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Climate change is expected to outpace the rate at which populations of forest 
trees can migrate. Hence, in forestry there is growing interest in intervention 
strategies such as assisted migration to mitigate climate change impacts. 
However, until now the primary focus when evaluating candidates for assisted 
migration has been mean or maximum performance. We explore phenotypic 
plasticity as a potentially new avenue to help maintain the viability of species 
and populations in the face of climate change. Capitalizing on large, multi-site 
international provenance trials of four economically and ecologically important 
forest tree species (Fagus sylvatica, Picea abies, Picea engelmannii, Pinus 
contorta), we quantify growth stability as the width of the response function 
relating provenance growth performance and trial site climate. We  found 
significant differences in growth stability among species, with P. engelmannii 
being considerably more stable than the other three species. Additionally, 
we  found no relationship between growth performance and growth stability 
of provenances, indicating that there are fast-growing provenances with a 
broad climate optimum. In two of the four species, provenances’ growth 
stability showed a significant relationship with the climate of the seed source, 
the direction of which depends on the species. When taken together with data 
on growth performance in different climate conditions, a measure of growth 
stability can improve the choice of species and provenances to minimize future 
risks in forest restoration and reforestation.
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1 Introduction

High rates of change in future climate projections (IPCC, 2023) will most likely exceed the 
capacity of long-lived, sessile species such as forest trees to adapt through natural selection (St 
Clair and Howe, 2007) or migration (Aitken et al., 2008), even if there is a possibility of 
adaptation in place for some species (Kramer et al., 2010). Phenotypic plasticity will likely play 
an important role in ensuring the survival of tree species and populations (Leites and Benito 
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Garzón, 2023), at least in the short term; however, plasticity data for 
forest trees is relatively scarce, due to amounts of time and resources 
required for establishing test sites across wide climate ranges. 
Furthermore, analyses of existing data have been focused on 
identifying differences in performance in population means. Except 
for rare examples (Vizcaíno-Palomar et al., 2020), potential differences 
in plasticity between populations have seldom been studied, despite 
being important for determining a population’s ability to withstand a 
changing climate (Valladares et al., 2014).

Phenotypic plasticity can be  defined in various ways and at 
different scales, very often employing different terminologies for 
similar concepts (Nicotra et al., 2010). While research often focuses 
on plasticity in functional traits such as morphology, phenology, or 
physiology, we choose to analyze plasticity in growth performance of 
trees. Growth is a trait of primary interest in forestry, since it directly 
determines wood production, but it is also of great ecological 
importance, since growth is closely correlated with fitness and survival 
in young trees (Moustakas and Evans, 2015; Jiang et  al., 2022). 
We focus on height growth, since it is one of the most important 
growth traits for trees, and the one for which most data is available.

In this study, we  refer to plasticity in functional traits as 
“phenotypic plasticity” (Ghalambor et al., 2007), and to the lack of 
plasticity in growth as “growth stability” across different climate 
conditions (Santini et  al., 2010; Alvarez et  al., 2020). In our 
interpretation, growth stability originates from phenotypic plasticity 
in functional traits (Wright et  al., 2016), and we  will focus our 
attention on the differences in growth stability among species and 
populations, due to the importance of growth stability for forestry 
interventions. Identifying species or populations with high growth 
stability across different climate conditions would allow for wider 
margins of error in estimating the optimal forest tree seed source 
according to future climate projections. This strategy would help to 
offset uncertainty in climate models, which dramatically increases 
when predicting extreme climate events, and have crucial impact on 
tree growth and survival.

We expect that more generalist species, which are distributed 
across wider geographical and environmental ranges, have higher 
growth stability, both on a theoretical basis (Baker, 1974) and based 
on experimental evidence (Sultan, 2001). In other words, species and 
populations characterized by broader ecological niches would show 
more constant growth performance across wider ranges of climate 
conditions. However, it is also possible that populations with high 
growth stability might show stable, but low, growth performance, i.e., 
a trade-off between plasticity and growth performance (Richards 
et al., 2006; Hendry, 2016). This trade-off, due to the costs associated 
with maintaining a more flexible genotype or phenotype, has been 
shown to be  particularly relevant under stressful environmental 
conditions (Van Buskirk and Steiner, 2009). Identifying populations 
possessing both high growth stability and high growth performance 
would be of great interest for forest managers and researchers, as they 
may help buffer increased climate variability and uncertainty 
associated with climate change.

It is commonly assumed that phenotypic plasticity is an adaptive 
trait, which might be  subject to natural selection, especially in 
response to highly variable environmental conditions (Alpert and 
Simms, 2002; Lázaro-Nogal et al., 2015; Carvajal et al., 2017; Vázquez 
et al., 2017). Under this hypothesis, more unstable climates would 
select for higher levels of growth stability. For this reason, 

we investigated the possibility that growth stability of a population 
might be positively related with climate variability at the seed source. 
On the other hand, the evidence for a relationship between growth 
stability and the level of a climate variable itself (not its variability) is 
more discordant, with some authors arguing that populations at the 
climate extremes of a species’ distribution should show lower levels of 
phenotypic plasticity. This would be due to genetic drift (Arnaud-
Haond et al., 2006) and the costs associated with plasticity being more 
important in unfavorable environments (Mägi et al., 2011).

