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Phyllostachys praecox is a shallow-rooted bamboo that often encounters hypoxia 
conditions which could be  induced by long-term organic material mulching 
or flooding. It is important to uncover the effect of mulching and flooding on 
soil nutrient, ammonia-oxidizing microbes, and bacterial diversity. We  set up 
field pot experiments with three treatments (control, mulching, and flooding) 
under P. praecox. Mulching or flooding altered soil conditions significantly, 
and both increased ammonium-nitrogen (NH4

+-N), total phosphorus (TP), 
available P (AP), and available potassium (AK) concentrations, and decreased 
oxygen (O2) concentrations over control. Flooding increased pH and decreased 
nitrate-nitrogen (NO3

−-N), while mulching decreased soil pH and NO3
−-N. As 

O2 content decreased, archaeal 16S rRNA, amoA gene copies of ammonia-
oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB) increased. 
Mulching and flooding decreased Shannon, ACE and Chao 1 diversity when 
compared with the control, and as the O2 contents decreased, bacterial diversity 
decreased. Redundancy Analysis revealed O2, NO3

−-N, AK, AP, and pH were 
the major factors driving bacterial community structure. Correlation Analysis 
showed AK and O2 contents were highly correlated with bacterial community 
structure. In addition, structural equation modeling indicated that O2 facilitated 
efficient soil N use mainly through soil pH, AK content, and bacterial diversity. 
Mulching or flooding exerted great effects on environment factor and bacterial 
community structure, which could be exploited to facilitate the regulation of 
soil O2 conditions for sustainable P. praecox production.
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1 Introduction

Plants are frequently exposed to low oxygen (O2) levels in soil attributable to various 
external factors, which can drastically affect plant growth and development (Kozlowski, 1997; 
Dat et al., 2006). Phyllostachys praecox is a shallow-rooted bamboo susceptible to soil O2 
content (Evans et al., 2012; Gao et al., 2023). The major factors influencing soil O2 content are 
gaseous exchange between soil and the atmosphere, soil water content, and soil microbial O2 
consumption rate (Bray and Brawley, 2002). Previous studies have demonstrated that the 
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bamboo often experiences two types of soil hypoxia, one caused by 
flooding, as soil voids are occupied by water, and another caused by 
organic material mulching, which reduces gaseous exchange and 
increases O2 consumption via organic matter decomposition (Chen 
et al., 2005; Xu et al., 2017). The two types of hypoxias could have 
distinct effects on soil properties and microbial community structure.

Soil properties are key factors influencing healthy plant growth 
(Jiao et al., 1997; Deng et al., 2014). In bamboo production, mulching 
is used to stimulate shoot dormancy breaking following organic 
matter decomposition and increase in temperature (Lin et al., 2020). 
However, over time, soil nutrient balance is affected by mulching, 
severe rotting occurs, and yield decreases (Yuan, 2009). Previous 
studies have reported that the primary reasons for bamboo forest 
deterioration under mulching are organic matter decomposition and 
O2 depletion, which cause the roots to rise to the soil surface, leading 
to bamboo mortality. Qian et al. (2022) observed that 3–4 years of 
mulch induced soil acidification and limited soil nutrient utilization. 
In addition, Chen et al. (2014) observed that soil nitrogen (N) N: 
phosphorus (P) and potassium (K): P decreased significantly and the 
correlations among soil nutrients were weakened significantly 
following long-term mulching management. In semi-arid orchards, 
mulching increased soil organic matter, total N (TN), and nitrate-N 
(NO3

−-N) concentrations (Shen, 2019).
Flooding, conversely, alters soil water, gas, and temperature 

conditions, and reduces soil redox potential. Specifically, flooding 
impairs soil ventilation, increases temperature, causes N loss, reduces 
available N (AN) content, and influences soil nutrient morphology 
and transformation (Li et al., 2006; Shen et al., 2016). For example, as 
flooding time is extended, soil available P (AP) concentration 
increases dramatically (Liang, 1996). Moreover, the P release from rice 
soil decreases after flooding, whereas the exchangeable K level in soil 
remains high (Dobermann et al., 1996; Zhang et al., 2002). In addition, 
flooding can reduce the fixation of exogenous K and increase AK 
content in soil (Guo et al., 2003).

