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Quantifying nonlinear responses 
of vegetation to hydro-climatic 
changes in mountainous 
Southwest China
Hui Chen , Weidong Zhao , Zehuang He , Yuting Zhang , 
Wanmin Wu  and Ting Chen *

School of Resources and Environment, Chengdu University of Information Technology, Chengdu, 
China

Vegetation plays an essential role in terrestrial carbon balance and climate 
systems. Exploring and understanding relationships between vegetation dynamics 
and climate changes in Southwest China is of great significance for ecological 
environment conservation. Nonlinear relationships between vegetation and 
natural factors are extraordinarily complex in Southwest China with complicated 
topographic conditions and changeable climatic characteristics. Considering the 
complex nonlinear relationships, the Random Forest (RF) and an integration of 
Convolutional Neural Networks and Long Short-Term Memory network (CNN-
LSTM) were used with multi-source data from 2000–2020. Performance of two 
models were compared with precision indicators, and influence of topographic 
and hydro-climatic factors on vegetation was quantified based on the optimal 
models. Results revealed that the Normalized Difference Vegetation Index 
had a significant negative correlation with elevation and a positive correlation 
with land surface temperature and evapotranspiration. According to precision 
indicators, the RF model (RF3) built with longitude, latitude, elevation, slope, 
temperature, precipitation, evapotranspiration and surface solar radiation as 
inputs outperformed other models. Relative importance of the eight natural 
factors was quantified based on the RF3, and results indicated that elevation, 
temperature and evapotranspiration were major factors that influenced 
vegetation growth. Responses of vegetation toward climatic variables exhibited 
significant seasonal change, and there were different decisive factors, which 
influenced vegetation growth in forests, grasslands and croplands.
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1 Introduction

Vegetation is one of the most important components of terrestrial ecosystems and plays 
an essential role in terrestrial carbon balance and climate systems (Zhang et al., 2021). Remote 
sensing technology can provide temporal and spatial dynamic observations of vegetation at 
large scales, and has been widely used to monitor vegetation growth (Chen et al., 2018). Based 
on satellite remote sensing, the Normalized Difference Vegetation Index (NDVI) can reflect 
characteristics of surface vegetation and monitor dynamic changes of vegetation, and has been 
the most widely used indicator for monitoring vegetation (Hou et al., 2015; Piao et al., 2020).
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Major driving factors of vegetation change at a large scale have 
received extensive attention for decades (Liu et al., 2018; Piao et al., 
2020; Yin et al., 2020). Relationships between vegetation and climate 
change are extremely complicated and characterized by spatial 
heterogeneity, especially in the mountainous Southwest China (Liu 
et al., 2018; Zhang et al., 2021). The terrain in Southwest China is very 
complicated, and influences of climate change on vegetation in this 
region vary spatiotemporally. In the eastern area, including 
southwestern Yunnan, eastern Guizhou and central Sichuan, 
vegetation coverage was very high and vegetation appeared a 
significant upward trend, though precipitation showed a decreased 
tendency in Southwest China after 2000 (Duan et  al., 2022). The 
ecosystem in areas at the junction of Sichuan, Tibet, and Yunnan 
provinces was very sensitive to climate change, and vegetation was 
significantly correlated with temperature and precipitation (Lai et al., 
2023). Especially in parts of Yunnan Province with fragile ecological 
environments, improving temperature at short time scales had a 
certain adverse influence on vegetation growth (Liu et al., 2018).

In previous researches, links between vegetation and climatic 
variables were investigated most by adopting statistical linear 
methods, such as multivariate regression analysis and correlation 
analysis (Camberlin et al., 2007; Muir et al., 2021; Wang et al., 2021). 
Camberlin et al. (2007) computed linear correlations and regressions 
between vegetation and annual rainfall, and found that vegetation had 
a high correlation with rainfall in semi-arid zones and a weaker 
response in sub-humid and humid climates. However, these methods 
were not always able to take into account the spatial and temporal 
variations of variables and mostly ignored nonstationary relationships 
between variables, both of which were essential for exactly analyzing 
relationships between vegetation and climate variability (Foody, 2003; 
Li et  al., 2013; Georganos et  al., 2017). Spatial autocorrelation of 
variables had a detrimental effect on results of statistical analysis 
(Muir et  al., 2021). As a result, quantifying complex nonlinear 
responses under linear assumption or ignoring combined effects of 
topographic and climatic factors could overestimate or underestimate 
influences of variant variables.

Machine learning has a superiority in responding to these 
problems and been widely used to explore complex nonlinear 
relationships among topographic conditions, climate change and 
vegetation growth (Chen et al., 2020; Zafar et al., 2023). For example, 
the Random Forest model has distinct advantages in fitting higher 
dimensional data and can quantify relative importance of input 
variables (Leo, 2001; Chen et al., 2022; Zafar et al., 2023). As a branch 
of machine learning, deep learning can automatically learn robust 
feature representations and shows great potential in many fields. Three 
main deep learning architectures include Convolutional Neural 
Networks (CNN), Recurrent Neural Networks (RNN), and Self-
Attention Networks (or Transformers). The CNN is able to perform 
convolutional operations on time series to extract local features, but 
is not sensitive to temporal characters of data (Cao et al., 2022). RNN 
is a neural network with strong adaptability to temporal data. As a 
kind of advanced RNN, Long Short-Term Memory (LSTM) can 
effectively handle long-term dependencies in time series data, and is 
applied extensively for sequence data representation (Zhao et al., 2021; 
Ma and Liang, 2022; Wang et al., 2023). Integrating CNN and LSTM 
can maintain the capability of CNN for capturing information and the 
sensitivity of LSTM to time series data, and improve performance of 
the models.