In forest science, provenance trials (also called common garden 
experiments) are a commonly used experimental setup (Langlet, 
1971). Growing diverse provenances in a common environment 
allows genetic (G), environmental (E), and GxE interaction effects to 
be disentangled if the trials are established in disparate environments 
(Alberto et al., 2013; Kreyling et al., 2019). Often the genetic structure 
of the populations and sub-populations used in these trials is not 
known or well-characterized, and for this reason the term 
“provenance” is used: a provenance is simply defined as a group of 
trees originating from a single geographical seed source.

We utilized data originating from established networks of 
provenance trials of four important tree species (Fagus sylvatica, Picea 
abies, Picea engelmannii, Pinus contorta), allowing us to compare the 
growth stability of more than 300,000 trees (7–32 years old), 
originating from numerous seed sources, planted across wide 
geographic and climate gradients in Europe and North America. By 
calculating a growth stability index to enable across-species 
comparisons, we investigated the following hypotheses:

 1 There are significant differences in growth stability among 
different tree species, with species from broader ranges being 
more stable.

 2 There is a negative relationship between provenance growth 
performance and provenance growth stability.

 3 Differences in growth stability among provenances are related 
to the seed source climate and its inter-annual variability, with 
provenances from more variable climates having higher 
growth stability.

2 Materials and methods

2.1 Software

We used R version 4.3.2 (R Core Team, 2023) in RStudio version 
2023.09.1 (Posit Team, 2023) for all data preparation, statistical 
analysis, and figure making.

The “gslnls” (Chau, 2023), “gamlss” (Rigby and Stasinopoulos, 
2005), and “emmeans” (Lenth, 2023) packages were used for model 
fitting and testing. Data manipulation employed functions from the 
“tidyverse” (Wickham et al., 2019) package collection, and from the 
“janitor” (Firke, 2023) and “broom” (Robinson et al., 2023) packages. 
RMSE values were calculated with the function “rmse()” from package 
“performance” (Lüdecke et al., 2021), while MAE values were obtained 
with the function “mae()” from package “Metrics” (Hamner and 
Frasco, 2018). Climate range coverage percentages were calculated 
using the functions “grDevices::chull()” and the “areapl()” function 
from the “splancs” package (Rowlingson and Diggle, 2024). PCA was 
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conducted using the package “FactoMineR” (Lê et al., 2008). p-values 
were formatted using functions “p_format()” and “add_significance()” 
from package “rstatix” (Kassambara, 2023). Geospatial data was 
manipulated using the packages “terra” (Hijmans, 2023) and 
“tidyterra” (Hernangómez, 2023).

2.2 Provenance trials

We used provenance trial growth data of four major temperate 
and boreal forest tree species of North America and Europe with high 
economic and ecological importance (Figure  1) and large natural 
distributions, both geographically and climatically. These provenance 
trials are noteworthy for the breadth of climate conditions covered, 
especially with respect to the species’ ranges, and the number of trial 
sites and provenances tested (Figure  2). As a confirmation, 
we  calculated the percentage of the climate range of each species 
covered by the seed sources/trial sites, finding relatively high coverage 
percents (respectively 48% ± 18% for the seed sources and 19% ± 3% 
for the trial sites). More in detail, we calculated the percentage climate 
range as the ratio between the areas of the polygons defined by each 
species’ occurrences and seed sources (or trial sites, respectively) in 
the MAT × MAP climate space.

2.2.1 Fagus sylvatica
Fagus sylvatica L. is a deciduous temperate forest tree. Due to its 

juvenile shade tolerance and tall growth with a dense canopy, it is the 
dominant native forest tree in Central Europe (Leuschner and 
Ellenberg, 2017) found in a wide range of climate and environmental 
conditions (Fang and Lechowicz, 2006). It is considered highly 
sensitive to climate change and its persistence and potential role under 
future climate conditions is debated (Gessler et al., 2006; Saltré et al., 
2015; Engel et al., 2023). Population persistence, however, is potentially 
higher than anticipated due to high phenotypic plasticity in important 
functional traits such as phenology and leaf morphology (Gárate-
Escamilla et al., 2019; Schmeddes et al., 2023).

We utilized data from Robson et al. (2018), which reports on a 
Europe-wide network of Fagus sylvatica provenance trials, established 
between 1995 and 1998. This dataset comprised more than 174,000 
individuals from 194 provenances and 38 trial sites. However, 
measurement ages differed among trial sites, with at least some trial 
sites being measured each year from age 1 to 13.

2.2.2 Picea abies
Picea abies (L.) H. Karst. is a conifer native to northern and 

eastern Europe. It has been planted for timber production and became 
the most economically important tree species in central Europe, 

FIGURE 1

Location of the experimental trial sites and of the seed sources in Europe (top row) and North America (bottom row), for the four tree species 
examined in this study.
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despite large parts of central Europe being outside its natural range 
(Leuschner and Ellenberg, 2017). Vast areas of these plantations are 
currently dying back due to climate-change induced drought and 
warming in combination with bark beetle attacks (Schuldt et  al., 
2020), fueling ongoing attempts to diversify monocultural stands and 
replace the species in the long term (Vacek et al., 2019).

Seedlings from 540 provenances of Picea abies were planted at 44 
trial sites across Austria in 1978. While the geographic range covered 
by these trial sites is relatively small (Figure  1), they span a wide 
proportion of the species’ climate range (Figure 2). See Nather and 
Holzer (1979) and Kapeller et  al. (2012) for details regarding the 
materials, sites and design. Height was recorded at ages 7, 8, 9, 
10, and 15.

