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Spectral and texture features play important roles in plantation leaf area index 
(LAI) estimation, and their combination may enhance LAI inversion accuracy. 
Furthermore, research on the impact of different machine learning (ML) models 
on their hyperparameter combinations and splitting ratios remains challenging. 
In our study, experiments based on spectral and textural features of GF-6 WFV 
data were conducted on Eucalyptus grandis plantation forests in Huangmian 
Town, Guangxi, China. ML methods such as multiple stepwise regression (MSR), 
random forest (RF), back-propagation neural network (BPNN), and support vector 
regression (SVR) were mainly utilized to perform model hyper-parameter tuning 
and split-ratio analysis in order to estimate the LAI. The results of the study showed 
that spectral and gray level co-occurrence matrix (GLCM) texture features were 
very sensitive to changes in Eucalyptus grandis LAI. The accuracy of combining 
the two was 10% higher than when they were not combined. Furthermore, it was 
found that the nonlinear methods (RF, BPNN, and SVR) outperformed the linear 
method (MSR), with the average 

2
maxR  of the nonlinear model being 26% higher 

than that of the linear model, and the RMSE value being 29% lower than that of the 
linear model. In addition, by analyzing different combinations of features, model 
hyperparameter fine-tuning, and splitting ratios in the nonlinear model, it was 
found that the splitting ratios of different combinations of model hyperparameters 
have a great impact on the accuracy of the model. A total of 12 out of 21 data 
sets showed high accuracy and stability at a split ratio of 8.5:1.5 (ratio of 0.85), 
with the best-performing RF model differing from the lowest by 91% for 

2
maxR  and 

39% for 2
stdR . Combining spectral and texture features provides highly accurate 

inversion data. Model hyper-parameter fine-tuning and segmental scale tuning can 
facilitate the application of inversion data to fully utilize the optimal performance 
of the ML model.
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1 Introduction

Eucalyptus is one of the globally important economic tree species, 
primarily used for pulp production, playing an indispensable role in 
the paper and timber industries (Myburg et al., 2014). Eucalyptus 
grandis stands out among Eucalyptus species for being extensively 
cultivated in tropical and subtropical areas, largely because of its 
quick growth and high-quality material (Ouyang et  al., 2018). It 
adapts well to high-humidity environments and is commonly used in 
forestry production in wetlands and coastal areas. E. grandis’s growth 
characteristics directly affect the leaf area index (LAI), which is an 
important parameter for assessing forest productivity and ecological 
processes (Jin et al., 2015). Due to the significant differences in LAI 
magnitude among different Eucalyptus species, it is crucial to specify 
the tree species for LAI estimation in the study. This study focuses on 
E. grandis, a tree species whose rapid growth and high LAI make it 
an important target for LAI inversion by remote sensing techniques 
(Tesfamichael et al., 2018).

Traditional field-based LAI measurements require a significant 
amount of manpower and time, with limited scalability, making it 
difficult for widespread application (Wang et al., 2022). In recent years, 
the rapid development of remote sensing technology has provided a 
powerful tool for large-scale, high-frequency LAI monitoring. The 
Sentinel satellite series, the Landsat satellite series, and the Chinese 
high-resolution remote sensing satellite series have been widely 
applied in various fields and proven to be reliable data sources for 
vegetation monitoring and LAI estimation (Aparicio et al., 2002; Yang 
et al., 2022a; Yang et al., 2015). These satellites provide observations in 
multiple spectral bands, including visible light and infrared, which are 
closely related to the physiological characteristics of vegetation and 
can be used to infer vegetation LAI (Padalia et al., 2020). Additionally, 
there is a correlation between vegetation indices (VIs) calculated from 
remote sensing data and LAI. By analyzing this correlation, a better 
understanding of vegetation growth status and spatial distribution 
characteristics can be achieved, providing important information for 
vegetation monitoring, ecological research, and resource management 
(Ma et  al., 2021). However, these spectral characteristics are 
susceptible to the mixed effects of different land cover types within 
remote sensing pixels. Particularly in tall tree species like Eucalyptus, 
single spectral features may not comprehensively represent their LAI 
variations (Tuominen and Pekkarinen, 2005).

In LAI inversion, texture features also play a crucial role (Zhang 
et  al., 2021). These features quantify the spatial distribution and 
variation patterns of surface remote sensing images through texture 
analysis methods (Iqbal et  al., 2021). Among them, the spatial 
distribution of surface cover is a critical component of texture features, 
reflecting the spatial distribution patterns of vegetation and 
non-vegetation areas in remote sensing images (Madonsela et  al., 
2017). This is crucial for LAI inversion because the density and spatial 
organization of vegetation directly impact the accuracy and precision 
of LAI estimation. Additionally, the regular planting pattern of 
Eucalyptus plantations leads to distinct texture features during the 
seedling stage, while the texture information weakens in mature forests 
(Zhou et al., 2013), making texture features a key factor in inverting 
Eucalyptus LAI (Couteron et al., 2005). This highlights the significant 
role of texture features in improving the accuracy of LAI estimation 
and understanding spatial distribution characteristics. On one hand, 
there is currently a lack of research on texture features specific to 

Eucalyptus, and it remains unclear how specific texture features affect 
the accuracy and precision of Eucalyptus LAI estimation. On the other 
hand, despite the widely recognized role of texture features in LAI 
inversion, how to most effectively integrate these features to enhance 
the performance of inversion models remains an unresolved issue. 
Therefore, further research is needed to explore the relationship 
between Eucalyptus LAI and texture features, revealing their potential 
mechanisms and patterns.

