150 days. The Xiaolong Mountain forest
area is located in the southeast of Gansu Province (33◦30′-
34◦49′N, 104◦22′-106◦43′E), which is located in the western
Qinling Mountains and belongs to the warm temperate zone.
Most of the regions belong to the warm temperate humid to
medium-temperature subhumid continental monsoon climate,
with an average annual temperature of 7–12◦C, an average annual
precipitation of 460–800mm, and a frost-free period of 140–218
days. The forest area has a mild climate and superior natural
conditions. The zonal soil in the north of the Qinling Mountains
is gray-brown soil, and the south is yellow-brown soil; Hubei
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FIGURE 1

Location of the studied forests in three climatic regions in China.

Jianshi County state-owned Changlinggang Forest Farm (30◦47′-
30◦50′N, 110◦00′-110◦04′E) is in the eastern margin of Yunnan–
Guizhou Plateau, Wushan Mountain range, with the elevation of
1,500–1,920m. The area is a north subtropical monsoon mountain
humid climate, with an average annual temperature of 11.0–
16.0◦C, a frost-free period of 200–300 days, and an average annual
precipitation of 1,400–1,800 mm.

Data source

In three provinces, namely, Liaoning province, Gansu province,
and Hubei province, 51 long-term positioning plantations of L.
kaempferi were selected for this study. Each standard permanent
sample plot was 28.3 × 28.3m. The trees (DBH ≥ 5 cm) in
the sample plot were investigated, and the tree species, slope,
aspect, altitude, and other topography factors were recorded.
DBH, tree height, height under branches, and crown width of
each tree were investigated. The five largest trees (at DBH) of
L. kaempferi were selected in the sample plot, from which one
tree was selected for stem analysis based on the arithmetic mean
of diameter surveyed between 2018 and 2020. In total, 12 stem
analysis data were surveyed from Gansu Province, 18 stem analysis
data were surveyed from Hubei Province, and 21 stem analysis
data were surveyed from Liaoning Province. Trees free of past
suppression, visible deformities such as forks, major stem injuries,
and dead or broken tops were included in the sample. Disks
were cut at 1-m intervals, including a disk at DBH from each
felled tree. A unique code was assigned to each sampled tree and
disk, and all disks were placed into a large breathable bag and

transported to a laboratory for analysis. The major and minor axes
(diameters) that were perpendicular to one another and passed
through the pith were measured. The geometric mean radius (r)
was calculated from each disk from the major (r1) and minor (r2)
axes. The basic statistics of analysis tree survey factors are shown in
Table 1.

Site index evaluation

Function-based Richards model in forestry has been widely
used, which can well-simulate the relationship between the growth
of dominant trees and stand age (Socha, 2008). The basic Richards
model expression is H = a(1–e−bt)c, where a is the horizontal
asymptote as age approaches to infinity, representing themaximum
height growth of trees under certain site conditions, b is a
parameter related to both the rate of alienation and the rate
of change of assimilation rate, and c is a parameter related
to the decay rate of assimilation rate. Based on the Richards
model, difference equations have better modeling effects and
good biological basis. The study adopted difference equations to
build the polymorphic site index equations (Duan and Zhang,
2004). Due to the fact that the growth rate of trees represented
by parameter b is an inherent attribute of plants and is not
closely related to the site, parameters a and c in the Richards
equation are designated as site-dependent parameter (SDP).
For the algebraic difference approach (ADA) model, assuming
parameter a = x0, base Richards model converts to difference
model Equation 1 (E1). For the generalized algebraic difference
approach (GADA) model, assuming parameter a = ex0, c =
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TABLE 1 Basic statistics for dominant trees in L. kaempferi plantations.