2.2.3 Picea engelmannii
Picea engelmannii and Picea glauca are sympatric in across large 

portions of British Columbia and in the Rocky Mountains of Alberta 
where they readily hybridize. (For simplicity, we  refer to the two 
species and their hybrids as P. engelmannii.) Suitable climate ranges of 
P. engelmannii, the most widely planted species in British Columbia, 
are expected to shift northward and decline substantially in extent in 

British Columbia in coming decades due to climate change 
(MacKenzie and Mahony, 2021).

127 provenances of Picea engelmannii, Picea glauca and their natural 
hybrids from western North America were planted at 18 (17 extant) trial 
sites in British Columbia, Alberta, and the Yukon in 2005. See O’Neill 
et al. (2014) and Grubinger et al. (2023) for details regarding the materials, 
sites and design. Height was recorded at ages 3, 6, 10 and 16.

2.2.4 Pinus contorta
The most widely distributed and second most widely planted tree 

species in British Columbia, Pinus contorta was heavily impacted by 
mountain pine beetle in the last 2 decades. Being one of the most 
strongly locally adapted of the widely distributed tree species of 
western North America (Rehfeldt, 1994), its productivity is expected 
to decline substantially as the climate warms (O’Neill et al., 2008). Its 
climate niche is expected to shift northward and decline substantially 
in extent in British Columbia in coming decades due to climate change 
(MacKenzie and Mahony, 2021).

140 provenances of Pinus contorta from throughout the species’ 
range in western North America were planted at 60 trial sites in British 
Columbia and two sites in the Yukon in 1974. See O’Neill et al. (2008) 

FIGURE 2

Climate distribution of each of the provenance trial sites, seed sources, and the four tree species examined in this study. Species’ occurrence data was 
sourced from the EU-Forest database (Mauri et al., 2017) for Fagus sylvatica and Picea abies, and from the databasin.org database (Little, 1971; 
Comendant et al., 2009) for Picea engelmannii and Pinus contorta.
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for details regarding the materials, sites and design. Height was 
recorded at ages 6, 10, 15, 20, and 32.

2.2.5 Data cleaning
The data was cleaned by identifying outlier trial-years (years in 

which a trial has a more than 5-fold increase or decrease in height 
compared to the previous and following year), and correcting the units 
of measurement where obviously wrongly reported (e.g., meters to 
centimeters), otherwise discarding the measures for the outlier trial-
year. Additionally, individual trees that at any point presented a yearly 
decrease in height of more than 25 centimeters were removed from the 
dataset. Overall, 18,165 of 1,214,008 individual measures were discarded.

We chose not to remove extremely short individuals from the 
analysis (e.g., by removing individuals with height < 1 m at age 10). 
Such growth rates, while very low, are not overly surprising 
considering the harsh climate conditions at some trial sites, and the 
very long climate transfer distances experienced by some provenances. 
In fact, removing such short individuals would discard valuable 
information on the climate-growth relationships, flattening and 
distorting the climate response functions.

Following the clean-up steps described above, our final database 
comprised more than 1 million records, more than 350,000 individual 
trees, 760 provenances, and 139 trial sites (Table 1).

2.3 Growth data harmonization

The trial sites were established at different times, and the ages at 
which height was recorded differed among species and among sites 
within species; therefore, it was necessary to identify a common age 
for height assessment, i.e., to harmonize height ages among sites and 
species. For each tree we fitted tree height to a logistic regression 
model using age as the independent variable, and extracted height at 
age 10 (HT10) from the fitted model. We chose to harmonize at age 
10, before canopy closure and inter-plot competition could accentuate 
and bias population differences, masking the purely genetic and 
climatic effects.

For each individual, the model has the form:

 Height age a

e b age c� � �
� � � �� �1

Where:
a is one asymptote of the curve (the other being 0).
a b× / 4 is the slope at the midpoint.
c is the location of the midpoint (where Height c a� � � / 2).

The models were fitted using the function “gsl_nls()” from 
package “gslnls.” Compared to most non-linear fitting functions, gsl_
nls() has the advantage of being much less sensitive to the choice of 
starting parameters, and of being able to converge rapidly and reliably 
in most cases (Hickernell and Yuan, 1997).

We removed unsuccessful model fits, and regressions for which 
the estimated parameters were outside the following boundaries: 
0 50; 0 ; 5< < < <a b c . These boundaries were selected to remove 
unrealistic model fits, such as those predicting negative height, 
negative growth, or no growth. Additionally, we ensured the quality 
of the fitted models by calculating the Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE) for each individual model, 
and aggregating them at the species level (Table 2), calculating their 
mean and standard deviation separately for each species. RMSE and 
MAE are commonly used measures of error for regression models, 
and among their advantages is the fact that they are expressed in the 
same units as the original response variable (Chai and Draxler, 2014). 
The formulas for the two error measures are as follow:

 
RMSE

predicted observed

n

n
i i

�
�� ��1

2

 
MAE

predicted observed

n

n
i i

�
��1

The mean model error was quite low, as it was in all cases smaller than 
6% of the mean predicted HT10, with the highest values found for 
P. contorta. Furthermore, we ran a linear regression between the values 
predicted by the individual models and the observed data, obtaining in all 
cases very high r2 values and highly significant regressions, signifying that 
the models can predict very well the patterns found in the data (Table 2). 
Finally, we removed individual models that did not fit the data well, by 
calculating for each model the proportion of residuals falling outside a 2 
standard deviation range from the mean residual, and removing the 
individual if this proportion was higher than 0.05.