Exploring and understanding relationships between vegetation 
dynamics and climate changes in Southwest China is of great 
significance for ecological environment conservation. In the current 
paper, the Random Forest and an integration of CNN and LSTM 
network were used to explore nonlinear relationships between 
vegetation dynamics and climate change and quantify contributions 
of topography and hydro-climatic factors to vegetation growth in 
Southwest China with a complicated topographic feature.

2 Materials and methods

2.1 Study area

The study area is located in southwest China and mainly 
composed of Chongqing, Sichuan, Guizhou, Yunnan and a small part 
of Tibet province (Figure 1). The surface condition is very complicated 
in the mountainous study area covered by the Sichuan Basin, the 
Yunnan-Guizhou Plateau, and the southeastern Qinghai Tibet Plateau. 
The terrain is characterized by severe undulations and a descending 
gradient from west to east, with elevations ranging from 100 to 
7,002 m.

The climate is mainly subtropical and temperate. The study area 
has a humid mid-subtropical monsoon climate in the Sichuan Basin 
and a subtropical and tropical monsoon climate in the Yunnan-
Guizhou Plateau. Spatiotemporal distribution of precipitation in the 
region is markedly uneven, with annual precipitation decreasing from 
southeast to northwest. The average annual precipitation in this area 
varies between 600 and 2,300 mm. Due to complex geography, spatial 
distribution of temperature in this area is obviously various, with 
annual average temperature exceeding 18°C. The Qinghai Tibet 
Plateau generally experiences lower annual temperatures compared to 
the Yunnan-Guizhou Plateau and the Sichuan Basin.

Grasslands and forests dominate the land use types in the 
southwestern mountainous area (Figure  2). Grasslands constitute 
60.8% of the study area, predominantly located in northeast Tibet and 
northwest Sichuan. Forests account for 24.1%, mainly distributed in 
Yunnan, Sichuan and southern Xizang. Croplands are located mainly 
in the Sichuan Basin. Due to diversities of climate and terrain in the 
region, vegetation types are also very abundant.

2.2 Materials

Hydro-climatic data from the Global Land Data Assimilation 
System (GLDAS), the Moderate Resolution Imaging 
Spectroradiometer (MODIS) and surface solar radiation synthetic 
dataset (Rs) with a resolution of 10 km from National Tibetan Plateau/
Third Pole Environment Data Center1 were used to analyze influences 
of hydro-climatic factors on vegetation change. The Digital Elevation 
Model (DEM) derived from NASA’s Shuttle Radar Topography 
Mission (SRTM) with a spatial resolution of 90 m was used as a terrain 
parameter. Details of multi-source data used in this paper are listed in 
Table 1.

1 https://doi.org/10.11888/Meteoro.tpdc.271023
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2.2.1 MODIS
The 16-day Normalized Difference Vegetation Index (NDVI) 

product (MOD13A2), 8-day land surface temperature (LST) product 
(MOD11A2) with a resolution of 1 km × km and annual land cover 
product (MCD12Q1) with a resolution of 500 m × 500 m from 2000–
2020 are available from the MODIS. The standard NDVI values range 
from −1 to 1, and standardized pixels of NDVI data below 0.1 
represent rocks, human-made structures, clouds, water, and snow 
(Worku et al., 2023). Based on the International Geosphere Biosphere 
Programme, land cover types were classified into 7 categories, 
including forests, woodlands and grasses, croplands, water and 
permanent wetlands, urban areas, barren or sparsely vegetated and 
snow and ice.

The data have multiple temporal and spatial resolutions. The 
datasets used in this paper were extracted and resampled at a 
0.25° × 0.25° spatial resolution with the bilinear interpolation. The 
Maximum Value Composite method was used to generate monthly 
composite NDVI and LST and minimize atmospheric effects.

2.2.2 GLDAS
The GLDAS is a surface modeling system, which integrates global 

satellite and ground observation data to drive advanced simulations 
of climate and hydrological surveys (Moghim, 2020). It utilizes data 
assimilation to input satellite data and ground observation data into 
advanced surface models (LSMs), including Noah, Variable Infiltration 
Capacity (VIC), Mosaic and Common Land Model (CLM), to provide 
surface state and flux.