Regions Elevation Area of
plot/m2

Numbers of
analysis tree

Variable Min Max Mean Std

Gansu 1,600–1,807m 800 12 Age/a 17.00 41.00 28.75 9.47

DBH/cm 12.30 32.90 23.58 8.44

Tree height/m 14.35 29.10 21.80 5.66

Hubei 1,579–1,748m 800 18 Age/a 16.00 42.00 28.50 9.10

DBH/cm 18.60 35.70 27.58 5.34

Tree height/m 18.83 33.19 24.55 4.94

Liaoning 296–446m 800 21 Age/a 15.00 37.00 23.17 8.39

DBH/cm 13.70 28.10 20.94 4.56

Tree height/m 14.20 27.72 19.60 4.51

c1 + c2X0/c = c1 + c2/X0, base Richards model converts to
difference model Equation 2 (E2) and Equation 3 (E3) (Table 2).
In the study, the stem analysis data are organized into a dual-
tree height dual age form for fitting the three difference model.
The nlsLM function is used in the minpack.lm package of R for
model fitting.

Climate, topography, and soil data
collection

To quantify the effects of various variables on the site
index of L. kaempferi plantations, 14 climate variables, 24 soil
variables, and five topography variables were collected from
sample plots (Table 3). Climate factors in this study were obtained
from ClimateAP (2019) (Wang et al., 2012), which extracts and
downscales gridded (4 × 4 km) monthly climate data for the
reference normal period and calculates monthly, seasonal, and
annual climate variables in the Asia Pacific region between 1901
and 2100. Climatic data of each site were extracted fromClimateAP
according to the sample site’s latitude and longitude coordinates
and altitude information. In this study, two groups of climate
factors are considered, namely, temperature and precipitation
variables. Temperature variables include mean annual temperature
(MAT), mean warmest month temperature (MWMT), mean
coldest month temperature (MCMT), temperature difference
between MWMT and MCMT (TD), degree-days above 5◦C
(DD5), winter mean maximum temperature (Tmax_DJF),
spring mean maximum temperature (Tmax_MAM), summer
mean maximum temperature (Tmax_JJA), and autumn mean
maximum temperature (Tmax_SON). Five precipitation
variables, namely, mean annual precipitation (MAP), winter
precipitation (PPT_DJF), spring precipitation (PPT_MAM),
summer precipitation (PPT_JJA), and autumn precipitation
(PPT_SON), were chosen as candidate variables for the site
index model.

Soil properties were measured from L. kaempferi plots by
digging soil profiles, and randomly selected samples collected
in five locations were mixed in the plots to represent the

average condition of the soil. Each soil profile was 1m deep
and divided into three soil depths: 0–10 cm, 10–20 cm, and 20–
40 cm. Approximately 1 kg of soil was sampled at each depth,
stored in bags, and transported to the laboratory. Soil samples
were air-dried, ground, and analyzed for pH, total nitrogen,
total potassium, total phosphorus, hydrolytic nitrogen, available
potassium, organic matter, and available phosphorus. The pH value
of the soil was measured by the electric potential method. Total N
was determined using the Kjeldahl method and alkali-hydrolyzable
N using the alkaline hydrolysis method. Total potassium was
determined by acid dissolution flame photometry, and available
potassium was determined by ammonium acetate extraction flame
photometry. Total phosphorus was determined by molybdenum
antimony resistance colorimetry, and available phosphorus was
extracted by sodium bicarbonate leaching method. Soil organic
matter was measured by the K2Cr2O7-H2SO4 oxidation external
heating method (Venanzi et al., 2016).

Topography characteristics including elevation above sea level,
slope, aspect, slope position, soil depth, and soil type weremeasured
in the field. According to the Chinese forest site classification
system, the topography factors in the sample plot are divided and
assigned values (Table 4). Slope was divided into five groups: 1 =

slope < 5◦, 2 = slope is 5◦-14◦, 3 = slope is 15◦-24◦, 4 = slope is
25–34◦, and 5 = slope ≥ 35◦. Aspect was divided into four groups:
1 = sunny slope, 2 = semi-sunny slope, 3 = shady slope, and 4 =

semi-shady slope. Slope position was divided into three groups: 1
= plots located in the uphill slope, 2 = plots located in the middle
slope, and 3 = plots located in the downhill slope. Soil depth was
divided into three groups: 1 = thin (<40 cm), 2 = medium (40–
79 cm), and 3 = thick (≥80 cm). The soil type across the regions
was classified as follows: 1 = cinnamon soil, 2 = brown soil, and 3
= yellow-brown soil.