2.4 Climate data

We employed the CHELSA dataset (Karger et al., 2017, 2020) as 
the source of the climate data for the present study. The CHELSA 
database contains very high-resolution (30 arc sec, ~1 km) rasters 

TABLE 1 Summary of the cleaned-up dataset.

Species Total records Total individuals Total trial sites 
(median per 
seed source)

Total seed 
sources 

(median per 
trial site)

Median age at last 
measurement

Fagus sylvatica 452,537 174,038 38 (6) 194 (34) 7

Picea abies 300,218 65,481 24 (2) 299 (26) 10

P. engelmannii 205,195 61,778 17 (17) 127 (127) 16

Pinus contorta 237,893 57,973 60 (24.5) 140 (60) 32

Total 1,195,843 359,270 139 760
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covering the entire land surface of the Earth. It contains interpolated 
estimates of many climatic and derived bioclimatic variables. For each 
trial site and seed source, we extracted the average values of all 19 
available climate variables for the period 1981–2010, as these years 
best represent the HT10 growth period of the trial sites.

2.4.1 Inter-annual climate variability
Additionally, to quantify the inter-annual climate variability of the 

trial sites, we  extracted monthly precipitation and mean surface 
temperatures for each trial site location. We then aggregated the data 
to calculate Annual Precipitation (AP) and Mean Annual Temperature 
(MAT) for each year at each trial site, from which we calculated the 
coefficient of variation for AP (AP CV), and the standard deviation of 
MAT (MAT SD) over the 30-year interval. We calculated the SD of 
MAT, instead of the CV, because the CV is not defined for a scale 
without a natural zero point (Dunn and Clark, 2009).

2.4.2 Principal component analysis
To reduce collinearity and the number of climate variables (19 

long-term bioclimatic variables and 2 variables for the inter-annual 
variability, see Supplementary Table S1), we carried out a Principal 
component analysis (PCA). PCA is an approach commonly used in 
environmental science/species distribution modeling to simplify 
complex datasets of correlated variables into a smaller number of 
variables, which can be more easily employed in modeling (Lever 
et al., 2017).

We chose not to calculate separate PCAs on different timeframes 
for each species, or separately for trials sites and seed sources. In the 
first place, because the differences across time periods in the climate 
conditions at each trial site/seed source are expected to be relatively 
small in the time range covered by the present study. Furthermore, 
these differences should not be so large as to cause significant shifts in 
long-term climate patterns across the study locations, and therefore 
we  expect that differentiating timeframes would have a minimal 
impact on the analysis’ results. In the second place, the PCA 
methodology requires using an uniform dataset, to ensure 
comparability of the Principal Components (PCs). Taken together, 
these two considerations support our choice of running a single PCA 
on the entire dataset.

We used the function “PCA()” from the “FactoMineR” package to 
calculate the PCA on the climate data for all species, seed sources, and 
trial sites. We then selected the first two PCs for subsequent analyses. 
All climate variables were centered and scaled, to give each variable 
equal weight in the analysis, and to aid in subsequent model fitting. 
The first two PCs accounted, respectively, for 38 and 23% of the 
variance in the climate variables. In broad terms, higher values of PC 

1 indicate higher precipitation amounts, more constant (both within 
the year and across years) mean temperatures, and warmer and wetter 
winters. It might be interpreted as a measure of continentality, with 
increasing values of PC1 associated with a more maritime climate. 
Higher values of PC 2 indicate colder and rainier conditions in 
general, and particularly in summer (Figure 3; Supplementary Table S1; 
Supplementary Figure S1).

2.5 Growth stability index

Since the experimental designs were not fully factorial, i.e., not all 
provenances were grown in all trial sites, it was necessary to calculate 
an index to enable the comparison of growth stability among species 
and among provenances. To this end, we utilize the width of the peak 
of each provenance’s climate response function, referring to it as 
Growth Stability Index (GSI) in subsequent analyses. Calculating such 
an index avoids the problem posed by the fact that the provenances 
were planted in unequal ranges of climate conditions, which would 
otherwise introduce differences associated with the ranges of growth 
performance, even in the absence of genetic effects.

We aggregated the individual-tree age-10 data obtained as described 
in section 2.3, by calculating the median height for each provenance x trial 
site combination, excluding provenances planted at fewer than four trial 
sites. We  then fit response functions for each provenance, relating 
provenance HT10 (dependent variable) to trial site climate (independent 
variable). The Cauchy function, often used in genecology because it is 
bell-shaped and has parameters with a clear biological interpretation (i.e., 
width, height and position of the maximum, see Figure 4; Raymond and 
Lindgren, 1990; Lindgren and Ying, 2000; Thomson et al., 2009), was used 
to fit the response functions. Importantly, the c parameter represents the 
width of the fitted function at 80% of the maximum fitted response value. 
Another useful property of the c parameter is that it is independent of the 
growth rate, which allows to directly compare it across species and 
provenances (more precisely, the c parameter is invariant to multiplication 
of the response values by a constant number). Two response functions 
were fitted for each provenance – one for each of PC 1 and PC 2.