In this paper, monthly GLDAS products with a spatial resolution of 
0.25o × 0.25o from 2002 to 2020, mainly including precipitation (PRCP), 

evapotranspiration (ET), surface and subsurface runoff (Qs and Qsb) 
were used. According to the theory of water balance, monthly terrestrial 
water storage changes (TWSC) were derived with monthly PRCP, ET, Qs 
and Qsb (Chen et al., 2020). The Equation (1) is as follows:

 TWSC P ET Qs Qsb= - - -  (1)

2.3 Methods

Based on multi-source data, responses of vegetation growth to 
natural factors were explored with correlation analysis, Random 
Forest (RF) and the integration of CNN and LSTM network (CNN-
LSTM). The RF and CNN-LSTM were realized for distinguishing 
contributions of hydro-climatic factors in the study area.

2.3.1 Correlation analysis
The Spearman’s rank correlation coefficient (r) was a 

non-parametric measure of correlation. In the current paper, it was 
utilized to examine relationships between vegetation growth and 
natural variables and tested with a two-tailed Student’s t-test.

2.3.2 Random forest
Exploring nonlinear relationships among complicated terrains, 

varied climate and vegetation growth presents significant challenges. 
The Random Forest has a strong advantage in uncovering subtle 
nonlinear relationships and can quantify relative importance of various 
variables with the increased mean squared error (%IncMSE), combining 
benefits of interpretability and flexibility (Leo, 2001). Hence, Random 

FIGURE 1

Map of digital elevation model (DEM) in the study area.
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Forest was used to build relational models with NDVI as a dependent 
variable and natural factors, including 4 topographic factors (longitude 
(Lon), latitude (Lat), elevation (Elv) and Slope) and 7 hydro-climatic 
factors (LST, PRCP, ET, Qs, Qsb, TWSC and Rs) as independent variables.

Random Forest (RF) integrates multiple weak classifiers and 
adopts the ensemble method to enhance the overall model’s 
predictive performance and generalization capability. The 
out-of-bag error estimate is unbiased and one of important 

FIGURE 2

Map of land use types in 2020.

TABLE 1 Variables and data sources.

Source Variable Abbr. Temporal resolution Spatial resolution

Latitude Lat

Longitude Lon

Slope Slope

Elevation Elv

MODIS

Normalized difference vegetation 

index
NDVI 16-day 1 km × 1 km

Land surface temperature LST 8-day 1 km × 1 km

Land cover type LC Annual 500 m × 500 m

GLDAS

Precipitation PRCP

Monthly 0.25° × 0.25°

Evapotranspiration ET

Surface runoff Qs

Subsurface runoff Qsb

Changes of terrestrial water storage TWSC

National tibetan Plateau/Third 

Pole Environment Data Center
Surface solar radiation Rs Monthly 10 km × 10 km
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advantages of random forest. Random forest randomly selects 
subsets of features used in each data sample to build full decision 
trees, and the randomness plays a crucial role to mitigating the 
risk of bias. To ensure robustness of random forest and alleviate 
overfitting, 80% of data were randomly selected and employed for 
constructing models and the others were used to validate 
model performance.

The ntree and mtry are important parameters in random forest. 
The ntree is number of trees and set to 500. The mtry is number of 
candidates draw to feed the algorithm and set to 2–4 in current paper. 
RF models were built repeatedly with different input variables and 
parameters for obtaining the final model with higher accuracy based 
on the cross-validation. The RF models were operated in the R 
package “randomForest”.

2.3.3 Integrated CNN-LSTM network
Traditional RNN encounters problems of gradient explosion 

or gradient vanishing when dealing with long sequences, and has 
difficulty learning long-term dependencies. Special structural 
design in LSTM can effectively alleviate these problems, and 
thereby LSTM can better handle long sequence data. The LSTM 
model is based on the assumption that not all information is 
equally important. Based on the assumption, LSTM can identify 
important information and remember it for the long term, and 
identify unimportant information to forget through the internal 
gating mechanism.

Similarly, four topographic factors and seven hydro-climatic 
factors were used to build the integrated CNN-LSTM models (Li 
et al., 2022; Gao et al., 2023), and 80% of data were used as the 
training set and 20% of them for validation. The integrated 
CNN-LSTM network (CNN-LSTM) consists of two parts. The 
CNN model was used to traverse topographic and climatic data 
with convolutional layers, and the LSTM was utilized to capture 
features from the convolutional layer. In order to increase the 
nonlinear representation of the model, the activation function, 
namely ReLU, was used to nonlinearly transform outputs from the 
convolutional layer. The mean absolute error was served as model 
loss values in the CNN-LSTM models. The CNN-LSTM network 
was built with the Pytorch platform.

2.3.4 Precision indicators
As shown in Equations (2–6), the determination coefficient (R2), 

mean squared error (MSE), root mean squared error (RMSE), relative 
root mean square error (RRMSE) and mean absolute error (MAE) were 
utilized to test accuracies of RF and CNN-LSTM models. In Random 
Forest models, the importance of a feature can be assessed by observing 
the change in MSE when each feature is excluded or randomly shuffled. 
Therefore, relative importance of variables was, respectively, calculated 
based on RF models and CNN-LSTM models with the increased mean 
squared error (%IncMSE) in Equation (7). A higher percentage indicates 
a greater impact of the feature in the model.
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where MSE is the mean squared error. N is the number of 
training samples. Pi and Ai denote predicted and actual values of 
NDVI, and P and A are their respective averages. The MSE0 and 
MSEj represent, respectively, the mean square errors of the 
original model and a modified model in which the data associated 
with the j-th variable are randomly shuffled or excluded. The 
%IncMSEj means changing rate of MSE when the data associated 
with the j-th variable are excluded or shuffled from the 
original model.