Applying machine learning (ML) methods is an important 
approach to establish the relationship between remote sensing 
features and forest growth parameters (Wu et al., 2023b). In ML, 
regression models can be classified into two main categories: linear 
and nonlinear (Ma et al., 2022; Matese and Di Gennaro, 2021). 
Linear models assume a linear relationship between the dependent 
and independent variables. Compared to linear regression models, 
nonlinear regression models are usually more complicated and 
request more parameter adjustments (Krupnik et  al., 2015). 
Nonlinear models outperform linear models because they can 
more accurately capture the complex nonlinear relationships 
between measured variables and predicted variables (Aworka 
et al., 2022).

To enhance the accuracy of ML in LAI inversion, it is crucial to 
consider two important issues: model parameter optimization and the 
proportion of samples allocated for training and validation. Selecting 
appropriate parameters ensures that the model accurately captures the 
complex relationships between vegetation features and environmental 
factors, thereby improving the accuracy of LAI predictions (Andrade 
et al., 2020). Moreover, choosing the right split ratio balances model 
training and evaluation, mitigating issues such as overfitting or 
underfitting (Roshan et al., 2022). For example, Weerts et al. (2020) 
pointed out that selecting different parameter settings can affect the 
performance of the model. Probst et al. (2019) conducted large-scale 
benchmark testing studies on 38 datasets and six common 
hyperparameters based on ML models, finding that selecting 
appropriate hyperparameters can improve the model’s accuracy. Yang 
and Shami (2020) noted that fine-tuning of the hyperparameters of ML 
models is essential in order to address the issue of their effective 
utilization. This tuning ensures that the model is optimized so that it 
performs well on the particular dataset to be analyzed. Nguyen et al. 
(2021) tested three ML models with different split ratios (i.e., 10/90, 
20/80, 30/70, 40/60, 50/50, 60/40, 70/30, 80/20, and 90/10), finding that 
the predictive ability of the models is greatly influenced by the ratio of 
the training set to the test set, with the 70/30 ratio model performing 
the best.

This study aims to invert E. grandis LAI using spectral and texture 
features of GF-6 WFV, for which three hypotheses are formulated: (1) 
E. grandis LAI can be accurately inverted by the spectral and texture 
features of GF-6 WFV. (2) The inclusion of texture features significantly 
improves the inversion accuracy. (3) The non-linear machine learning 
model outperforms the linear model and better captures the complex 
relationship between LAI and the features of satellite data. To test the 
hypothesis, the relationship between LAI and the spectral and textural 
properties of GF-6 WFVs was analyzed by linear and nonlinear 
models, grid search was used to optimize the hyperparameters, and 
the ratio of training set to validation set was debugged. Finalization of 
models to support E. grandis growth monitoring and yield prediction. 
In addition, we  developed a user-friendly machine-learning 
framework that includes parameter combination analysis, model 
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parameter search, optimal model identification, and training 
(Figure 1).1

2 Materials and methods

2.1 Study area

Huangmian Town is located at the eastern edge of Luzhai County, 
Guangxi Province, between 109°28′-110°12′E longitude and 24°14′-
24°50′N latitude, as shown in Figure 2A. The altitude range of the 
town is 83 ~ 826 m. It is located in the transition zone from the 
southern subtropical zone to the central subtropical zone, with a mild 
climate and an average annual temperature of about 20°C. The 
highest temperature in summer is 37°C and the lowest temperature 
in winter is 0°C. Sunlight is relatively abundant and rainfall is 
plentiful, with rainfall mainly concentrated from April to July with 
an average annual precipitation of about 1,300 mm. The average 
annual sunshine hours is about 1,600 and the frost-free period is 
more than 320 days, which is suitable for the growth of crops and 
E. grandis forests. It is the main E. grandis plantation base for the 
Guangxi State-owned Huangmian Forest Farm, with a total E. grandis 

1 https://github.com/BinLiang1/LAI_reversion

plantation forest coverage of about 191 km2 in 2019, accounting for 
about 38% of the total area of Huangmian Township (Yao et al., 2023).

2.2 Samples and data

2.2.1 Ground-measured LAI data
The ground-level E. grandis LAI values were collected from 

September 22 to September 29, 2020, via an LAI-2000 canopy analyzer 
(Chen and Cihlar, 1996). The average of 3 random measurements was 
taken. The location of each sample site was recorded using a 
COSHIDA RTK for further processing. Each sampling site had an area 
of approximately 400 m2, within which the growth status of E. grandis 
was almost the same. A total of 49 sample sites were selected from the 
study area and their distribution is shown in Figure 2B, providing 
comprehensive coverage of the three key growth stages of E. grandis: 
young, middle-aged and mature forests. There were sample points for 
each stage, i.e., 15 for young, 19 for middle-aged, and 15 for mature 
forests. Sample points were selected based on the characteristics of 
plantation E. grandis forests planted at regular intervals, in order to 
ensure representative and diverse data to suit different 
growing conditions.