The response function model had the form:

 HT PC a
PC b
c

i
i

10

1

2
� � �

�
��

�
�

�
�
�

Where:
a is the maximum value of the curve.
b is the location of the maximum (where HT b a10� � � ).

TABLE 2 Summary of errors and goodness of fit for the growth data harmonization models.

Species RMSE meters (percent) MAE meters (percent) HT10 meters Predicted × observed

Mean Std. dev. Mean Std. dev. Mean Std. dev. r2 p-value

Fagus sylvatica 0.09 (2) 0.07 (2) 0.07 (2) 0.06 (2) 3.71 1.27 0.998 <0.0001

Picea abies 0.02 (1) 0.02 (1) 0.02 (1) 0.01 (1) 2.38 1.33 1 <0.0001

Picea engelmannii 0.03 (1) 0.04 (2) 0.03 (1) 0.03 (2) 2.08 0.85 0.999 <0.0001

Pinus contorta 0.17 (6) 0.12 (4) 0.14 (5) 0.1 (4) 2.8 0.97 0.999 <0.0001

RMSE, MAE, and HT10 are expressed in meters. Between parentheses is the percent relative to the mean HT10 for the species. RMSE, Root Mean Square Error; MAE, Mean Absolute Error; 
HT10, Harmonized height at age 10.
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c is the range, centered on b, where Height PC ai� � � � 0 8. .
The models were fitted using the function “gsl_nls(),” described in 

section 2.3.
We removed unsuccessful model fits, and regressions for which the 

estimated parameters were outside the following boundaries: 
0 10 10

2
� � � �� � � � � �

� � � � � �
a HT PC

range PC
b PC

range PC
i

i
i

i
max ;min max

��
2

. These 
boundaries were selected to remove unrealistic model fits, such as 
those predicting negative or extremely high tree heights, and to 
remove fits where the maximum was too far outside the range of 
available data.

In a similar way as described in section 2.3, we ensured the 
quality of the fitted models by calculating the RMSE and MAE for 
each provenance’s model, and aggregating them at the species × PC 
level (Table  3), calculating their mean and standard deviation 
separately for each combination of species and PC. The mean model 
error was higher, with a maximum of 36% relative to the mean 
predicted HT10 for PC 2 in P. engelmannii. Nonetheless, a linear 
regression between the values predicted by the models and the 
observed data yielded in most cases high r2 values (only one under 
0.9), and highly significant regressions. We observed the presence 
of some non-linearity in the predicted x observed plots. As 
explained above in section 2.3, we removed models which had a 

high proportion of residuals outside a range of 2 standard deviations 
from the mean residual.

Since the response functions use the climate at the trial site as the 
predictor variable, a broader peak implies that there is a wider range 
of climates where the provenance performs close to the maximum. For 
this reason, we extracted the c parameter from the fitted functions, to 
use as a quantifier of the growth stability (hereafter, Growth Stability 
Index—GSI) of each provenance. As specified above, a separate GSI 
was calculated for each of the climate variables. When writing about 
the GSI calculated for a specific climate variable, we refer to it as 
GSIvariable (e.g., GSIPC 1).

2.5.1 GSI—species relationship
We tested for differences in GSI among species for each of the 

climate variables by fitting a full linear mixed effects model including: 
GSI as response variable; species and PC (with an interaction term) as 
fixed effect predictors; and provenance as random effect predictor. 
Additionally, the full model included a dependency of the scale, 
skewness and kurtosis parameters on the species x climate 
variable combination.

The model was fitted using the function “gamlss()” from the 
“gamlss” package, using the “BCPEo” (Box-Cox Power 

FIGURE 3

Graphical summary of the principal component analysis. The arrows show the loadings of each climate variable along the first two Principal 
Component axes. The points represent each seed source and trial site in the PC climate space. Each PC axis is labeled with the respective amount of 
variance explained in the original dataset. See Supplementary Table S1 for abbreviations.
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Exponential) error family, employing a log-link for the response 
variable (Rigby and Stasinopoulos, 2004). This is appropriate for 
the GSI values, since they are strictly positive real numbers, and 
is useful because it reduces the skewness of the data and  
reduces the influence of outliers on the subsequent 
significance test.

We employed a systematic approach to model term selection, 
aiming to strike a balance between model complexity and goodness of 
fit. Our strategy involved iterative cycles of submodel creation, ranking 
based on the Akaike Information Criterion (AIC), and evaluation of 
model fit. Starting from the full model, we systematically generated 
submodels by excluding one term at a time. We ranked the submodels 

FIGURE 4

Example of Cauchy response function, fitted on simulated data. The provenance’s growth response is characterized by the three parameters shown: a 
represents the maximum growth, at optimal site climate; b represents the position of the optimal site climate; c represents the width of the response 
function’s peak, where growth performance is at least 80% of the maximum.

TABLE 3 Summary of errors and goodness of fit for the Cauchy growth response models.