3 Results

3.1 Data overview

3.1.1 Temporal changes of hydro-climatic 
variables

Annual, monthly and seasonal changes of NDVI, LST, PRCP and 
ET over the study area from 2000–2020 were calculated. Annual 
average NDVI ranged from 0.49 to 0.57, and NDVI increased slightly 
from 2000 to 2020 (Figure 3A). Average monthly NDVI was higher 
in the maximum growing season (May to September) with the 
highest value of 0.69  in July (Figure  3B). Based on the seasonal 
changes of NDVI, vegetation growth showed a clear seasonal pattern 
(more vigorous in summer and less vigorous in winter; Figure 3C). 
Annual average LST changed from 18.51°C to 20.73°C (Figure 3A), 
and monthly LST reached its maximum value of 26.06°C in May 
(Figure 3B).

From 2002 to 2020, the ranges of average monthly PRCP and 
ET varied between 74.96 mm to 130.97 mm and 53.63 mm to 
64.05 mm, respectively (Figure 4A). Monthly PRCP and ET were 
primarily concentrated from June to September (Figure 4B). The 
peak monthly values for PRCP and ET were observed in July, 
reaching 227.36 mm and 103.97 mm, respectively. In summer, 
PRCP is the most abundant, while LST and ET achieve their peak 
levels (Figure 4C).
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3.1.2 NDVI spatial pattern
Spatial distribution of annual average NDVI in the southwestern 

China displayed significant variability (Figure 5). Most of areas at a 
low elevation were vegetated, but areas at a high elevation, such as the 
western Sichuan and northern Tibet were covered by sparse 
vegetation. Forested regions exhibited the highest NDVI values, 
predominantly located in southeastern Tibet.

3.2 Correlation between vegetation and 
natural factors

Relationships between NDVI and hydro-climatic variables each 
month were analyzed via calculating the Spearman’s rank correlation 
coefficient at a significant level of p < 0.05. According to Figure 6, 
almost all coefficients were statistically significant at a level of p < 0.05. 
NDVI had a significant negative correlation with Elv with the r 
ranging from −0.55 to −0.32, and a positive correlation with Lon, 
LST and ET, with r ranging from 0.08–0.48, 0.05–0.46 and 0.16–0.61, 
respectively. NDVI was significantly inversely associated with Lat 
except in June and July, and with Rs from March to November. 
Moreover, NDVI had different correlations with Slope, PRCP, Qs, 
Qsb and TWSC each month.

The study area was categorized into three regions based on 
elevation: low, middle, and high. Correlations between vegetation and 
natural factors varied across different elevations (Table 2). NDVI had a 
positive correlation with Elv in low-elevation regions, such as the 

Sichuan Basin, but a negative correlation in the Qinghai Tibet Plateau 
at high elevations. Besides, NDVI had a stronger positive correlation 
with Slope, Rs, ET, PRCP and Qs at lower elevations. Correlations 
between NDVI and Rs were calculated monthly across different 
elevations. The results presented in Table  3 showed that these 
correlations were almost universally significant and positive at elevations 
below 3,000 m.

3.3 Evaluation of relational models

3.3.1 Construction of relational models
The RF models and the CNN-LSTM models were repeatedly 

operated with different variables. The initial RF model (RF1) was built 
with 11 variables from 2002 to 2020 as inputs and had a good predictive 
precision with R2 = 0.83, RMSE = 0.10, RRMSE = 18.16% and 
MAE = 0.07 (Table 4). Based on the RF1, relative importance of these 
variables was primarily quantified (Figure 7) and critical variables with 
higher %IncMSE were used to train new models. These models (RF2 
– RF10) adopted different variables as inputs, and accuracy of them 
generally showed a decreasing trend with the reduction of several key 
feature variables. Among them, the RF3 achieved the highest precision 
(R2 = 0.83, RMSE = 0.10, RRMSE = 18.08% and MAE = 0.07) while 
eliminating unimportant variables (Qs, Qsb and TWSC), resulting in 
an optimize combination of feature variables. The RF10 neglected 
topographical factors and had the worst performance with the lowest 
R2 of 0.59 and the highest RRMSE of 27.72%.

A

B

C

FIGURE 3

Annual (A), monthly (B) and seasonal (C) changes of NDVI and LST.

A

B

C

FIGURE 4

Annual (A), monthly (B) and seasonal (C) changes of PRCP and ET.
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Consistent with input variables utilized in RF1, RF2, RF3 and RF10, 
the four CNN-LSTM models were constructed (Table 5). According to 
precision indicators, the four models with R2 < 0.74 were inferior to RF 
models except RF9 and RF10. Accuracy of four CNN-LSTM models 
remained almost unchanged with the reduction of variables with R2 
changing from 0.71–0.73, RMSE from 0.10–0.11 and RRMSE from 
18.59–19.37%. Besides, the CNN-LSTM3 with the same inputs to RF3 
had a marginally superior performance than the other three models.