Soil microorganisms participate in various biochemical reaction 
processes and are the main decomposing agents of organic matter (Wu 
et al., 2024). Soil microorganisms store effective plant nutrients and 
regulate the effectiveness of soil C and N nutrients and their cycling 
characteristics (Spehn et al., 2000). Nitrification is a key process in the 
global N cycle, with conversion of ammonia to nitrite by ammonia 
oxidizing bacteria (AOB) as the rate-limiting step (Qin et al., 2012). 
Ammonia-oxidizing archaea (AOA) and AOB are the major microbes 
involved in the process (Guo and Peng, 2008). Mulching increased 
AOA and AOB abundance and promoted soil N cycling (Shen, 2019). 
In addition, Cao et al. (2019) observed that long-term rice flooding 
resulted in low O2 stress to ammoxic microbes in paddy soil, and 
selectively promoted AOA growth. At the same time, it was found that 
AOA had a wider range of ammonium-N (NH4

+-N) substrates than 
AOB. In addition, Jiang et al. (2009) observed that AOA were more 
abundant than AOB in oxic lake water, with an opposite trend in 
anoxic sediments. Furthermore, a study showed that mulch increased 
soil bacterial community abundance and diversity and altered its 
structure, with an increase in dominance of Proteobacteria, 
Acidobacteria, and Actinomyces (Shen, 2019). However, flooding 
changed the abundance of bacteria and the diversity of the dominant 
taxa, resulted in new dominant phyla: Firmicutes and Bacteroidetes 
(Kan et al., 2014). Currently, our understanding of bacterial adaptation 
to mulching or flooding remains poor, and investigation of the varied 

responses could provide insights and a theoretical basis for regulation 
of soil O2 and facilitate sustainable bamboo production.

In the present study, field pot experiments were conducted under 
P. praecox to investigate the effects of mulching or flooding on the 
bacterial community structure, AOA and AOB abundance, and soil 
physicochemical characteristics. We  hypothesized that different 
hypoxia conditions would lead to different changes in soil microbial 
communities, thus affecting soil nutrient utilization. The results of the 
present study could elucidate the mechanisms via which soil respond 
to various hypoxia under P. praecox and provide a reference for 
effective management of P. praecox plantations.

2 Materials and methods

2.1 Experimental site

The experiments were performed at the Panmugang Modern 
Forestry Demonstration Base of Zhejiang Agriculture and 
Forestry University, Zhejiang Province, China (119°58′ E, 30°29′ 
N). The area has a subtropical monsoon climate with an average 
annual temperature of 17.8°C, an average annual relative 
humidity of 70.3%, an annual precipitation of 1,454 mm, a frost-
free period of 234 d, and 1,765 h of sunshine per year. The 
agricultural area has a hilly environment with hills typically less 
than 150 m high. The soil is classified as a Ferralsol since its 
source material is mostly quaternary sandstone. Natural 
precipitation and soil water storage are the primary sources of 
water used for agricultural production (Xu et al., 2017).

2.2 Experimental design

Field pot experiments were conducted including (1) control, (2) 
mulching, and (3) flooding, under P. praecox. There were three 
replicates per treatment and nine seedlings per replicate. We planted 
81 seedlings, a diameter at breast of 3.89 cm were planted in pots 
(bottom diameter 32 cm, height 35 cm), for each treatment then 
buried them in bamboo groves. Finally, three samples were taken 
randomly for measurement. Control treatments were normal growth, 
uncovered and unflooded bamboos. The flooding water was 5 cm 
above the soil surface and the mulching procedure was as follows. At 
first, 0.45 kg/m2 of chicken manure was sprinkled on the soil surface. 
Subsequently, the chicken manure was covered with straw (0.375 kg/
m2). Afterward, rice bran (41.25 kg/m2) was sprinkled on top to a 
height of 15 cm above the soil surface. The experiments were initiated 
on17th December, 2020, and ran for 20 days. Samples were collected 
on March 7, 2021. In each pot, rhizosphere soil was sampled from a 
depth of 20–30 cm and transported to the laboratory for analysis. The 
rhizosphere soil was collected as follows: (1) Bulk soils of the root were 
shaken off in the ultra-clean bench, and about 1 mm attached to the 
roots as rhizosphere soil (Edwards et al., 2015). (2) The root samples 
were transferred into a 50 mL sterile centrifuge tube containing 20 mL 
10 mM PBS solution and placed in a shaker at 120 rpm for 20 min at 
room temperature (Beckersz et al., 2017). (3) Roots were removed in 
50 mL centrifuge tubes using sterile forceps and the remaining 
suspension was centrifuged at high speed (6000 × g, 4°C, 20 min) to 
collect the rhizosphere soil (Qin et  al., 2018). (4) The collected 
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rhizosphere soil samples were frozen in liquid nitrogen and then 
stored in an ultra-low temperature refrigerator of −80°C.