Species PC RMSE meters (percent) MAE meters (percent) Predicted × observed

Mean Std. dev. Mean Std. dev. r2 p-value

Fagus sylvatica
1 0.46 (14) 0.24 (7) 0.37 (11) 0.19 (6) 0.975 <0.0001

2 0.21 (7) 0.2 (6) 0.18 (6) 0.17 (5) 0.991 <0.0001

Picea abies
1 0.46 (20) 0.33 (14) 0.36 (15) 0.24 (10) 0.954 <0.0001

2 0.39 (20) 0.29 (15) 0.3 (16) 0.22 (11) 0.931 <0.0001

Picea engelmannii
1 0.58 (31) 0.11 (6) 0.48 (26) 0.1 (5) 0.912 <0.0001

2 0.68 (36) 0.12 (6) 0.56 (30) 0.11 (6) 0.884 <0.0001

Pinus contorta
1 0.54 (21) 0.17 (7) 0.43 (17) 0.13 (5) 0.954 <0.0001

2 0.59 (23) 0.19 (8) 0.47 (18) 0.15 (6) 0.945 <0.0001

RMSE and MAE are expressed in meters. Between parentheses is the percent relative to the mean HT10 for the species. PC, Principal Component; RMSE, Root Mean Square Error; MAE, 
Mean Absolute Error.
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(including the starting model) according to AIC, and inspected them 
for goodness of fit using the “plot.gamlss()” and “wp()” functions from 
“gamlss” package. We chose the model with lowest AIC that still fitted 
the available data well without signs of overfitting. We then repeated 
this procedure, starting from the selected submodel. More details 
about the discarded submodels can be found in Supplementary Table S4.

After applying the iterative term removal process described above, 
we settled on a final model (r2 = 0.70) of the form:

 GSI BCPEij ij~ � � � �, , ,� �

 log � � � � �ij i j i jspecies PC species PC� � � � � �0 1 2 3

 log � �� � � 4

 � �� 5

 log � �� � � 6

where µ is the location parameter, σ  is the scale parameter, ν  is the 
skewness parameter, and τ  is the kurtosis parameter.

We passed the fitted final model to the functions “emmeans()” and 
“cld.emmGrid()” from the package “emmeans” to calculate the p-values 
for the pairwise differences (alpha = 0.05) in mean GSI across different 
species, correcting the p-values for multiple testing with Tukey’s method.

2.5.2 GSI—growth relationship
We investigated a possible relationship between GSI and HT10 of 

the provenances with a linear mixed effect model. We  used the 
“gamlss()” function to fit a full model including: HT10 as response 
variable; species, climate variable, and GSI (with all possible 
interaction terms) as fixed effect predictors; provenance and trial as 
random effect predictors.

After applying the iterative term removal process described in 
section 2.5.1, we settled on a final random intercepts model (r2 = 0.79) 
of the form:

 HT BCPE i10 ~ � � � �, , ,� �

 log � �i trial i� � � � �

 � � �k Normal~ ,� �

 log � �� � � 1

 � �� 2

 log � �� � � 3

where µ is the location parameter, σ  is the scale parameter, ν  is the 
skewness parameter, τ  is the kurtosis parameter, and µ  and σ  are the 
mean and standard deviation of the random effect distribution.

2.5.3 GSI—seed source climate relationship
We investigated the relationship between climate at the seed source 

and GSI using a linear mixed effect model. For each PC, we regressed 
the GSI of each provenance on the PC value of the seed source.

We used the “gamlss()” function to fit a full linear mixed effects 
model including: GSI as response variable; species, PC, and PC value 
at seed source (with all possible interaction terms) as fixed effect 
predictors; provenance as random effect predictor. We once again 
employed the “BCPEo” error family with a log-link. Additionally, the 
full model included a dependency of the scale, skewness and kurtosis 
parameters on the species x climate variable combination.

After applying the iterative term removal process described in 
section 2.5.1, we settled on a final model (r2 = 0.79) of the form:

 GSI BCPE ijk ij i~ � � � �, , ,� �

 

log � � � � �
�

ij i j i jspecies variable species PC
species

� � � � � �
�

0 1 2 3

4 ii j valueat sourcePC PC�

 log � � � �ij i jspecies variable� � � � �5 6 7

 � � �i ispecies� �8 9

 log � �� � � 10

where µ is the location parameter, σ  is the scale parameter, ν  is the 
skewness parameter, and τ  is the kurtosis parameter.

We passed the fitted final model to the functions “emtrends()” and 
“test()” from the package “emmeans,” to test if the regression slope was 
significantly different from zero (alpha = 0.05), across each 
combination of species and PC, and corrected the p-values for 
multiple tests with Sidak’s method.

3 Results

3.1 Growth stability index

3.1.1 Growth stability differs among species
Growth stability differed markedly among the studied species for 

all PCs (Figure 5; Supplementary Table S2), but nonetheless, species 
rankings of GSI values were remarkably consistent across PCs. In 
particular, P. engelmannii showed a significantly higher mean GSI than 
the other species for both PCs. This difference was large, as in some 
cases there was an almost 8-fold difference between the species (e.g., 
difference between P. engelmannii and P. abies in GSIPC 1). Pinus 
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contorta showed the second-highest growth stability; F. sylvatica and 
P. abies both showed the smallest GSI.