3.3.2 Comparison among relational models
The RF3 and CNN-LSTM3, both utilizing identical input variables 

(Lat, Lon, Elv, Slope, LST, PRCP, ET and Rs) performed, respectively, 
better than other RF and CNN-LSTM models, and RF3 outperformed 
CNN-LSTM3 (Tables 4, 5; Figure 8).

Performance of RF3 and CNN-LSTM3 was further compared on 
a monthly and seasonal basis, and their precision varied across 
different months (Table 6). The R2 and RRMSE, respectively, changed 
from 0.60–0.90, 15.20–24.17% for RF3, and 0.43–0.80, 13.50–23.22% 
for CNN-LSTM3. The estimation precision of RF3 and CNN-LSTM3 
was higher in winter and spring.

3.4 Nonlinear relations between vegetation 
and natural factors

3.4.1 Temporal effects on responses of vegetation 
to natural factors

The RF3 outperformed all the other models for quantifying 
relationships between vegetation and natural factors with high 

dimension data and was extremely sensitive to change of input 
variables. Therefore, the relative importance (%IncMSE) of 8 natural 
factors was distinguished by using RF3. Based on the RF3, Elv and 
LST had more contribution to vegetation growth than other factors 
(Figures 7, 9).

Without regard to temporal effects, Elv, ET and LST were primary 
factors influencing vegetation growth, followed by Lat and Lon. The 
Slope, PRCP and Rs had a less impact on vegetation. The Qs, Qsb and 
TWSC were eliminated in the RF3, resulting in lower errors in RF3 
than in RF1.

However, temporal scales remarkably affected nonlinear 
relationships between vegetation and natural factors (Table  6; 
Figure 9). Climatic factors with seasonal variation characteristics 
had different effects on vegetation throughout the year. As shown 
in Figure 9, average monthly %IncMSE values of climatic factors, 
particularly ET and PRCP, were lower, but the relative importance 
of terrain factors exhibited less variation across different 
temporal scales.

3.4.2 Land cover type effects on responses of 
vegetation to natural factors

Grasslands, forests and croplands were main types of land use 
in the study area (Figure 2), and their effects on responses of 
vegetation to natural factors were analyzed. Based on RF3, three 
local RF models (RF3_forests, RF3_grasses and RF3_croplands) 
were constructed with 11 variables (Lat, Lon, Elv, Slope, LST, 
PRCP, ET and Rs) respectively in grasslands, forests and 
croplands. The simulation accuracy of three local RF models was 
compared with that of RF3, respectively, in grasslands, forests and 

FIGURE 5

Spatial distribution of annual monthly average NDVI from 2000 to 2020.
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croplands. In Table  7, RF3 and three local RF models 
demonstrated comparable prediction accuracy with R2 and 
RRMSE ranging from 0.71–0.84 and 16.66–18.53%, indicating 
that the RF models were relatively stable to deal with change of 
characteristic samples. Among three land cover types, 
performance of RF models in grasslands was slightly better than 
in forests and croplands.

Furthermore, relative importance of natural factors in different 
land cover types was compared. Different determinant factors 
influenced vegetation growth in forests, grasslands and croplands 
(Figure 10). LST was dominant factor in forests, while ET and Elv 
were influential in grasslands, and ET played a significant role 
in croplands.

4 Discussion

4.1 Comparison between RF and 
CNN-LSTM models

Machine learning is capable of complex tasks, and has a strong 
advantage in uncovering subtle nonlinear relationships. Thus, the 
Random Forest and an integration of CNN and LSTM network 
were used to derive quantitative relationships between NDVI and 
natural factors and recognize decisive factors, which affected 
changes of vegetation growth in the mountainous areas. Results 
showed that RF models outperformed CNN-LSTM models 
(Tables 4, 5). Compared with CNN-LSTM, RF has more 

TABLE 2 Correlation coefficients between NDVI and natural factors in different elevations.

Elevation 
classification

Lat Lon Elv Slope LST Rs ET PRCP Qs Qsb TWSC

0–1,000 m −0.18 0.01 0.21 0.17 0.48 0.60 0.66 0.57 0.52 0.28 0.09

1,000–3,000 m −0.04 −0.15 −0.09 0.11 0.07 0.11 0.51 0.35 0.32 0.27 −0.03

3,000–7,000 m −0.06 0.32 −0.35 0.05 0.48 0.09 0.53 0.38 0.15 0.36 −0.02

FIGURE 6

Correlation coefficients between NDVI and natural factors each month (the NA values are not statistically significant at a level of p  <  0.05).
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advantages in addressing higher dimensional data, and is more 
simple and efficient. The out-of-bag error estimate in RF is 
unbiased, and thus RF is not prone to overfitting (Leo, 2001; Lei 
et  al., 2018). Based on the relative importance of variables, 

unimportant variables (Qs, Qsb and TWSC) were systematically 
excluded in the new model (RF3) which yielded higher precision 
than the original model (RF1). Selecting appropriate topographic 
and climatic variables as input variables could improve effectively 
performance of RF models (Chen et  al., 2020). RF integrates 
multiple weak classifiers and adopts the ensemble method to 
improve its generalization ability. As a result, differences in 
simulation results of the model (RF3) and three sub-models built 
with variables, respectively, in grasslands, forests and croplands 
were not necessarily significant.