2.3 Soil physicochemical properties

The Kjeldahl method was used to determine TN (Bremner, 2009). 
NH4

+-N and NO3
−-N contents in soil were measured using indophenol 

blue colorimetry and dual wavelength colorimetry, respectively (Bao, 
2000). TP and AP were determined using a colorimetric method (Lu, 
2000); TK and AK were determined using flame photometry (Xiong 
et al., 2008). According to Gao et al. (2023), soil O2 concentration was 
measured using a fiber-optic O2 meter.

2.4 DNA extraction and real-time 
quantitative PCR

Total genomic DNA was extracted from each soil sample 
according to the manufacturer’s instructions (FastDNA & SPIN Kit, 
MP, United States). The purity and quantity of the isolated DNA were 
determined using 1% agarose gel electrophoresis and a 
spectrophotometer (NanoDrop® 1,000, Thermo Fisher Scientific, 
United States).

The number of amoA copies in the bacterial (AOB) and archaeal 
(AOA) kingdoms were used to calculate the concentrations of 
ammonia mono-oxygenase. Functional marker genes and 16S rRNA 
were measured using fluorescent dye Ultra SYBR Mixture (Takara, 
RR820A, Japan) and gene-specific primers. The QuantStudio 6 Real-
Time PCR instrument (Thermo Scientific, MA, United States) was 
used for the qPCR analysis. The thermal programs and reaction 
mixtures were in accordance with the manufacturers’ 
recommendations. The gene-specific qPCR primers are listed in 
Supplementary Table S1. The PCR reaction solution is listed in 
Supplementary Table S2. The procedures of soil microbe analyze in 
real-time PCR are listed in Supplementary Table S3. The MIQE 
criteria were used to assess and examine the qPCR findings (Bustin 
et al., 2009). R2 > 0.99 indicated that the target gene was amplified with 
a rate ranging from 96 to 105%.

2.5 High-throughput gene sequencing and 
bioinformatics analysis

Three duplicate samples of each soil type were used to sequence 
the V3–V4 regions of the 16S rRNA. Amplicon samples were 
examined on an Illumina MiSeq instrument using the industry-
standard procedures. An Illumina® MiSeq Sequencer (Illumina, Inc., 
United  States) was used to examine soil microbial community 
structure. The 16S rRNA genes were sequenced using MiSeq and the 
ubiquitous primers 338F (5′- ACTCCTACGGGAGGCAGCAG-3′) 
and 806R (5’-GGACTACHVGGGTWTCTAAT-3′) (Peiffer et  al., 
2013; Li et al., 2020). The PCR reaction system and amplification 
procedures were as described previously (Zhang et al., 2019). Prior to 
measurement with a QuantiFluor®-ST Fluorometer, the PCR products 

were separated on 2% agarose gel and purified using an AxyPrepTM 
DNA Gel Extraction Kit (Axygen Scientific Inc., USA) (Promega 
Corp., United States). Afterward, Majorbio Bio-Pharm Technology 
Co. Ltd. (Shanghai, China) carried out cluster formation, 250-bp 
pair-end sequencing, and Illumina pair-end library preparation.

Short and poor-quality reads, singletons, triplicates, and chimeras 
were removed, obtaining 553,381 clean reads. Based on a 97% 
similarity, a total of 3,799 Operational Taxonomic Units (OTUs) were 
found. The raw readings were deposited in the NCBI Sequence 
database (Accession Number: SUB12955876).

QIIME v1.701 was used to depolymerize, quality filter, and treat 
the unprocessed Illumina FASTQ sequence data. To obtain accurate 
tag data, any discovered chimera sequences were matched to those 
within the reference Genomes Online Database. UPARSE v7.12 was 
used to classify non-repeating gene sequences as OTUs using a fixed 
97% threshold. To gather species annotation information, the RDP 
Classifier method was used to compare OTU representative sequences 
against the SILVA (SSU123) 16S rRNA database.