3.1.2 Growth stability is not related with growth 
performance

GSI and growth performance were not significantly related, as 
indicated by the absence of GSI as an explanatory variable in the final 
model, which corrected for trial site effects in its mixed effect 
structure. Likewise, climate at seed source did not affect growth 
performance consistently across all species and provenances. The final 
model, which included just the trial random effect, still had a relatively 
high r2 value (r2 = 0.79). In summary, growth performance depended 
strongly on the specific conditions of the trial sites, but not on GSI or 
source climates for the four studied species. In fact, it was possible to 

observe in the dataset all combination of growth stability and growth 
performance (Figure  6). For example, P. engelmannii provenance 
“745” had a stable, but low, growth performance; provenance “693” 
showed a relatively low growth performance at optimal climate, and a 
high sensitivity to variations from this optimum; provenance “759” 
had high growth in optimal conditions, but was also sensitive to 
changes in climate; while provenance “713” showed good growth 
performance across a wide range of climate conditions (Figure 7).

3.1.3 Growth stability is linked to source climate
Growth stability was significantly related with climate at the seed 

source in two of the four studied species (Figure  8; 
Supplementary Table S3). We observed a highly significant inverse 
relationship between PC 1 at seed source and GSI in P. engelmannii. 

FIGURE 5

Inter-specific differences in growth stability (GSI). Each point corresponds to the GSI for one provenance, overlaid on the corresponding box-plots for 
each species (median, first and third quartiles, last point less distant than 1.5 times the inter-quartile-range). The GSI values were log10-transformed. 
Data-points have been jittered for clarity, using the function “geom_quasirandom()” from package “ggbeeswarm.” Species sharing a lower-case letter 
do not differ significantly in their mean GSI. PC 1, Principal Component 1; PC 2, Principal Component 2.

FIGURE 6

Relationship between height at age 10 (HT10) and growth stability (GSI). Each point corresponds to one provenance × trial site combination. The GSI 
values were log10-transformed. Lines representing the regression between GSI and the corresponding climate variable are overlaid on the raw data. 
Only fixed effects are shown (i.e., no trial random effect). The shaded bands correspond to the 95% confidence interval of the regression. PC 1, 
Principal Component 1; PC 2, Principal Component 2.
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FIGURE 7

Example growth response functions for four Picea engelmannii provenances. Fitted Cauchy response functions are superimposed on the raw data-
points. The functions are labeled with the corresponding provenance identification code. PC 1, Principal Component 1.

FIGURE 8

Relationship between growth stability (GSI) and climate at the seed source of the provenances. Each point corresponds to the GSI for one provenance. 
GSI values are on a linear scale. Lines overlaid on the raw data represent the regression between GSI and the corresponding PC. Shaded bands 
correspond to the 95% confidence interval of the regression. Asterisks indicate the significance level of the regression: empty  =  p  >  0.05; *p  <  0.05; 
**p  <  0.01; ***p < 0.001; ****p  <  0.0001. PC 1, Principal Component 1; PC 2, Principal Component 2.
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This implies that provenances from seed sources which are drier, with 
colder winters, and with more variable temperatures (both within 
years and across years) possessed higher growth stability. Missing 
coordinates for several provenances resulted in fewer data-points for 
F. sylvatica and P. abies compared to the GSI – species regression 
(Figure 5). The scarcity of data-points may have contributed to the 
absence of significant regressions for these two species.

On the other hand, the direction of the relationship between PC 
2 and GSI was not consistent across species, as it was positive for 
P. engelmannii and negative for P. contorta. This indicates that 
provenances of P. engelmannii originating from colder sources, and 
with colder and wetter summers have higher growth stability. The 
situation seems to be the opposite in regards to P. contorta: higher 
levels of GSI are found in provenances from seed sources which are 
warmer in general, and in particular drier and warmer in summer.

4 Discussion

Growth stability has been widely studied and applied in the 
development of crop varieties in agriculture and seed orchard 
populations in forestry (Li et al., 2017). However, for most species and 
jurisdictions where reforestation is achieved with natural stand 
populations, selection of stable provenances has received little 
discussion, particularly as a climate change adaptation strategy. 
Prioritizing stable species and provenances for reforestation or 
afforestation is readily accomplished using existing provenance trial 
data, and is compatible with other strategies such as assisted migration 
(Pedlar et al., 2012) and increasing species and seedlot diversity (Hof 
et al., 2017; Looney et al., 2023). Furthermore, the use of the most 
stable species and provenances should not impact reforestation costs 
where a diversity of seed source options exists.

Growth stability differed substantially among the four studied 
species, corroborating previous reports of species differences in 
phenotypic plasticity (Gianoli and Valladares, 2012; Stotz et al., 2021), 
performance stability (Sultan, 2001) and, more generally, niche 
breadth as quantified for instance by species distribution models 
(Thomas et al., 2004). Nonetheless, the absolute differences in growth 
stability among the four species, which all show broad climate niches 
under which they become dominant, are remarkable. In fact, median 
GSI values of the four species differed by a factor of as much as eight. 
The consistency in the ranking of the species across climate variables 
suggests that the observed differences in growth stability might be due 
to intrinsic properties of the species, which carry over in a consistent 
way across different climate variables. In our data, species covering a 
broader climate range (P. contorta and P. engelmannii, Figure 2) also 
showed a higher growth stability. This observation can be linked to the 
basic ecological assumption of narrow niche width in specialist species 
vs. wide niche in generalist species (Ma and Levin, 2006), where 
generalists that occupy more heterogeneous environments also show 
higher adaptive plasticity (Sultan, 2001; Griffith and Sultan, 2012).