2.2.2 Remote sensing data and pre-processing
GF-6 WFV was successfully launched on June 2, 2018, and is 

China’s first multispectral remote sensing satellite with a red-edge 

FIGURE 1

Technology road map.
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band. It is equipped with a 2 m panchromatic/8 m multispectral high-
resolution sensor and a 16 m multispectral medium-resolution wide 
field of view, which has an observation width of 800 km and the 
specific parameters shown in Table 1. GF-6 WFV has the advantages 
of multiple sensors in spectral space–time and multi-dimensional 
integrated observation, and it can acquire multi-spectral remote 
sensing data from the coastal band to the near-infrared band with a 
high spatial resolution, wide coverage, high quality, and high rate of 
localization (Xia et al., 2022).

The remote sensing images used in this study, as shown in 
Figure 2, were the L1A level GF-6 WFV images acquired on September 
22, 2020. To ensure high-quality and well-defined spatial resolution in 
the final images, a series of preprocessing steps were meticulously 
conducted using ENVI 5.3 software. These steps encompassed 
radiometric calibration for accurate pixel value adjustments, 
atmospheric correction to mitigate atmospheric interference, precise 
cropping of the study area to focus on the region of interest, and 
geometric correction to ensure spatial accuracy and alignment of 
the imagery.

2.3 Input features

In this study, raw reflectance data and two types of advanced 
features, namely the VIs and gray level co-occurrence matrix (GLCM) 
texture features, were used as inputs for inversion. VIs, as one type of 
spectral feature, can sensitively reflect the vegetation growth status, 
and GLCM texture features can provide useful information for LAI 

estimation from another dimension by analyzing the texture structure 
of images.

2.3.1 Vegetation indices
VIs are a type of feature calculated by the linear or nonlinear 

combination of raw reflectance data (Liang et al., 2015) and are more 
sensitive to the plants’ growth status than single-band information due 
to attenuation of environmental background interference in the 
canopy’s spectrum. In this study, we selected 12 kinds of VIs, which 
have been widely used previously and have been proven to be highly 
correlated with the LAI. The description and formulation of the 
selected indices are shown in Table 2.

2.3.2 Gray level co-occurrence matrices
A GLCM contains statistical information about pixel pairs that 

maintain a certain positional relationship within a local moving window 
of an image (Haralick et al., 1973), and can be further used to characterize 
texture information by using various statistical features. It describes the 
probability distribution of gray level co-occurrence between pixels, 
providing rich information on image texture and structure, and has 
become an important measure for LAI estimation from remote sensing 
imagery. The calculation of GLCM is based on Equation 1:
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FIGURE 2

Point map of the study area.
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where a, b denotes the gray level and the maximum gray level 
is n; thus, the size of the matrix is n n× . The offset direction 
within a local image window is described by θ ; the offset distance 
is d. x, y denotes the pixel coordinates and H, M is the image’s 
width and height. In all our experiments, N is 64, and the offsets 
are in four directions, namely 0°, 45°, 90°, 135°, with an offset 
distance of 1.

In our paper, eight kinds of statistics, namely the mean, variance, 
homogeneity, contrast, dissimilarity, entropy, angular second-order 
moments, and autocorrelation, are used to further describe the 
GLCM, and are detailed in Table 3.

It has been reported that parameters such as the size of the 
moving window and the moving step size will affect the results of 
the GLCM and further influence the texture feature calculation 
(Hall-Beyer, 2017). For example, if the size of the moving window 
is too small, this will lead to erroneous segmentation inside the 
texture features; on the contrary, erroneous segmentation will occur 
at the boundary of texture features (Wang et al., 2004). Considering 
the image characteristics of GF-6 WFV, the size of the moving 
window and the moving step size are set to 5 and 1, respectively 
(Marceau et al., 1990). The GLCM texture features are calculated 
separately for the eight bands of GF-6 WFV; thus, in total, 64 
texture features were obtained in our experiments.

2.4 Modeling algorithm

In this study, linear regression and three nonlinear methods were 
chosen for inversion to compare the accuracy and stability of various 
models in E. grandis LAI estimation (Andrade et al., 2020). Through 
this comparison, a more comprehensive exploration of the impacts 
of VIs and texture characteristics on LAI estimation is possible.

2.4.1 Multiple stepwise regression model
MSR is a rapid and straightforward method for illustrating the 

relationship between multiple independent variables and the 
response variable (Liu et al., 2021). This technique involves the 
step-by-step addition of variables to the model, with each addition 
predicated on statistical significance to maintain a set of variables 
that robustly predicts the response variable. The process continues 
until all variables in the model contribute meaningfully to the 
prediction, thereby ensuring the selection of an optimal variable 
set that captures the underlying relationships without including 
any redundant or insignificant predictors. The resulting regression 
equation expresses the relationship between the independent and 
dependent variables, as shown in Equation 2:

 1 1 2 2 n ny a x b x b x b= + + +…  (2)

TABLE 1 GF-6 WFV load parameters.