Random forest model

The study also attempts to use machine-learning algorithms
(random forest model) to explore the complex interactions
between site index and the potential driving factors. Random
forest (RF) is a machine-learning algorithm that operates on
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TABLE 2 Expression of the algebraic di�erence model.

Model Free parameter Solution of X Di�erence model No

ADA a = X0 X0 =
h

(1−e−bt1 )
c h2 = h1

[

1−e(−bt2 )

1−e(−bt1 )

]c

E1

GADA 1 a = eX0 X0 =
ln h1−c1(1−e−bt1 )
1+c2(1−e−bt1 )

h2 = eX0 (1− e−bt2 )c1+c2X0 E2

c = c1+ c2X0

GADA 2 a = eX0 X0 =
1
2

[

F +
√

F2 − 4c2 ln(1− e−bt1 )
]

h2 = eX0 (1− e−bt2 )c1+
c2
X0 E3

c = c1+ c2/X0 F = ln h1− c1 ln(1− e−bt1 )

the principle of decision trees (Torre-Tojal et al., 2022). It is
a supervised learning regression algorithm that takes random
samples of input data and builds decision trees to predict output
variables. The selection of hyperparameters sets the maximum
achievable accuracy of machine-learning models. The machine-
learning algorithm involved cross-validation using a grid search
approach to identify the best combination of hyperparameters,
thus enhancing the model’s performance and predictive accuracy.
The algorithm combines multiple decision trees and requires two
parameters: the number of regression trees based on a bootstrap
sample of the training data (ntree) and the number of different
predictors tested at each node (mtry) (Ding et al., 2022). It does
this by randomly selecting a subset of features from the dataset
and decision trees based on these features. During the testing
phase, the algorithm takes the average of the predictions of all
the trees to generate a final output. This helps to minimize errors
caused by overfitting and reduce the variance of the model by
averaging the predictions of multiple trees. Overall, the random
forest regression model provides a robust and efficient way of
building regression models with high accuracy. The RF models
were accomplished using the “randomForest” package in the
R software environment.

The data in this study were randomly divided into fitting data
(80%) and testing data (20%). The coefficient of determination
(R2), mean square error (MAE), and root mean square error
(RMSE) values were calculated to evaluate the performance
of the random forest model. The closer the coefficient of
determination (R2) is to 1, the smaller the root mean square
error (RMSE) and mean square error (MAE) are, and the
better the model performance is. The calculation formula is
as follows:

R2 = 1−

n
∑

i=1
(yi− ŷi)2

n
∑

i=1
(yi− y)2

(1)

MAE =
1

n

n
∑

i=1

∣

∣yi− yi
∣

∣ (2)

RMSE =

√

√

√

√

√

n
∑

i=1
(yi− ŷi)2

n
(3)

where yi is the measured value, ŷi is the estimated value, y is the
average measured value of the measured value, and n is the number
of samples.

Results

The first phase of the calculation process was the estimation of
site index by site index curve equations. Based on the data from the
stem analysis, it was concluded that the determination coefficient
(R2) and root mean square error (RMSE) of the ADA and GADA
models constructed perform better with R2 reaching above 0.98
(Table 5) since the GADA model (E3) was also characterized by a
smaller value of root mean square error (0.99) and applied in the
further site index estimation.

After calculating the parameters of the GADA model (E3), a
generalized difference site index model was obtained:

h2 = eX0 (1− e−0.04t2 )0.12+3.74/X0 (4)

where

X0 =
1
2

[

F +
√

F2 − 14.96 ln(1− e−0.04t1 )
]

F = ln h1− 0.12 ln(1− e−0.04t1 ) (5)

where h2 is the height of the tree at the predicted age t2, and h1
is the height of the tree at the known age t1. X0 and F are new
parameters introduced.