Combining the merits of CNN and LSTM, CNN-LSTM has 
advantages in tasks such as time series prediction. Nevertheless, 
one-dimensional convolutions in CNN were used in the current paper 
to traverse topographic and climatic features, and therefore the 
CNN-LSTM was incapable to handle spatial data effectively. Due to 
fully connected architecture of LSTM, which provides input-to-state 
and state-to-state transitions, the CNN-LSTM might be  prone to 
overfitting (Zhao et al., 2021; Liu et al., 2022; Wang et al., 2023).

In addition, spatiotemporal distribution of variables differentially 
influenced performance of models each month. Estimation precision 
of RF and CNN-LSTM models was higher from November to May of 

TABLE 3 Correlation coefficients between NDVI and surface solar radiation in different elevations each month.

Month 0–1,000 1,000–3,000 3,000–7,000

Jan. 0.53 0.43 −0.05

Feb. 0.43 0.32 −0.08

Mar. 0.11 0.03 −0.17

Apr. 0.04 −0.28 −0.21

May −0.07 −0.25 −0.35

Jun. 0.03 −0.08 −0.20

Jul. −0.09 0.12 −0.02

Aug. 0.04 0.06 −0.00

Sep. 0.17 0.05 −0.38

Oct. 0.46 0.35 −0.28

Nov. 0.38 0.29 −0.18

Dec. 0.53 0.37 −0.11

TABLE 4 Determination coefficient (R2), root mean square error (RMSE), relative root mean square error (RRMSE) and mean absolute error (MAE) for 
validation of RF models.

Models Inputs R2 RMSE RRMSE (%) MAE

RF1 Lat, Lon, Elv, Slope, LST, PRCP, ET, Qs, Qsb, TWSC, Rs 0.83 0.10 18.16 0.07

RF2 Lat, Lon, Elv, Slope, LST, PRCP, ET, Qs, Qsb, TWSC 0.82 0.10 18.46 0.07

RF3 Lat, Lon, Elv, Slope, LST, PRCP, ET, Rs 0.83 0.10 18.08 0.07

RF4 Lat, Lon, Elv, LST, PRCP, ET, Rs 0.82 0.10 18.64 0.07

RF5 Lat, Lon, Elv, Slope, LST, PRCP, ET 0.81 0.10 18.79 0.07

RF6 Lat, Lon, Elv, LST, PRCP, ET 0.81 0.10 19.19 0.07

RF7 Lat, Lon, Elv, LST, ET 0.79 0.11 19.91 0.07

RF8 Elv, Slope, LST, PRCP, ET, Rs 0.77 0.11 21.02 0.08

RF9 Elv, LST, PRCP, ET 0.67 0.13 24.88 0.10

RF10 LST, PRCP, ET, Rs 0.59 0.15 27.72 0.11

FIGURE 7

Plots of %IncMSE in the initial Random Forest model (RF1).
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FIGURE 8

Scatter plots between original and predicted NDVI based on the RF3 
and CNN-LSTM3 (n_neighbors means the number of neighboring 
points).

the following year, but lower from June to October (Table 6). PRCP 
and ET were concentrated from May and October in the study area, 
and had seasonal variation characteristics (Figure 4). The seasonality 
could be a primary factor contributing to the seasonal variations in 
the performance of relational models.

Influence of topographical factors on performance of RF and 
CNN-LSTM models was discrepant. Regardless of topographical 
factors (Lat, Lon, Elv and Slope), simulation accuracy of the RF model 
(RF10) significantly decreased but that of the CNN-LSTM model 
(CNN-LSTM4) remained largely unchanged. Due to special structural 
design in LSTM, LSTM can maintain good performance even in the 
absence of certain variables (Zhao et al., 2021; Wang et al., 2023). 
Therefore, RF models have been proven more adept than CNN-LSTM 

models at quantifying intricate relationships between NDVI and 
various natural factors in the current study.

4.2 Responses of vegetation to natural 
factors

The relative importance of eight natural factors was 
distinguished by using RF3, taking into account temporal effects of 
features and the influences of various land cover types. Results 
indicated that elevation, evapotranspiration and temperature were 
major factors that influenced vegetation growth. Responses of 
vegetation to major factors, particularly climatic variables, showed 
slight variations across different periods, suggesting that responses 
of vegetation toward climatic variables exhibited significant seasonal 
change (Xu et  al., 2018). Besides, there were different decisive 
factors, which influenced vegetation growth in forests, grasslands 
and croplands.

Topographic conditions played an indispensable role in 
interactions between climate changes and vegetation growth in the 
study area (Chen et al., 2021). Unlike climate variables, the influence 
of terrain was consistently significant across different periods. Terrain 
affected the spatial distribution of temperature, precipitation and 
surface solar radiation, all of which were key factors in determining 
vegetation distribution. Besides, relationships between vegetation and 
climatic factors exhibited a spatially and temporally dynamic behavior, 
and were mainly influenced by topographic conditions (Liu et al., 
2018; Zhang et al., 2022). Among topographical factors, elevation had 
a profound contribution to vegetation growth, and vegetation growth 
had a significant negative correlation with elevation (Figure 6). Within 
the study area, low-altitude regions are characterized by a richer 
distribution of vegetation, attributed to favourable temperature and 
abundant moisture. In contrast, a significant negative correlation was 
observed between the aboveground biomass of herbaceous marsh 
vegetation and altitude in areas at a higher elevation, such as Tibetan 
Plateau (Shen et al., 2021).