2.6 Statistical analysis

Principal Co-ordinates Analysis (PCoA), based on Bray-Curtis 
distance measurements, was used to examine changes in bacteria 
community composition, which were illustrated using the “Vegan” 
and “ggplot2” packages in R v4.0.2 (R Foundation for Statistical 
Computing, Vienna, Austria) (Buza et  al., 2019). To quantify 
differences between the control and other treatments, the Bray–Curtis 
dissimilarity index was determined using the “vegdist” function in the 
“vegan” package. The index was generated by calculating the average 
pairwise comparison between plots subjected to mulching or flooding 
treatment and the control treatment (Canarini et al., 2021). Pearson 
correlation analysis of dominant phyla and genera and soil parameters 
was performed in R v4.0.2 (R Foundation for Statistical Computing) 
and visualized using the “pheatmap” package. Redundancy analysis 
(RDA) was carried out using CANOCO 5.0 (Microcomputer Power, 
Ithaca, NY, USA) to investigate the connections between bacterial 
community structure and soil characteristics. The main function of 
MonteCarlo tests is to test the significance of the constrained ranking 
method (Julian and Peter, 1989). The impacts of mulching and 
aeration on soil characteristics and bacterial community structure 
were examined using one-way Analysis of Variance using IBM SPSS 
Statistics 20 (IBM Corp., Armonk, NY, USA). Tukey’s multiple range 
test was used for post-hoc analysis, with a significance threshold of 
p < 0.05. Partial least squares path modeling (PLS-PM) was conducted 
using the “plspm” package in R (Sanchez, 2013) to reveal the effects of 
O2 content, pH, AK, N available (NH4

+-N, NO3
−-N), bacterial 

diversities. Bacterial diversity was indicated by the richness and 
Shannon index.

1 http://qiime.org/

2 http://drive5.com/uparse/
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3 Results

3.1 Soil properties influenced by mulching 
and flooding

As shown in Figure  1, compared with control, the mulching 
treatment increased TN (13.9%), NH4

+-N (48.4%), NO3
−-N (36.7%), 

AP (11.7%), and AK (99.1%) significantly, and decreased pH (4.9%), 
TK (14.3%), and O2 content (30%) significantly. In addition, the 
flooding treatment increased pH (4.9%) and NH4

+-N (16.6%), TP 
(25%), AP (27.6%), and AK (106.5%) contents significantly, and 
decreased NO3

−-N (16.2%) and O2 levels (1248%) significantly. 
Moreover, the flooding treatment increased pH, AP, TK, and AK 
significantly, and reduced TN, NH4

+-N, NO3
—N, and O2 signifiacntly, 

when compared with the mulching treatment. The greatest differences 
between the mulching and flooding treatments were observed in pH 
and NO3

−-N and O2 contents.

3.2 Abundances of AOA, AOB, archaeal and 
bacterial 16S rRNA

The mulching or flooding treatments increased archaea 16S 
rRNA, AOA and AOB amoA gene copies significantly and decreased 
bacteria 16S rRNA significantly, when compared with the control 
treatment (Figure 2). Moreover, the flooding treatment decreased 
bacteria 16S rRNA significantly and increased archaea 16S rRNA, 
AOA, and AOB amoA gene copies significantly, when compared with 
the mulching treatment. Overall, bacterial 16S rRNA, AOA, and AOB 
amoA gene copies increased with a decrease in O2 concentration, and 
bacterial 16S rRNA increased with a decrease in O2 concentration.

3.3 Soil bacterial diversity

As illustrated in Figure  3, the Shannon, ACE, and Chao 1 
indices were 5.19–6.51, 1,568–2,646, and 1,579–2,646, respectively, 
under the three hypoxia treatments. The mulching and flooding 
treatments decreased the bacterial Shannon, ACE and Chao 1 
diversity indices when compared with those in the control. 
Conversely, the flooding treatment increased bacterial Shannon, 
ACE, and Chao 1 diversity indices significantly when compared 
with the mulching treatment. Overall, bacterial diversity index 
decreased as O2 concentration decreased.

3.4 Soil bacterial community composition

The dominant phyla under the three hypoxia treatments were 
Proteobacteria, Actinobacteriota, Acidobacteriota, Chloroflexi, and 
Firmicutes (Figure 4A). Compared with the control, the mulching 
treatment increased Chloroflexi and Firmicutes abundance, and 
decreased Acidobacteriota abundance. Conversely, the flooding 
treatment increased Proteobacteria and Firmicutes abundance, and 
decreased Acidobacteriota and Chloroflexi abundance, when 
compared with the control and mulching treatments.

At the genus level, the dominant genera in the three treatments 
were Ammoniphilus, Acidothermus, Vicinamibacterales, 

Burkholderia-Caballeronia-Paraburkholderia, AD3, and JG30-
KF-AS9. Ammoniphilus was the endemic genus in the flooding 
treatment and vicinamibacterales was the endemic order in the 
control and mulching treatments (Figure 4B).