A cluster of site index curves was generated with a base age of
20 years (Wang et al., 2015; Niu et al., 2020) and an exponential
distance of 2 meters, with a site index range of 12–22 meters
using the GADA model. From Figure 2, E3 models were found
to meet the conditions of polymorphism and multiple horizontal
asymptotes and perform residual analysis on the GADAmodel, and
the residual values of the model are randomly distributed around
y= 0.

For each plot, the site index was calculated at a reference
age of 20 years from the GADA model (E3). The site index
of L. kaempferi varies among the three climatic regions, from
13.4 to 23.1m (Figure 3). The difference in the site index of L.
kaempferi among the three climate regions is significant. There
are significant differences in site index among the three climatic
regions, with Hubei region (SI = 20.51) having a significantly
higher site index than the Liaoning region (SI = 18.76) and Gansu
region (SI= 17.31).
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TABLE 3 Descriptive statistics of all categories of quantitative variables of L. kaempferi 51 long-term positioning plantations.

Group Variables Code Min Max Mean SD

Climate Temperature variables

Mean annual temperature MAT (◦C) 5.00 13.60 9.56 2.77

Mean warmest month temperature MWMT (◦C) 19.70 25.50 23.45 1.94

Mean coldest month temperature MCMT (◦C) −16.60 2.40 −6.25 7.55

Temperature difference between mean warmest month
temperature and mean coldest month temperature

TD (◦C) 22.00 40.20 29.71 8.74

Degree-days above 5◦C, growing degree-days DD5(◦C) 2,202.00 3,344.00 2,703.59 340.36

Winter mean maximum temperature Tmax_DJF (◦C) −7.60 5.10 −0.55 4.87

Spring mean maximum temperature Tmax_MAM (◦C) 13.60 17.60 16.14 1.03

Summer mean maximum temperature Tmax_JJA (◦C) 24.10 28.20 26.68 1.25

Autumn mean maximum temperature Tmax_SON (◦C) 13.00 18.60 15.62 1.93

Precipitation variables

Mean annual precipitation MAP (mm) 590.00 1,715.00 1,015.41 421.89

Winter precipitation PPT_DJF (mm) 18.00 120.00 54.31 45.07

Spring precipitation PPT_MAM (mm) 132.00 567.00 278.04 189.99

Summer precipitation PPT_JJA (mm) 271.00 777.00 513.10 182.83

Autumn precipitation PPT_SON (mm) 136.00 315.00 180.94 53.72

Soil Soil properties in the first layer (0–10 cm)

pH pH1 4.54 7.23 5.46 0.62

Total nitrogen (g/kg) TN1 0.96 5.61 3.17 1.02

Total potassium (g/kg) TPO1 1.64 21.9 8.03 5.93

Total phosphorus (g/kg) TPH1 0.22 1.01 0.59 0.19

Hydrolytic nitrogen (mg/kg) HN1 95 785 308.65 128.54

Available potassium (mg/kg) AP1 44.1 231 97.42 46.58

Organic matter (g/kg) OM1 19.5 108 66.69 21.17

Available phosphorus (mg/kg) APH1 1.29 52.1 14.28 13.06

Soil properties in the second layer (10–20 cm)

pH pH2 4.68 7.56 5.64 0.67

Total nitrogen (g/kg) TN2 0.91 3.41 2.18 0.83

Total potassium (g/kg) TPO2 1.36 23.9 7.97 6.10

Total phosphorus (g/kg) TPH2 0.19 0.93 0.51 0.18

Hydrolytic nitrogen (mg/kg) HN2 62.2 371 206.64 88.72

Available potassium (mg/kg) AP2 32.3 149 65.6 29.80

Organic matter (g/kg) OM2 15.3 78.9 44.43 18.35

Available phosphorus (mg/kg) APH2 0.65 52.9 10.11 11.46

Soil properties in the third layer (20–40 cm)