Growth stability also varied strongly among provenances within 
all four studied species. Interestingly, no association between growth 
stability and growth performance was observed (Figures 6, 7), with 
the variation in growth performance in the dataset being explained 
well with just the effect of the trial sites. For basic research, this finding 
supports the view that there is no consistent pattern between plasticity 
and performance, i.e., plasticity can be  adaptive, maladaptive, or 

neutral (Nicotra et al., 2010; Kreyling et al., 2019). This multitude of 
potential links is probably due to evolutionary costs and limits of 
phenotypic plasticity (Van Kleunen and Fischer, 2005). This finding is 
even more interesting for forest management, though, as it suggests 
that there are certain provenances that combine high growth 
performance with high growth stability, i.e., the ability to perform well 
under a wider range of climate conditions. Identifying these 
provenances seems a promising opportunity in the face of continued 
rapid climate change and uncertainty in local climate projections.

The fit of response functions is commonly weak where climate is 
the sole predictor variable (O’Neill et al., 2007), as in the present study. 
Nonetheless, that we observed significant relationships between GSI 
and several predictor variables (Figure 8) attests to the extent to which 
climate drives the evolution of plasticity. Even so, accounting for 
non-climatic trial site factors that influence growth was found to 
strengthen response functions (Ford et al., 2017; Hill and Ex, 2020) 
and models of species distribution (Rehfeldt et  al., 2015), site 
productivity (Fiandino et al., 2020) and floral composition (Vennetier 
et  al., 2008) and could potentially strengthen these genecological 
models. For example, in Norway spruce, soil conditions were found to 
have a similar effect on growth as climate (Chakraborty et al., 2019).

In general, we did not find a consistent pattern in the relationship 
between climate at seed source and growth stability across the species. 
The scarcity of data-points for F. sylvatica and P. abies may be one of the 
causes for the absence of more significant regressions. Having trial 
locations covering the full climate range of the species (and even beyond 
it) would probably result in more successful Cauchy model fits, and also 
in a better understanding of limits of acclimation. The absence of 
consistent patterns between climate and growth stability across the 
species, however, could also be  due to the absence of selection for 
different levels of phenotypic plasticity, for example due to similar 
climate variability across the seed sources, as was concluded regarding 
a soil specialist herb (Matesanz et al., 2020). The significant relationships 
we found for P. engelmannii imply that provenances from the colder, 
more continental extremes of the species’ climate distribution grow well 
across a broader range of climate conditions. This may reflect an 
evolutionary trade-off between plasticity and specialization for milder 
climates. From the forest planning point of view, this insight might 
be  valuable when looking for provenances to test: more stable 
provenances are more likely to be found closer to the colder, continental 
edge of the species’ climate distribution, whereas assisted migration 
frameworks currently focus on the opposite, targeting warmer source 
climates based on the presumption that they would be pre-adapted to 
continuous climate warming (Williams and Dumroese, 2013). On the 
other hand, the inverse relationship between GSI and PC 2 we found for 
P. contorta seems to imply that such a strategy would be a good fit for 
this species: selecting provenances from warmer and drier seed sources 
would also indirectly select for climate-stable provenances.

We also did not find a strong pattern in the relationship between 
inter-annual climate variability at seed source and growth stability. 
Firstly, the locations studied differed relatively little in their precipitation 
variability, and as a consequence the AP CV climate variable contributed 
very little to the two PCs in exam. As for the other measure of inter-
annual climate variability, MAT SD, it contributed mostly to PC 1, 
where it was clustered with ART and TSeas, two measures of within-
year temperature variability. For this reason, we cannot separate the 
effects of adaptation to inter-annual temperature variability from an 
adaptation to seasonal variations in temperature. Nonetheless, in the 

https://doi.org/10.3389/ffgc.2024.1422165
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Di Fabio et al. 10.3389/ffgc.2024.1422165

Frontiers in Forests and Global Change 13 frontiersin.org

case of P. engelmannii, the inverse relationship between GSI and PC 1 
suggests that provenances from more variable climates are indeed more 
stable in respect to changes in trial site temperature, in agreement with 
the expectation that highly variable environments may select for 
increased phenotypic plasticity (Vázquez et al., 2017).

Overall, it appears that, in our data, differences in long-term 
climate conditions are more important for predicting differences in 
growth stability, compared to differences in climate variability. This 
finding is surprising as several studies suggest that climate variability 
would select for increased phenotypic plasticity (Alpert and Simms, 
2002; Lázaro-Nogal et al., 2015; Carvajal et al., 2017; Vázquez et al., 
2017). Meta-analyses differentiating between different aspects of 
plasticity, however, found a positive link between climate variability 
and plasticity only for allocation, but not for leaf traits, physiological 
traits, and, corresponding with our results, growth (Stotz et al., 2021).

In conclusion, we  observed among-species and among-
provenance differences in their capacity to grow well across a wide 
climate range, and that these differences in some cases can 
be  explained by the climate conditions at the seed source. The 
direction of this relationship, however, depends on the species 
considered. We  did not find any relationship between growth 
performance and growth stability, implying that provenances with 
both high performance and high growth stability to climate change 
exist. The results presented here give valuable insights on the growth 
stability of some important tree species, and point to a new perspective 
under which to study climate change adaptation in planted forests. 
They suggest the importance of incorporating insights from the study 
of growth stability in the selection of species and provenances for 
forestry interventions, with the objective of increasing forests’ 
resilience to the uncertainties posed by climate change.
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