Temperature had a strong positive correlation with NDVI, and 
significantly influenced vegetation growth, consistent with results 
from previous studies (Muir et al., 2021; Yang H. et al., 2022; Lai et al., 
2023). Vegetation phenology and physiological metabolism were 
inseparable from temperature changes, and increase in temperature 
could enhance plant photosynthesis and water utilization efficiency, 
promoting vegetation growth (Cui et al., 2022; Lai et al., 2023). In the 
study area, forests are mainly distributed in regions with low altitude 
and abundant precipitation. In conditions of ample precipitation, 
temperature emerges as the primary environmental factor influencing 
the growth of forest vegetation.

TABLE 5 Determination coefficient (R2), root mean square error (RMSE), relative root mean square error (RRMSE) and mean absolute error (MAE) for 
validation of CNN-LSTM models.

Models Inputs R2 RMSE RRMSE (%) MAE

CNN-LSTM1 Lat, Lon, Elv, Slope, LST, PRCP, ET, Qs, Qsb, TWSC, Rs 0.73 0.10 18.77 0.08

CNN-LSTM2 Lat, Lon, Elv, Slope, LST, PRCP, ET, Qs, Qsb, TWSC 0.73 0.11 18.92 0.08

CNN-LSTM3 Lat, Lon, Elv, Slope, LST, PRCP, ET, Rs 0.73 0.10 18.59 0.08

CNN-LSTM4 LST, PRCP, ET, Rs 0.71 0.11 19.37 0.08
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Compared to temperature, vegetation was less affected by 
precipitation in the study area (Cui et al., 2022; Ma et al., 2022), and 
the effects of precipitation on vegetation varied in each season 
(Georganos et al., 2017). Weaker correlations between vegetation 
and precipitation were observed during autumn and winter 
(Figure 6), aligning with conclusions of previous studies (Worku 
et al., 2023). Vegetation had a high correlation with rainfall in semi-
arid zones and a weaker response in sub-humid and humid climates 
(Camberlin et al., 2007; Li et al., 2013; Wang et al., 2021). In most of 
the study area, precipitation was relatively abundant particularly in 
summer. Excessive precipitation could result in insufficient oxygen 
supply in the soil and impaired nutrient absorption in the 
rhizosphere, thereby constraining vegetation growth (Gong et al., 
2021; Ma et al., 2022). However, in some ecologically vulnerable 

areas covered with sparse vegetation, precipitation played a crucial 
role in vegetation change and had a greater impact on vegetation 
dynamics compared to temperature (Zhao et al., 2020; Zhang et al., 
2021, 2022).

There is a close interrelationship between evapotranspiration and 
vegetation, and both of them play an essential role in the terrestrial water 
cycle (Xu et al., 2018; Bai et al., 2020). Vegetation transpiration is an 
important part of terrestrial evapotranspiration, and evapotranspiration 
helps regulate the temperature and moisture of vegetation, maintaining 
the water balance within plants. As a key factor in vegetation growth, 
evapotranspiration is related to the growth condition of vegetation and 
closely linked with environmental conditions, climate change, 
agricultural management, and ecosystem health. Climate change affected 
evapotranspiration and interrelationships between evapotranspiration 

TABLE 6 Determination coefficient (R2), root mean square error (RMSE), relative root mean square error (RRMSE) and mean absolute error (MAE) of RF3 
and CNN-LSTM3 in each month and season.

Models Month/Season R2 RMSE RRMSE (%) MAE

RF3

1 0.88 0.08 18.01 0.05

2 0.89 0.07 16.95 0.05

3 0.89 0.07 17.15 0.05

4 0.88 0.08 16.46 0.06

5 0.79 0.10 17.50 0.07

6 0.60 0.14 22.15 0.09

7 0.69 0.11 15.40 0.07

8 0.67 0.11 16.57 0.07

9 0.70 0.10 15.20 0.07

10 0.71 0.13 24.17 0.09

11 0.88 0.08 15.94 0.06

12 0.90 0.07 15.53 0.05

Winter 0.89 0.07 16.80 0.05

Spring 0.86 0.08 17.22 0.06

Summer 0.66 0.12 18.12 0.08

Autumn 0.79 0.10 18.53 0.07

CNN-LSTM3

1 0.68 0.10 22.85 0.08

2 0.71 0.09 20.75 0.07

3 0.74 0.09 19.60 0.07

4 0.80 0.09 17.80 0.07

5 0.72 0.10 16.98 0.07

6 0.50 0.14 23.22 0.10

7 0.65 0.10 14.11 0.07

8 0.43 0.13 19.20 0.09

9 0.68 0.09 13.50 0.06

10 0.68 0.11 18.66 0.08

11 0.73 0.10 18.61 0.07

12 0.77 0.09 17.84 0.07

Winter 0.73 0.09 20.42 0.07

Spring 0.77 0.09 18.04 0.07

Summer 0.52 0.12 18.88 0.09

Autumn 0.72 0.10 16.77 0.07
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and vegetation (Yang H. et al., 2022; Yang L. et al., 2022). Temperature 
and precipitation were the dominant causes for evaporation changes in 
China, which affected vegetation growth (Zheng et al., 2022).