pH pH3 4.74 7.7 5.71 0.68

Total nitrogen (g/kg) TN3 0.51 3.13 1.7 0.79

Total potassium (g/kg) TPO3 0.93 26 7.85 6.32

Total phosphorus (g/kg) TPH3 0.12 1.06 0.48 0.21

Hydrolytic nitrogen (mg/kg) HN3 25.7 487 172.01 101.06

Available potassium (mg/kg) AP3 26.6 108 50.97 21.51

Organic matter (g/kg) OM3 7.47 69.3 34.17 17.83

Available phosphorus (mg/kg) APH3 0.28 31 7.51 8.23

Topography Elevation – 296.00 1,807.00 1,130.45 648.11
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TABLE 4 Categorization of the topography factors into di�erent classes.

Variable Class

Slope <5◦ 5◦-14◦ 15◦-24◦ 25◦-34◦ ≥35◦

Aspect Sunny slope Semi-sunny slope Shady slope Semi-shady slope

Slope position Uphill slope Middle slope Downhill slope

Soil depth <40 cm 40–79 cm ≥80 cm

Soil type Cinnamon soil Brown earth Yellow-brown earth

TABLE 5 Fitting results for the di�erence model.

Model Parameter estimate Statistical indicator

b c1 c2 R2 RMSE

E1 0.03 0.99 0.98 1.05

E2 0.04 2.18 −0.28 0.99 1.00

E3 0.04 0.12 3.74 0.99 0.99

The effects of different values of mtry and ntree were tested in
the study (Figure 4). The results indicated that when ntree = 100,
the error within the random forest model is basically stable. As the
mtry increases, the RMSE of the model significantly decreases and
reaches its lowest point at mtry= 34. Considering the variations of
RMSE and the error within the random forest model, the optimal
settings for ntree and mtry were 100 and 34.

The random forest model with the optimal settings (ntree =

100, mtry = 34) explained ∼59.47% of the variation in site index,
and MAE and RMSE for the RF model were 1.0212 and 1.3214,
respectively. The results (R2 = 0.4881, MAE = 1.3851, and RMSE
= 1.7679) were also observed for that on the test data. The relative
importance of each variable according to the IncNodePurity of the
RFmodel is illustrated in Figure 5. Among all potential 44 variables,
available phosphorus, pH, DD5, and Tmax_MAM had significant
effects on the site index (P < 0.05), while topography variables
were not significant in the model and the relative importance
of soil type and aspect based on the IncNodePurity is minimal,
almost zero. Therefore, soil type and aspect are not reflected in
Figure 5. The results suggest that the importance of soil variables
had relatively larger effects on the site index than climate variables
and topography variables. In addition, the importance of available
phosphorus and pH varied with the soil depth, indicating that soil
factors at different depths had different effects on the site index. The
predicted values versus observed values of site index of fitting and
testing data for L. kaempferi plantations are presented in Figure 6,
respectively.

The partial dependences of the seven relatively important
variables for predicting site index are illustrated in Figure 7. The
trajectories of available phosphorus in three soil layers all initially
increased with the increases in the content and converged to
maximum values at ∼30 mg/kg of available phosphorus in the
first soil layers, 30 mg/kg of available phosphorus in the second
soil layers, and 20 mg/kg of available phosphorus in the third soil
layers. The trajectories of pH2 and pH3 initially decreased with
the increases in the variables. The curves of partial dependence on
DD5 and Tmax_MAM were different from available phosphorus

and exhibited inverted U-shaped forms. They indicate that a
larger site index appears in DD5 between 2,600 and 3,000◦C and
Tmax_MAM∼15◦C.