3.5 Relationships among soil bacterial 
community structure and soil properties

In the PCoA ordination plot, the three treatment groups formed 
different circles, with the control and the mulching treatments closer 
together and the flooded group further away, at 47.39 and 14.4% for 
Axis 1 and 2, respectively (Figure  5A). We  conducted RDA to 
investigate if there was any commonality between treatments based 
on bacterial diversity and soil nutrient contents (O2, NO3

−-N, NH4
−-N, 

TN, TP, AP, AK, and pH) (Figure 5B), and we observed interactions 
between bacterial diversity and soil nutrient contents. O2, AP, and pH 
explained the variation in bacterial diversity the most. In addition, 
most nutrient contents excluding NH4

−-N content, influenced 
bacterial composition significantly, with O2, NO3

−-N, AK, AP, and pH 
(p < 0.01) having the most significant effects. RDA1 and RDA2 
exhibited differences across all treatments, accounting for 74.32 and 
8.70% of the variation, respectively (Figure 5B).

In terms of phylum, pH was negatively correlated with 
Gemmatimonadota and positively correlated with WPS-2 (Figure 6A). 
In contrast, NO3

−-N was positively correlated with Gemmatimonadota 
and negatively correlated with WPS-2. TN was negatively correlated 
with WPS-2 and positively correlated with Chloroflexi. In addition, 
O2 was negatively correlated with Patescibacteria, Proteobacteria, and 
Firmicutes, and positively correlated with Myxococcota and 
Acidobacteriota. AP was positively correlated with Firmicutes and 
negatively correlated with Myxococcota and Acidobacteriota. 
Firmicutes and positively correlated with Myxococcota 
and Acidobacteriota.

At the genus level, pH was positively correlated with Ammoniphilus 
and negatively correlated with Subgroup_2 (Figure  6B). O2 was 
positively correlated with Acidobacteriota, Subgroup_2, 
Bradyrhizobium, and Vicinamibacterales, and negatively correlated 
with Ammoniphilus. TP was negatively correlated with Bradyrhizobium 
and Vicinamibacterales. AP was negatively correlated with 
Acidobacteriates and Bradyrhizobium, and positively correlated 
with Ammoniphilus.

3.6 Bacterial function prediction

The soil bacterial communities were classified into 60 functional 
groups using Functional Annotation of Prokaryotic Taxa (Figure 7). 
The dominant functional groups were chemoheterotrophy (29.2%), 
aerobic_chemoheterotrophy (27.8%), cellulolysis (5.5%), and 
nitrogen_fixation (4.1%). Compared with the control treatment, the 
flooding treatment increased N cycling-related functions, such as N 
respiration, nitrate reduction, and N fixation, significantly, and 
decreased photosynthetic autotrophy-related functions, such as 
respiration_of_sulfur_compounds, anoxygenic_photoautotrophy_S_
oxidizing, and aerobic anoxygenic_photoautotrophy, significantly. 
However, compared with the flooded treatment, the mulching 
treatment significantly increased dark_sulfide_oxidation and reduced 
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FIGURE 1

Effects of mulching and flooding treatments on soil properties under Phyllostachys praecox. pH (A); total nitrogen (TN) (B); ammonium nitrogen 
(NH4

+-N) (C); nitrate nitrogen (NO3
−-N) (D); total phosphorus (TP) (E); available phosphorus (AP) (F); total potassium (TK) (G); available potassium (AK) 

(H); oxygen (O2) (I) contents.
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functions associated with N cycling, such as N respiration, nitrate 
reduction, and N fixation.

3.7 Structural equation modeling of the 
impacts of mulching and flooding

To better understand the effects of mulching or flooding on 
bacterial community structure and nutrient status, Partial Least 

Squares-Path Modelling (PLS-PM) was performed (Figure 8). O2 
concentration (path coefficient = 1.005) and pH (path 
coefficient = 0.089) had positive effects on bacterial diversity and 
negative effects on AK. Moreover, O2 concentration had a 
significant and negative effect on pH (path coefficient = −0.663). 
Bacterial diversity (path coefficient = −0.820), pH (path 
coefficient = −1.164), and AK (path coefficient = −0.192) had 
negative effects on N availability, with the largest path coefficient 
for pH. In addition, N availability had positive effects on both 

FIGURE 2

Effects of mulching and flooding treatments on Archaeal (A) and Bacterial 16S rRNA (B), ammonia-oxidizing archaea (AOA) (C) and ammonia-oxidizing 
bacteria (AOB) (D) abundance, under Phyllostachys praecox.