Surface solar radiation had a smaller effect on vegetation 
compared with elevation, temperature and evapotranspiration in 
the current study. The relationships between vegetation and solar 
radiation were affected by altitude and temporal factors. NDVI was 
positively related to surface solar radiation in low-elevation regions 
(Table 2), which aligns with previous researches (Lai et al., 2023). 
Solar radiation is important for vegetation photosynthesis, and an 
appropriate increase in solar radiation can promote vegetation 
growth. Correlations between NDVI and surface solar radiation 
were significantly positive at elevations below 3,000 m. In high-
altitude areas, intense solar radiation could rapidly increase 
temperature and water evaporation, leading to soil drought, which 
was detrimental to the growth of plants (Lai et al., 2023).

In addition, NDVI from 2000–2020 in the study area slightly 
increased (Figure 3A), which was consistent with numerous studies 
(Chen et al., 2021; Zhang et al., 2021; Yang H. et al., 2022; Lai et al., 
2023). Their researches indicated a trend of vegetation greening in 
southwest China over the past two decades, owing to the 
afforestation and conservation of natural forests. Especially in areas 
characterized by fragile ecosystems, high topographical complexity 
and suboptimal soil conditions, notable alterations in NDVI had 
been observed as a result of ecological restoration projects in recent 
decades (Yang H. et al., 2022; Lai et al., 2023). Some forestry and 
ecological projects, such as the protection of natural forest resources 
and the return of farmland to forest and grassland, have been 

implemented by the state since the end of the 20th century, and 
have promoted the growth of vegetation and suppressed 
soil degradation.

5 Conclusion

The current paper explored interactions between hydro-climatic 
changes and vegetation growth with Random Forest and integrated 
CNN and LSTM network in the mountainous southwest China by 
using multi-source remote sensing data. The main results can 
be summarized as follows:

 (1) In the study area, NDVI increased slightly from 2000 to 2020, 
and average monthly NDVI was higher in the maximum 
growing season (May to September). The correlation analysis 
revealed a significant negative association between NDVI and 
elevation, but positive correlations with longitude, land surface 
temperature and evapotranspiration. The relationships between 
NDVI and these natural factors exhibited monthly variation.

 (2) The RF3 excluded unimportant variables, achieving the highest 
precision through an optimized combination of feature 
variables. Simulation accuracy of RF and CNN-LSTM models 
demonstrated significant variability across different months 
and seasons. The estimation precision for both models was 
notably higher from November to May of the subsequent year 
but decreased from June to October.

 (3) Based on the optimal model (RF3), elevation and land surface 
temperature had more contribution to vegetation growth than 
other factors. Effects of climatic factors, such as 
evapotranspiration and precipitation, on vegetation were 
markedly influenced by seasonal fluctuations in these factors. 
Besides, various determinant factors influenced vegetation 
growth differently in forests, grasslands, and croplands.

Exploring vegetation growth in response to topographic and 
climatic factors and quantifying their complex nonlinear 
relationships can provide a valuable guidance for ecological 
environment conservation. However, there may be  some 
uncertainty in the current study. In practical applications, remote 
sensing data can be  compromised by various environmental 
interferences, including clouds, fog, rain and snow, potentially 
influencing research results. Furthermore, the datasets employed in 
this study encompass multiple spatial resolutions. The application 
of interpolation techniques to harmonize these spatial resolutions 

FIGURE 9

Plot of %IncMSE in RF3 and average %IncMSE in RF3 each month.

TABLE 7 Determination coefficient (R2), root mean square error (RMSE), relative root mean square error (RRMSE) and mean absolute error (MAE) of 
RF3 in different land cover types and 3 local RF models.

Models Land cover types R2 RMSE RRMSE (%) MAE

RF3

Forests 0.72 0.11 18.18 0.08

Grasses 0.84 0.09 17.50 0.06

Croplands 0.73 0.09 16.66 0.06

RF3_forests Forests 0.71 0.12 18.53 0.07

RF3_grasses Grasses 0.84 0.09 17.51 0.06

RF3_croplands Croplands 0.72 0.09 17.13 0.07
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can also introduce certain uncertainty. The two machine learning 
methods, RF and CNN-LSTM, demonstrate effectiveness in 
addressing complex nonlinear problems, but they also have certain 
limitations, such as inability to completely eliminate overfitting in 
Random Forest due to noises in data, gradient disappearance or 
gradient explosion in LSTM models and usually longer training 
time. Further research will focus on exploring influences of 
topographic conditions and climate change on vegetation by 
improving accuracy of datasets and models, and analysing effects of 
multiple spatial and temporal scales of variables.
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