Wave band Spectral range/μm Width/km Track type Orbital altitude/km

B1 (Blue wave band) 0.45–0.52

864.2 Sun-synchronous return orbit 645

B2 (Green wave band) 0.52–0.59

B3 (Red wave band) 0.63–0.69

B4 (Near-infrared band) 0.77–0.89

B5 (Red edge band 1) 0.69–0.73

B6 (Red edge band 2) 0.73–0.77

B7 (Violet wave band) 0.40–0.45

B8 (Yellow wave band) 0.59–0.63

TABLE 2 VIs and calculations based on GF-6 WFV data.

Abbreviations Full name Calculation formula References

TCARI
Transformed chlorophyll absorption in 

reflectance index
[Red - (Blue - Green)] [Red + (Blue - Green)] Haboudane et al. (2002)

MCARI Modified chlorophyll absorption ratio index (NIR - Red) - 0.2 * (NIR - Green) Huete et al. (2002)

NDVI Normalized difference vegetation index (NIR - Red)/(NIR+ Red) Huete et al. (2002)

GNDVI Green normalized difference vegetation index (NIR - Green)/(NIR + Green) Huete et al. (2002)

IRECI Inverted red-edge chlorophyll index Red_edge/Red Daughtry et al. (2000)

WDVI Weighted difference vegetation index
(Weight_NIR * NIR - Weight_Red * Red)/(Weight_NIR 

* NIR + Weight_Red * Red)
Daughtry et al. (2000)

SAVI Soil-adjusted vegetation index [(NIR - Red)/(NIR + Red + L)] * (1 + L) Tucker (1979)

TVI Triangular vegetation index 0.5 * [120 * (NIR - Green) - 200 * (Red - Green)] Broge and Leblanc (2001)

RVI Ratio vegetation index Red/Green Qi et al. (1994)

MTCI Meris terrestrial chlorophyll index (NIR - Red_edge)/(Red_edge - Blue) Haboudane et al. (2004)

MTVI Modified triangular vegetation index 1.2 * [1.2 * (NIR - Green) - 2.5 * (Red - Green)] Jordan (1969)

DVI Difference vegetation index NIR - Red Blackburn (1998)
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where y is the LAI value (dependent variable), 1 nx x−  is the eigenvalue 
(independent variable), and 1 nb b−  is the coefficient of the 
corresponding independent variable.

2.4.2 Support vector regression model
SVR is a regression method based on support vector machines, 

specifically designed to predict continuous outputs (Panahi et  al., 
2020). By seeking the optimal hyperplane and establishing a margin 
that tolerates a certain amount of error in the training data, SVR 
utilizes a kernel function to map input data to a high-dimensional 
space, aiming to identify the maximum margin and enhance tolerance 
to fluctuations in the training data (Aworka et al., 2022). Commonly 
used kernel functions include linear, polynomial, and radial basis 
function (RBF) kernels. While the linear kernel is suitable for linear 
relationships, polynomial and RBF kernels can handle more complex 
nonlinear relationships. Additionally, the parameter γ in the RBF 
kernel significantly influences the kernel width, impacting the model’s 
complexity. Another crucial parameter is the regularization parameter 
C, controlling the tolerance for training errors. SVR optimizes these 
parameters by solving a convex quadratic programming problem, 

ensuring a balance between fitting the training data and generalizing 
unseen data. Adjusting these parameters constitutes a critical step 
when employing SVR (Liu et al., 2021).

2.4.3 Backpropagation neural network model
BPNN is a widely utilized regression algorithm that relies on 

the concept of backpropagation of errors to minimize the 
discrepancy between the predicted value and the true value by 
adjusting the weights in the network (Ding and He, 2003). The 
BPNN comprises multiple layers, the first of which receives raw 
data as input, the middle layers, referred to as hidden layers, embed 
the input into high-dimensional features via interconnected 
neurons, and the last of which outputs regression values. During the 
BPNN’s training process, the predicted values of the training dataset 
are computed through forward propagation, after which, the errors 
between the predicted and truth values are calculated and 
backpropagated to update the weights and biases of the network. 
This iterative process continues until a predetermined number of 
training sessions is reached or a specified error threshold is reached 
for the validation dataset.

TABLE 3 GLCM texture feature statistics.