FIGURE 3

Effects of mulching and flooding on Shannon (A), Ace (B) and Chao 1 (C) indexes under Phyllostachys praecox.
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NH4
+-N (path coefficient = 0.927) and NO3

−-N (path coefficient =  
0.933).

4 Discussion

4.1 Impacts of mulching or flooding on soil 
nutrient availability

P. praecox is a shallow-rooted bamboo species susceptible to soil 
anoxia stress, and the effects of anoxia on soil nutrients vary under 
mulching and flooding conditions (Qian et al., 2022). According to 

our results, compared with control treatments, mulching increased 
soil nutrient content significantly, which is consistent with the results 
of Zhang et al. (2013). In addition, mulching and flooding treatments 
increased AK contents, with the effect of flooding being significantly 
higher than that of mulching, which could be attributed to soil water 
content directly affecting K fixation and release, flooding promoting 
AK release, and exchange K remaining at a high level, promoting the 
conversion of slow K into AK and increasing AK content (Zhang 
X. et al., 2018; Zhang Y. et al., 2018). Both hypoxic stress treatments 
lowered O2 content when compared with that in the control, which is 
in line with previous research (Guenet et al., 2012; Qian et al., 2021). 
Furthermore, both mulching and flooding treatments affected soil O2 

FIGURE 4

Relative abundances of bacteria at the phylum (A) and genus (B) levels under mulching and flooding treatments.

FIGURE 5

Principal Co-ordinates Analysis (PCoA) ordination plot for the 16S rRNA gene under different hypoxia treatments (A); Redundancy Analysis (RDA) of the 
correlation between soil properties and bacterial community structure (B). TN, total nitrogen; TP, Total Phosphorus; NH4

+-N, Ammonium Nitrogen; 
NO3

−-N, Nitrate Nitrogen; AP, Available Phosphorus; AK, Available Potassium. *, p  <  0.05, ** p  <  0.01, *** p  <  0.001.
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diffusion and transport, and the effects of flooding were more severe 
as the O2 concentration decreased. The mulching and flooding 
treatments had considerable differences in pH and NO3

−-N. Under 

anaerobic conditions, three major N transformations occur: (i) 
ammonification (conversion of organic N into NH4

+-N), (ii) nitrate 
reduction (conversion of NO3

−-N into NH4
+-N), or (iii) denitrification 

FIGURE 6

Spearman correlation coefficients among soil physicochemical properties and keystone phyla (A) and genera (B). Red represents a positive correlation, 
blue represents a negative correlation, and the larger the circle and the darker the color, the stronger the correlation. The rough arrows represent 
environmental factors, and the dotted lines represent biological factors. The angle between them represents their correlation. TN, Total Nitrogen; AN, 
Available Nitrogen; NO3

—N, Nitrate Nitrogen; NH4
+-N, Ammonium Nitrogen; AP, Available Phosphorus; AK, Available Potassium. *, p  <  0.05.

FIGURE 7

Predicted bacterial community function across treatments.
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(conversion of NO3
−-N into N2) (Reddy and Patrick, 1975; Reddy 

et al., 1984). In a previous study, NH4
+-N production (ammonification 

and nitrate reduction) and NO3
−-N loss (nitrate reduction and 

denitrification) occurred under the flooding conditions, with the 
highest values observed at 5 weeks of flooding (Kozlowski, 1997; 
Unger et al., 2009). The results are consistent with our findings. In the 
present study, mulching increased NO3

−-N content, which could 
be attributed to organic mulch introducing high amounts of nutrients 
to plants, especially NO3

−-N and AP input, which influence bamboo 
shoot yield considerably (Zhang et  al., 2021) (Figure  5). We  also 
observed that pH increased in the flooding treatment and decreased 
in the mulching treatment. (Tang and Huang, 2005) demonstrated 
that pH in flooded soil was significantly higher than that in the 
un-flooded control. High pH is linked to a series of reducing processes 
that occur when the soil lacks O2 (Reynolds et al., 1999). Nitrate is a 
strong acid ion found in NO3

−-N. If the soil contains a high 
concentration of NO3

−-N, the pH would be low; conversely, if NO3
−-N 

decreases considerably or is eliminated, pH tends to rise (Reddy and 
Patrick, 1975). Denitrifying bacteria convert nitrates in soil to N 
molecules in the absence of O2 (Narteh and Sahrawat, 1999). However, 
long-term mulching reduces soil pH, and soil acidification increasingly 
emerges over time (Zhai et al., 2017). The results of the present study 
also demonstrated a clear influence of pH on N uptake. Structural 

equation modelling illustrates that pH has a significant negative 
impact on N utilization (Figure 8).