Discussion

Predictive site index model

Data used for developing site index equations are derived from
height–age development patterns for individual trees obtained
using stem analysis. Three equations have been considered to
develop a site index system for L. kaempferi and the GADA E3
behaved better in the estimation than the algebraic difference
approach. Based on the Richards growth equation, the difference
method can be used to meet the conditions of polymorphism and
multiple horizontal asymptotes with a good biological foundation.
Martín-Benito et al. (2008) compared several site-dependent
height–age models (generalized algebraic difference approach) of
black pine in three regions and proved the reduced model with a
single set of parameters for the three regions performed as well as
the full model with different sets of parameters of whole region.
Duan and Zhang (2004) proved that difference equations are more
suitable for fitting large-scale data than basic equations and when
the data are at the regional level, the fitting effect is significantly
better. Cao and Sun (2017) developed six dynamic site index
models for Chinese fir plantations based on permanent sample
plots and stem analysis data and proved the model is accurate and
effective for estimation.

In the study, we performed the random forest model to quantify
the effects of 44 different accessible environmental variables
including climate, topography, and soil chemical properties on
the site index of L. kaempferi plantations and the proposed RF
model explained ∼59.47% of site index variations. The random
forest model can provide the most precise predictions as they can
accommodate complex functional forms and variable interactions,
are relatively unaffected by the inclusion of many collinear variables
in the model, and are particularly effective for datasets containing
a large number of environmental predictors. We introduced many
variables because we attempted to explain the variation of site index
more accurately considering the response of plants to soil factors
is different in the topsoil and deeper soil layers. Li et al. (2022)
explored the relationship between the site index of Chinese fir
site index with climatic and soil factors in three climatic regions
in southern China and found the key soil factors varied among
climatic regions and different soil depths. This means that the
strength of correlation between site index and soil factors changes
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FIGURE 2

Site index curves generated with the GADA model (A) and residuals against predicted dominant tree height for the generalized di�erence site index

models (B).

FIGURE 3

Site index calculated at reference age (A) and variation in L. kaempferi site index among di�erent climatic regions (B). Data represent mean ±

standard error of the mean (SEM). Di�erent lowercase letters indicate significant di�erences (P < 0.05).

FIGURE 4

Changes in RMSE for each mtry (A) and ntree (B) of the random forest model, where RMSE is root mean square error, mtry represents the number of

di�erent predictors tested at each node, and ntree represents the number of regression trees.
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FIGURE 5

Relative importance of various factors based on the IncNodePurity of the random forest model, where the di�erent colors mean the di�erent relative

importance of various factors. The blue color means the relative importance was significant at α = 0.01 level, the green color means the relative

importance was significant at α = 0.05 level, and the red color means the importance was not significant. While ** and * indicated the relative

importance was significant at α = 0.01 or α = 0.05 level, respectively.

FIGURE 6

Predicted values vs. observed values of site index of fitting (A) and testing (B) data for L. kaempferi plantations, where the solid line is the 1:1 line.
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FIGURE 7

Partial dependence plots of seven predictor variables on the random forest model for predicting site index of L. kaempferi.

with the thickness of the soil layer. Therefore, we attempt to
investigate the influence of soil chemical properties in different
soil layers on the site index, and the results also indicate that the
influence of nutrient content in different soil layers is different such
as available phosphorus.

Many previous studies have established regression models
to establish a quantitative link between site index and various
ecological variables. These models constructed were based on
the assumption that site index is a function of climate variables,
topography variables, and soil variables. Klinka and Chen (2003)
developed a site index model for three principal species in British
Columbia based on climatic and edaphic conditions and the