Texture 
characteristics

Abbreviations Formulas Definition

Mean Mea

1
,

, 0
jP

n
i i j

i j
µ =

−

=
∑

1
,

, 0
jP

n
j i j

i j
µ =

−

=
∑

The degree of regularity in the texture

Variance Var

( )
1 22 ,

, 0
P j

n
i j jj

i j
σ µ= −

−

=
∑

( )
1 22 ,

, 0
P i

n
i j ii

i j
σ µ= −

−

=
∑

The non-homogeneity of the texture; the greater the local texture variation, 

the greater the eigenvalue

Homogeneity Hom
( )1

1 ,
2

, 0

P

i j

n i j

i j + −

−

=
∑ The degree of the uniformity of the texture; the shallower the texture 

grooves, the greater the value of the feature

Contrast Con ( )
1 2

,
, 0

P i j
n

i j
i j

−
−

=
∑ The contrast of the texture; the deeper the texture furrows, the greater the 

value of the feature

Dissimilarity Dis ( )ln
1

, ,
, 0

P P
n

i j i j
i j

−
−

=
∑ The texture clarity; the deeper the texture grooves, the greater the value of 

the feature

Entropy Ent
1

2
,

, 0
P

n
i j

i j

−

=
∑ The amount of information contained in the image

Angular second 

moment
Sec

1
,

, 0
P i j

n
i j

i j
−

−

=
∑ The uniformity of the image gray values and texture coarseness

Correlation Cor
( )1 ,

, 0

ij Pn i j i j
i ji j

µ µ
σ σ

−−

=
∑ The consistency of the response image texture

,Pi j  represents the element in the i-th row and j-th column of the GLCM, indicating the probability of the simultaneous occurrence of the gray levels corresponding to the i-th and j-th rows 
and columns. n represents the number of gray levels in the image, while ,i iµ µ  and ,i jσ σ  denote the mean and standard deviation of the GLCM.
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2.4.4 Random forest model
RF is a data mining technique that combines combinatorial 

self-learning with modern regression and classification methods, 
and was introduced by Cutler Adele and Leo Breiman in 2001 
(Mohapatra et al., 2020). It is distinguished by its capability to 
handle large datasets, predict multiple explanatory variables, train 
data rapidly, and provide variable importance estimates (Jiang 
et al., 2020). The key problem in RF is to determine the number 
of RF decision trees (ntree) and the number of random variables in 
the split nodes (mtree). Mtree represents the number of variables 
selected for each branch of the decision tree, typically set to 1/3 of 
the number of variables. Moreover, it is crucial not to set ntree too 
low to ensure an adequate number of predictions for the sample 
(Wu et al., 2023a).

2.4.5 Parameter selection and training
Precise tuning of hyperparameters during ML model 

construction is a critical step in improving model performance 
(Yang et al., 2022b). Grid search, a comprehensive and systematic 
hyperparameter optimization technique, is performed by creating 
a regular grid of parameters within a defined parameter range. Each 
coordinate point in this grid represents a unique hyperparameter 
configuration, and by thoroughly evaluating these configurations, 
the optimal parameter combinations that maximize model 
performance can be  identified (Sun et  al., 2021). For the 
three nonlinear models (RF, SVR, and BPNN), we employed the 
grid search method to obtain the optimal combination of 
hyperparameters for each model. The optimal hyperparameter 
combination for each machine learning model is selected by grid 
search technique. Subsequently, to further evaluate the impact of 
different data splitting ratios on model performance, we designed a 
series of experiments. The initial splitting rate of the training set 
was 25%, and then it was incremented in 5% intervals until it 
reached 85%. For each split rate, the training set was randomly 
constructed N times and used to train the model. Considering the 
effectiveness and efficiency, N was set to 100 in all our experiments 
and the optimal splitting ratio was selected based on the coefficient 
of determination ( 2

maxR ) and standard deviation ( 2
stdR ) of the 

models’ performance on the testing set. Finally, these optimal 
models and splitting ratios were applied to the estimation of 
E. grandis LAI.

2.4.6 Accuracy evaluation
It is essential to evaluate the fitting status of the models employed 

in this study to derive the optimal inversion method and to further 
validate the effectiveness of GF-6 WFV for E. grandis LAI estimation. 
The fitting status was evaluated using the coefficient of determination 
(R2) and the root mean square error (RMSE), as recommended in 
previous studies (Chicco et al., 2021). The calculations of R2 and 
RMSE are based on Equation 3 and 4.
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where iy  denotes the measured E. grandis LAI value, jy


 denotes 
the model-predicted E. grandis LAI value, y denotes the mean value 
of measured E. grandis LAI, and n denotes the number of samples.

3 Results

3.1 Correlation analysis

Among 49 sample points in Figure 2B, the maximum value of LAI 
was 4.47, the minimum value was 0.51, and the mean value was 1.81. 
Before conducting a reversion analysis, we explored the correlation 
between the in-put spectral and textural features and the E. grandis 
LAI and visualized their relationship using the corrplot package in R 
language (Geitner et al., 2019). This exploration aimed to find features 
significantly related to LAI estimation, laying the foundation for 
subsequent model construction.

As illustrated in Figure 3, in total, 7 out of the selected 12 VIs 
exhibited significant correlations with the E. grandis LAI, of which the 
GNDVI displayed the highest correlation coefficient of up to 0.58. This 
validates the excellent performance of VIs in estimating the LAI, 
especially the key role of the combination of the green band (B2) and 
the near-infrared band (B4) in the GNDVI in LAI estimation 
(Janoušek et al., 2023). As for individual spectral features, the B2 band 
demonstrated the most robust and highest performance among the 
eight bands, with a correlation coefficient of 0.66. This further 
validates the outstanding correlation of the green band (B2) in 
estimating the LAI (Neog, 2023).