4.2 Impacts of hypoxia and soil nutrient 
conditions on AOA and AOB, and archaeal 
and bacterial 16S rRNA genes

The amoA gene is frequently used as a genetic marker in studies 
of ammonia-oxidizing microbe abundance, community distribution, 
and phylogeny in environmental samples (Sinigalliano et al., 1995). 
The amoA copy numbers of AOA and AOB can reveal the N 
conversion pathways (Munroe et  al., 2016). In the present study, 
we observed significant increases in the abundance of 16S RNA, AOA, 
and AOB in the mulching and flooding treatments when compared 
with the control (Figures 2A,B). Chen et al. (2021) and Cerecetto et al. 
(2021) showed that archaea 16S, AOA, and AOB abundances could 
be  increased by mulching. In addition, according to Liu (2021), 
reduction in bacterial 16S gene abundance under mulching conditions 
was due to soil degradation and reduced microbial diversity caused by 
mulching for many years, whereas archaea were more likely to survive 
under anoxic conditions caused by mulching (Lehours et al., 2007). 
Conversely, there were more bacteria in the mulching treatment than 

FIGURE 8

Partial Least Squares-Path Models (PLS-PM) of the drivers of bacterial diversity and soil condition. The red and blue lines represent positive and negative 
effects, respectively. The full and dashed lines indicated the significant correlations (p  <  0.05) and no correlations (p  >  0.05), respectively. Significance 
levels are indicated: *, p  <  0.05; ***, p  <  0.001. NO3

—N, Nitrate Nitrogen; NH4
+-N, Ammonium Nitrogen; AK, Available Potassium.
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in the flooding treatment, which may be attributed to the higher soil 
O2 level in the mulching treatment than in the flooding treatment. 
Consequently, there were more types of bacteria and fewer types of 
archaea and ammonia-oxidizing microbes in the mulching treatment 
than in the flooding treatment. Yu et al. (2020) observed that archaea 
abundance decreased with an increase in O2, which may be due to the 
inhibitory effect of O2 on some specialized anaerobic microorganisms.

4.3 Impacts of mulching or flooding on soil 
bacterial diversity

Bacterial diversity is influenced considerably by soil O2 content 
(Waid, 1999). In the present study, the mulching or flooding 
treatments reduced bacterial Shannon, ACE and Chao 1 diversity 
indexes when compared with the control (Figure 3). PLS-PM results 
also revealed that soil O2 content had a direct and significant effect on 
bacterial diversity, potentially because most bacteria prefer O2-rich 
environments (Maisch et  al., 2007; Baez and Shiloach, 2014). 
Conversely, mulching increased bacterial Shannon, ACE and Chao 1 
indexes significantly when compared with in the flooding treatment. 
Although the mulching treatment reduced soil O2 content, it was still 
greater than that of the flooding treatment, and it altered the soil 
microenvironment. Nevertheless, the mulching could provide rich 
substrates for soil microbial communities, weakening the inhibition 
effect of soil hypoxia (Ghanbari and Khajoei-Nejad, 2021).

4.4 Impacts of mulching or flooding on 
bacterial community structure and 
function

In the present study, the dominant clades were Proteobacteria, 
Acidobacteriota, Chloroflexi, and Firmicutes. Similar findings have 
been reported by Zhai et al. (2017). Flooding increased Proteobacteria 
and Firmicutes abundance, and decreased Acidobacteriota and 
Chloroflexi abundance, when compared with in the control. This may 
be due to the fact that Proteobacteria is mostly found in shallow lakes, 
substrate sediments and inter-rooted plant soils, where it has an 
excellent nitrogen and phosphorus removal effect (Tu et al., 2019). 
Firmicutes accounted for the largest proportion of bacteria under 
flooding, mainly including Bacillus and Clostridium, which may 
be  due to their ability to produce spores, strong adaptability and 
reproduction capacity, and ability to withstand environmental 
pressures caused by waterlogging (Sar et al., 2013). In the present 
study, Ammoniphilus (Firmicutes) was determined to be endemic to 
the flooding treatment. Acidobacteriota and Chloroflexi are 
parthenogenic anaerobic microbes that can grow under both aerobic 
and anaerobic environments, but grow better in the presence of O2 
although they can survive in the absence of O2 (Wang et al., 2016). 
Therefore, their growth and reproduction are inhibited when O2 levels 
are reduced in the later stages (Kan, 2015; Liu et al., 2022).