models accounted for 63–70% of the variation of site index.
Grant et al. (2010) proved the available water storage capacity
of the soil, rainfall, and altitude accounted for 62% of the
variation in site index. For equations to be of practical value,
they should be capable of explaining at least 50% of the variation
in site index and should be based on a few easily measurable
variables (Blyth and Macleod, 1981). Due to the rapid development
of artificial intelligence, there has been growing interest in
using different machine-learning algorithms that outperformed
traditional parametric models (Strobl et al., 2009). Aertsen et al.
(2011) evaluated five modeling techniques in the site index of
three important species and found GAM outperformed all other
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techniques. Watt et al. (2021) found the two non-parametric
models, namely, eXtreme Gradient Boosting (XGBoost) and
random forest, delivered the most accurate predictions for Site
Index and 300 Index, significantly surpassing both parametric and
geospatial models. Shen et al. (2015) developed a climate-sensitive
site index model of Larix olgensis using the generalized additive
model because GAMdoes not assume any prior relationships about
the underlying data and enables the visualization of the additive
impact of each predictor variable on the dependent variables.
Weiskittel et al. (2011) used random forest to predict SI and
GPP from climate and repeated the RF regression procedure,
eliminating the least influential variable at each stage until only two
predictors remained.

E�ects of soil factors on the site index

Our results showed that site index of L. kaempferi varied
significantly among different climatic regions. Hubei (SI = 20.51)
has a significantly higher site index than the Liaoning region (SI =
18.76) and Gansu region (SI = 17.31), which reflects L. kaempferi

can be more suitable for growing in warm and humid places.
Site index model based on accessible various ecological

variables can help in silvicultural and forest management when
there is a need for indirect estimation in some unforested zones. In
the study, available phosphorus, pH, DD5, and Tmax_MAM had
significant effects on the site index (P < 0.05) and the importance
of soil variables had relatively larger effects on the site index
than climate variables and topography variables, confirming the
importance of including soil chemical variables in the SI model
(Yang and Meng, 2022). The trajectories of available phosphorus
in three soil layers all initially increased with the increases in
these variables but then converged to their maximum values at
∼30 mg/kg of available phosphorus in the first soil layers, 30
mg/kg of available phosphorus in the second soil layers, and 20
mg/kg of available phosphorus in the third soil layers. The positive
significance of available phosphorus was attributed to the fact
that these elements promote the growth of L. kaempferi. Several
previous research studies have indicated that the growth of trees
is mainly constrained by the availability of phosphorus and that
augmenting the use of P fertilizer can substantially enhance the
growth of stands and the productivity of the site (Bai et al., 2020). Li
(2011) performed a partial correlation analysis between site index
and soil nutrients using age as a control variable of L. kaempferi

and site index is positively correlated with alkali-hydrolyzable N,
available P, available K, total N, total P, total K, and organic
matter. Li et al. (2022) explored the relationship between site index
of Chinese fir site index with climatic and soil factors at three
climatic regions in southern China and found the key soil factor
available P that affected site index varied among climatic regions
at different soil depth. In addition, a negative correlation was
detected between the three regions’ site index and total potassium
in all soil layers. Farrelly et al. (2011) examined the correlation
between soil chemical variables and site index and showed the
amounts of available K, Mg, and P were all significantly negatively
correlated with site index, with the strongest association found with
available K.

The pH, another important soil chemical property, exhibited
a negative correlation with the SI, which aligns with the slightly

acidic soil conditions prevalent in L. kaempferi forests. Li (2011)
performed partial correlation analysis between site index and soil
nutrients, using multiple linear regression method and found site
index negatively correlated with pH. Farrelly et al. (2011) examined
the correlation between soil chemical variables and site index,
and pH was positively correlated with site index of Sitka spruce.
Bergès et al. (2005) used stepwise multiple regressions to explain
the variance in site index based on different factors and found the
relationship between SI100 and pH was parabolic, with an optimum
value of ∼50% for S/T. Seynave et al. (2005) noticed that Picea
abies growth depends on both acidity and nitrogen availability,
and lower productivity is the site with high pH and high C/N
ratio. In the study, the inclusion of soil chemical variables in
the model led to a substantial decrease in the significance of the
topography variables, indicating that factors related to the soil such
as its pH and elemental composition were more contributory than
the topography.