Moreover, an analysis of the GLCM texture feature bands revealed 
that 30 out of 64 factors displayed significant correlations with 
E. grandis LAI, as depicted in Figure 4. Among these features, the 
entropy texture feature (Ent) stood out, with all eight of its bands 
showing a significant correlation with E. grandis LAI. Notably, the 
mean texture feature of the green band (B2_Mea) demonstrates the 
highest significance, with a negative correlation of 0.61 (p < 0.01), 
which is consistent with the above single-band correlation analysis 
results. Among the single-band texture features, B2, B3, and B5 
showed the most significant correlation with E. grandis LAI, joined by 
five features (Dis, Ent, Hom, Mea, and Sec) that were significantly 
correlated with LAI, respectively.

In conclusion, these results indicate significant correlations 
between the selected VIs and GLCM texture features and E. grandis 
LAI. This not only affirms the pivotal role of the spectral features of 
the GF-6 WFV and the texture features of the GLCM in estimating 
vegetation LAIs, but also provides suggestions for the selection of 
optimal input factors for subsequent model construction.

Our correlation analysis informed a refined selection of input 
factors for model construction. We focused on features significantly 
correlated with the LAI, which included 6 spectral bands, 7 Vegetation 
Indices (VIs), and 30 GLCM texture features. These factors were 
combined in seven distinct sets of input parameters, labeled as Band 
(bands only), VIs (vegetation indices only), G (GLCM texture features 
only), Band_VIs (combination of bands and vegetation indices), 
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Band_G (combination of bands and GLCM texture features), VIs_G 
(combination of vegetation indices and GLCM texture features), and 
Band_VIs_G (combination of bands, VIs, and GLCM texture 
features). The specific groupings are detailed in Table 4. With this 
meticulous grouping, we  were able to conduct a more detailed 
estimation and inversion of E. grandis growth, providing more 
accurate technical support for the monitoring and management of 
E. grandis plantation forests.

3.2 Linear model—stepwise regression 
method

The prediction accuracy of the MSR model is closely tied to the 
correlation coefficients of input factors. In this paper, seven multiple 
regression models were constructed separately using the parameters 
in Table 4, and their ability in LAI reversion was evaluated via the R2 
and RMSE.

Figure 5 illustrates that the G group, which incorporates GLCM 
texture features, outperforms other groups in LAI inversion, achieving 

the highest R2 score and the lowest RMSE value at 0.54 and 0.56, 
respectively. These results surpass the R2 scores of both the Band and 
VIs groups by a notable  11%. The inclusion of texture features 
significantly bolsters the inversion process, with models utilizing these 
features witnessing a 7% R2 increase and a 3% RMSE decrease on 
average compared to those without. Additionally, the performance of 
the Band, VIs, and Band_VIs groups is strikingly similar. This aligns 
with the understanding that the selected VIs are essentially linear 
combinations derived from individual bands.

3.3 Nonlinear model—
machine-learning-based methods

The three selected nonlinear methods (RF, BPNN, and SVR) all 
use the optimal combination of hyperparameters and then splitting 
ratios for the dataset of inverted E. grandis LAI. Starting at 25% and 
increasing in 5% increments to 85%. Data splitting and model training 
were conducted 100 times randomly for each ratio, and the max and 
standard deviation of R2 of the 100 experiments were used to evaluate 

FIGURE 3

Correlation between VIs and E. grandis LAI.
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the stability and effectiveness of the model at a specific splitting ratio. 
As shown in Figures 6, 7, the performances of the three models are all 
influenced by the splitting ratio, which gradually increases as the ratio 
increases. The 2

maxR  of the RF model was highest at a splitting ratio of 

0.85, with a value of 0.91. That of the BPNN model was highest at a 
splitting ratio of 0.65, with a value of 0.50, while the 2

maxR  of the SVR 
model was highest at a splitting ratio of 0.80, with a value of 0.77. 
From the aspect of stability, the SVR model is more stable than the 

FIGURE 4

Correlation of texture features with the LAI in E. grandis.

TABLE 4 Parameter groups.

Groups Factor

Band B1, B2, B3, B5, B7, B8

VIs SAVI, NDVI, IRECI, WDVI, GNDVI, DVI, TCARI

G
B6_Con, B2_Dis, B3_Dis, B4_Dis, B5_Dis, B6_Dis, B1_Ent, B2_Ent, B3_Ent, B4_Ent, B5_Ent, B6_Ent, B7_Ent, B8_Ent, B2_, B3_Hom, B5_Hom, 

B1_Mea, B2_Mea, B3_Mea, B5_Mea, B7_Mea, B8_Mea, B1_Sec, B2_Sec, B3_Sec, B4_Sec, B5_Sec, B6_Sec, B8_Sec