In the present study, the mulching treatment increased Chloroflexi 
and Firmicutes abundance and decreased Acidobacteriota abundance. 
First, mulching decreases O2 concentrations but not to very low levels. 
Secondly, Thermobacillus, Lactobacillus, Bacillus, and Ammoniphilus 
in the phylum Firmicutes are bacterial genera associated with 
lignocellulose degradation in aerobic composting (Pan et al., 2022). 

Thirdly, Chloroflexi particpates in the cycling of elements such as 
carbon (C), N and sulfur, via processes such as CO2 fixation and 
cellulose macromolecule degradation. Additionally, Chloroflexi is 
generally tolerant of high temperature conditions, so that mulching 
increases soil warming and Chloroflexi abundance (Xian et al., 2020; 
Pan et  al., 2022). The decreases in soil pH and acidification with 
increasing mulching years should theoretically help acidophilic 
bacteria to multiply. However, the decline in Acidobacteria due to 
mulching in the present study may be related to changes in other soil 
environmental factors, which have greater inhibitory effects on 
Acidobacterial growth than the positive effect of soil acidification. 
Acidobacter populations prefer soil environments with low soluble 
organic C contents (Kielak et  al., 2009); therefore, the decline in 
Acidobacteria following prolonged mulching may indicate an increase 
in soil fugitive C content and a decrease in soil C sequestration 
capacity (Zhai et  al., 2017). Furthermore, we  observed 
Vicinamibacteria to be a class endemic to the mulching environment, 
and similar observations have been made by (Lin et al., 2020).

4.5 Impacts of mulching or flooding on 
relationships among soil bacterial 
communities and soil properties

According to the RDA results, pH and O2 explained the highest 
and most significant variation in bacterial community structure. Some 
studies have similar findings to the present study. There was a 
significant positive correlation between pH and WPS-2, and that 
WPS-2 is adapted to low soil pH environments (Ward et al., 2019; Qu 
et  al., 2020). Myxococcota and Acidobacteriota are aerobic 
oligotrophic microbes that are influenced by O2 conditions 
significantly (Murphy et al., 2021; Lin and Lin, 2022).

The functional prediction results showed that flooding reduced 
photosynthesis and autotrophism-related functions when compared 
with the control, which could be  due to insufficient light under 
inundation. In the present study, the flooding treatment increased 
relative N cycling-related functions compared to the control, which 
may be due to the inhibition of nitrification by flooding, which is 
consistent with the study (Zhang X. et al., 2018; Zhang Y. et al., 2018). 
Nitrifying microorganisms are aerobic microorganisms. Soil flooding 
inhibits O2 diffusion and transport into the soil, which is detrimental 
to the growth and reproduction of nitrifying bacteria (Song et al., 
2021). In addition, NH4

+-N fixation and nitrification are two processes 
that compete for common substrates (Drury et al., 1991), flooding 
enhances soil NH4

+-N fixation, thus reducing nitrification by limiting 
substrate availability. Conversely, mulching increased dark_sulfide_
oxidation and suppresses N cycling related activities compared to 
flooding. With less light penetration and higher O2, C, and N levels, 
mulched soils modified microbial structures to adapt to increased N 
than flooding treatments.

5 Conclusion

O2 levels significantly influenced soil characteristics. NH4
+-N, TP, 

AP and AK increased in both mulching and flooding treatments 
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while O2 decreased. Mulching resulted in a reduction in NO3
−-N and 

pH, whereas flooding led to an increase in pH and a decrease in 
NO3

−-N. Copies of archaeal and bacterial 16S rRNA genes, AOA and 
AOB amoA genes increased with decreasing O2 content. Both 
mulching and flooding decreased soil bacterial diversity, as indicated 
by lower Shannon, ACE, and Chao 1 indices. Soil bacterial 
community structures were notably altered due to changes in O2, 
NO3

−-N, AK, AP, and pH levels. Soil nutrient accessibility, particularly 
AK and O2, was closely related to bacterial community structure. 
PLS-PM suggested that O2 was mainly influenced by soil pH, and AK 
content along with bacterial diversity influenced the efficient 
utilization of soil nitrogen. In conclusion, hypoxia significantly 
affected soil properties and bacterial communities, with more intense 
hypoxia exerting a greater impact on these factors.
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