E�ects of climate variables on the site index

Climate factors represent the macroenvironment that affects
the growth of the forest and can directly affect physiological
processes such as photosynthesis and transpiration of plants, which
in turn will affect the change of site index. DD5 and Tmax_MAM
are the key climate factors responsible for the variation in site
index among different regions. In this study, the curves of partial
dependence on DD5 and Tmax_MAM exhibited inverted U-
shaped forms, indicating that a larger site index could be observed
when the DD5 was between 2,600 and 3,000◦C and Tmax_MAM
was∼15◦C.Monserud et al. (2006) showed the strongest predictors
of site index are all measures of heat: the Julian date when GDD5
reaches 100 (D100), growing degree-days > 5◦C (GDD5), and
July mean temperature (MTWM). Hamel et al. (2004) captured
the variability in the productivity of black spruce and Jack pine
stands and also found that the site index increased with increasing
degree-days estimated with BIOSIM for black spruce and Jack pine.
Although other temperature variables and precipitation variables
are correlated with site index, they are not significant in the random
forest model perhaps because they are highly intercorrelated. In
a related study covering site index, Fries et al. (1998) also found
temperature variables were strongly correlated with each other, and
combinations of them did not increase predictive power. Sharma
(2022) introduced two groups of climate variables (temperature
and precipitation) to the model sequentially from each group,
mean diurnal temperature range (MDTR) turned out to produce
the best fit, and other precipitation and site variables were not
significant for either species. Nevertheless, our result showed that
the site index was not closely correlated with various precipitation
factors (MAP, PPT_DJF, PPT_MAM, PPT_JJA, and PPT_SON),
indicating that the response of Chinese fir plantations to these
precipitation-related factors was low in the study area.

Limitations in the study

Prior research concentrated on the impact of stand age,
topography, and soil physical characteristics on the SI but do not
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account for the collaborative impact of climatic situations and
soil chemistry. We introduced the random forest algorithm to
enhance the accuracy of SI prediction. Nonetheless, this study has
certain limitations. First, in total, more than 40% of SI variance
remains unexplained. Additional research is necessary to elucidate
the primary factors behind the unexplained deviation of site index
resulting from ecological variables, particularly genetic variability,
age-related effects, and silvicultural practices. In addition, the study
only considered the chemical properties of the soil and did not
take into account the physical properties of the soil (the capillary
porosity, maximum moisture capacity, bulk density, etc.), which
are also important for site index (Ritchie and Hamann, 2008;
Grigal, 2009). In addition, many studies show that soil C/N ratio is
reportedly an important index of N-use efficiency and a significant
predictor of site index. The increase in other variables will enhance
the fitting effect of the random forest model. Second, the proposed
RF model explained ∼59.47% of site index variations maybe
because the explanatory power of the machine-learning models
could have been impacted by the correlation among the variables.
In addition, to further confirm the accuracy and applicability of
the machine-learning approach, we plan to carry out national-scale
studies in the future, seeking additional research samples and stem
analysis data.

Application for forest management

The models of site index constructed in the study based
on ecological variables may help in future management,
with consideration of local growth conditions. The presented
relationships between L. kaempferi and the easily obtained climate,
topography variables, and soil variables may be applied in the
estimation of the potential productivity of L. kaempferi, particularly
for non-forest areas, in which the use of the traditional site index
estimation method is even difficult.

Conclusion

The present study aims to quantify the impact of climate,
topography, and soil factors on the site index of L. kaempferi

plantations in three climatic regions in China. The proposed
RF model explained ∼59.47% of site index variations. Among
many environmental variables, available phosphorus, pH, DD5,
and Tmax_MAM had significant effects on the site index (P <

0.05). The trajectories of available phosphorus in three soil layers all
initially increased with the increases in the content and converged
to maximum values at ∼30 mg/kg of available phosphorus in the
first soil layers, 30 mg/kg of available phosphorus in the second soil

layers, and 20mg/kg of available phosphorus in the third soil layers.
A larger site index appears in DD5 between 2,600 and 3,000◦C
and Tmax_MAM ∼15◦C. L. kaempferi site index can be reliably
predicted by the ecological variables and improved the applicability
among different regions.
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