Band_VIs Combination of 6 bands factors and 7 VIs

Band_G Combination of 6 bands and 30 GLCM band factors

VIs_G Combination of 7 VIs and 30 GLCM band factors

Band_VIs_G Combination of 6 bands, 7 VIs and 30 GLCM band factors
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other two models, as it has the smallest 2
stdR  at the ratio of the highest 

2
maxR , more specifically, 0.50, 2.78, and 0.31 for RF, BPNN, and SVR, 

respectively.
After obtaining the best splitting ratio using the VIs_G group, 

we directly applied it to the other six input feature groups for LAI 
inversion, the results of which are shown in Table 5. The VIs_G group 
excelled in all three models, with a mean 2

maxR  value of 0.85 and a 
mean RMSE value of 0.21, which were significantly better than those 
of the other six groups. Among the three models, the RF’s mean 2

maxR  
for the seven groups of input features (G, Band_G, VIs, Band, VIs_G, 
and Band_VIs_G groups) was 29 and 10% higher than those of BPNN 
and SVR, respectively, and its RMSE value was 20 and 1% lower, 
respectively. The RF model once again demonstrated its superiority in 
terms of accuracy improvements, with a minimum 2

maxR  of 0.81, an 

average value of 0.86 and a maximum value of 0.91, and a mean RMSE 
of 0.22 and a minimum value of 0.16.

Generally, with the 8.5:1.5 splitting ratio, the RF model proved to 
be more effective for E. grandis LAI inversion, demonstrating a greater 
overall stability and accuracy, and is more suitable for providing 
information for monitoring the growing status of E. grandis 
plantation forests.

4 Discussion

In this study, we utilized GF-6 WFV data to explore the correlation 
between E. grandis LAI and spectral features as well as GLCM texture 
features. Through integrating multiple ML methods, we conducted 
in-depth analysis on these features. Our research initially focused on 
revealing the correlation between E. grandis LAI and selected remote 
sensing features, followed by a comparative analysis of different ML 
modeling techniques. The core objective was to optimize the 
hyperparameter configuration and data split ratios of the models, 
thereby significantly improving the accuracy of E. grandis LAI 
inversion. Through this integrated approach, we aim to develop a 
more accurate LAI estimation tool to support more effective vegetation 
monitoring and ecosystem management.

In different input features, combining spectral features with 
GLCM texture features significantly improves the accuracy of LAI 
inversion for E. grandis plantations. Spectral features can capture 
vegetation physiological characteristics, such as chlorophyll content 
and moisture status, which directly influence vegetation’s light 
reflection and absorption (Liang et al., 2015). GLCM texture features, 
on the other hand, reveal vegetation’s spatial distribution patterns, 
such as tree arrangement and density, which are crucial for 
understanding and estimating LAI. Especially in E. grandis 
plantations, the regular planting pattern results in significant 
differences in texture features at different growth stages. In the sapling 
stage, the sparse vegetation and similar sizes make texture features 
particularly prominent. However, in the mature stage, competition 
among trees leads to uneven distribution and overlapping crowns, 
resulting in a relative weakening of texture information (Zhou et al., 
2013). These texture changes reflect the structural characteristics and 
growth dynamics of E. grandis trees, closely linked to LAI variations, 
highlighting the importance of texture features in LAI inversion 
(Couteron et al., 2005). Therefore, optimizing the use of spectral and 
texture features can significantly enhance the accuracy of LAI 
inversion, especially in specific vegetation conditions such as 
E. grandis plantations, demonstrating substantial potential and 
application value for this method.

In LAI inversion models, nonlinear models such as RF, BPNN, 
and SVR demonstrate significant advantages in revealing the complex 
relationship between input features and LAI. These models are 
particularly effective in handling the dynamic changes of LAI because 
LAI is nonlinearly influenced by various biotic and abiotic factors 
(Reichenau et al., 2016). The superiority of nonlinear models over 
linear models lies in their ability to capture the complex, 
non-monotonic relationship between input variables and LAI, 
including threshold effects, saturation effects, and multi-peak 
responses (Aworka et al., 2022). Furthermore, nonlinear models can 
effectively handle interactions among multiple input variables, which 
is crucial for LAI inversion as there may be complex interaction effects 

FIGURE 5

MSR model accuracy evaluation.

FIGURE 6

Evaluation of splitting ratio accuracy of nonlinear models based on 
the VIs_G group.
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among spectral information, vegetation indices, and texture features 
(Mohammadpour et  al., 2022). The recognition and utilization of 
these interaction effects significantly enhance the predictive accuracy 
of nonlinear models. Compared to the MSR model, nonlinear models 
showed a 26% improvement in R2 and a 29% decrease in 
RMSE. Specifically, RF, BPNN, and SVR models achieved R2 
improvements of 39, 10, and 29%, respectively, compared to the MSR 
model, while reducing RMSE values by 36, 16, and 35%, respectively. 
This further demonstrates the superior performance of nonlinear 
models in LAI inversion.

In the application of ML models, we extensively explored their 
potential and limitations in LAI inversion. Despite their significant 
advantages in pattern recognition and prediction, these models are 
constrained by the setting of hyperparameters and the strategy for 
dataset partitioning (Diaz et al., 2017). The high sensitivity of models 
to these factors may affect their ability to generalize to new data, 
thereby weakening their accurate prediction of LAI (Joseph and 
Vakayil, 2022). Unoptimized models are prone to overfitting or 
underfitting, manifested as performance surplus or deficit on the 
training set, both of which impair the effective prediction of LAI 
(Probst et al., 2019). By finely tuning hyperparameters and optimizing 

the model learning process, we ensure that it can capture the complex 
relationship between vegetation characteristics and environmental 
factors more accurately (Weerts et al., 2020). This not only improved 
the prediction accuracy of the models but also enhanced their 
adaptability to unknown data. Additionally, through appropriate 
partitioning of the training and validation sets, we further ensured the 
robustness and credibility of the models (Roshan et  al., 2022). 
Therefore, the optimization of hyperparameters and the appropriate 
choice of data partitioning ratio are crucial for enhancing the 
performance of LAI inversion models. These strategies effectively 
overcome the inherent limitations of machine learning models and 
improve their application effectiveness in practical vegetation 
monitoring and ecological environment assessment.

This study utilized spectral and GLCM texture features from 
GF-6 WFV data, along with hyperparameter optimization and 
adjustment of data splitting ratios, to achieve high-precision 
estimation of LAI in E. grandis plantations. However, we recognize 
that there is still room for improvement in the model, particularly 
considering the seasonal variability of LAI in E. grandis plantations, 
which introduces significant uncertainties. Therefore, there is a 
need to collect field observation data covering different seasons 

FIGURE 7

Evaluation of segmentation ratio accuracy of nonlinear models based on 6 groups.
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throughout the year to capture the seasonal changes more 
accurately in LAI and further optimize the model based on this 
data. This continuous improvement will enhance the robustness of 
the model, ensuring reliable support for ongoing environmental 
monitoring and forestry management. Future work will focus on 
refining the model to adapt to seasonal variations, thus achieving 
more accurate LAI inversion under different 
environmental conditions.

5 Conclusion

In this study, we apply the model’s hyperparameter combination 
and the debugging method of splitting ratio to investigate the 
effects of nonlinear modeling and input features on E. grandis 
plantation forests. In addition, we  provide free easy-to-use 
frameworks for modeling hyperparameter combinations and 
splitting ratio for debugging methods for fast inversion of 
E. grandis LAI. First, spectral and GLCM texture features of the 
GF-6 WFV were used to select features significantly associated 
with the LAI by correlation analysis. The highest correlation 
coefficient between GNDVI and spectral features was found to 
be 0.58. A total of 30 out of 64 GLCM texture features were found 
to be significantly correlated with LAI, with correlation coefficients 
up to 0.61. We  then conducted comprehensive experiments on 
different combinations of texture and spectral features using both 
linear methods and nonlinear models. It was found that using a 

combination of spectral and GLCM texture features improved 
accuracy in both linear and nonlinear models, with an 8% 
improvement and 4% reduction in RMSE for linear and a 6% 
improvement and 5% reduction in RMSE for nonlinear. In terms 
of modeling, the nonlinear models significantly outperformed the 
linear models, with 2

maxR  averaging 26% higher and RMSE 
averaging 29% lower for the three nonlinear models. Finally, 
we  searched for the best combination of hyperparameters and 
conductedexperiments on different dataset splitting ratios, and 
found that different splitting ratios have a large impact on the 
accuracy of their models. Among the seven sets of input feature 
data of the three models, five sets of RF, three sets of BPNN, and 
four sets of SVR showed high accuracy and stability at a splitting 
ratio of 8.5:1.5 (ratio of 0.85), with the best 2

maxR  of 0.91 and 2
stdR  

of 0.50 for RF.
This study provides insights in estimating LAI in E. grandis 

plantation forests by combining the spectral and GLCM texture 
features of GF-6 WFVs using nonlinear modeling of 
hyperparameter combinations and splitting ratio debugging 
methods. Our future research necessitates field measurements in 
multiple seasons to accurately capture seasonal variations. These 
additional data will help refine and improve the accuracy of the 
estimation model and ensure its robustness across seasons. In 
addition, the optimization of nonlinear methods, the potential 
effects of different remote sensing data sources, and the effects of 
plantation species on the accuracy of LAI inversion will 
be investigated in future work.

TABLE 5 ML model accuracy evaluation.

Model Input features RMSE 2
maxR

BPNN

Band 0.19 0.81

Band_VIs 0.23 0.85

Band_G 1.04 −0.39

G 0.26 0.77

Band_VIs_G 0.33 0.57

VIs_G 0.69 0.50

VIs 0.19 0.89

RF

Band 0.29 0.86

Band_VIs 0.18 0.89

Band_G 0.28 0.82

G 0.24 0.81

Band_VIs_G 0.19 0.87

VIs_G 0.16 0.91

VIs 0.21 0.84

SVR

Band 0.21 0.82

Band_VIs 0.24 0.81

Band_G 0.22 0.81

G 0.23 0.59

Band_VIs_G 0.25 0.80

VIs_G 0.22 0.77

VIs 0.22 0.75
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