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Mapping coastal wetlands’ spatial distribution and spatiotemporal dynamics

is crucial for ecological conservation and restoration e�orts. However, the

high hydrological dynamics and steep environmental gradients pose challenges

for precise mapping. This study developed a new method for mapping

coastal wetlands using time-series remote sensing images and a deep

learning model. Precise mapping and change analysis were conducted in

the Liaohe Estuary Reserve in 2017 and 2022. The results demonstrated the

superiority of Temporal Optimize Features (TOFs) in feature importance and

classification accuracy. Incorporating TOFs into the ResNet model e�ectively

combined temporal and spatial information, enhancing coastal wetland

mapping accuracy. Comparative analysis revealed ecological restoration trends,

emphasizing artificial restoration’s predominant role in salt marsh vegetation

rehabilitation. These findings provide essential technical support for coastal

wetland ecosystem monitoring and contribute to the study of sustainability

under global climate change.
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1 Introduction

Coastal wetlands are the transition zone between terrestrial and marine ecosystems,

providing essential ecosystem services and material productivity critical to human life

and economic activities (National Research Council, 1995). Coastal wetland ecosystems

face accelerated degradation and disappearance due to global climate change, rising sea

levels, urban expansion, and population growth (Mao et al., 2018a,b; Ren et al., 2019;

Li et al., 2022). Over 50% of global wetlands have disappeared since the 18th century,

and China’s coastal wetlands are also facing severe threats (Wang et al., 2012; Ma et al.,

2014; Xu et al., 2019). Therefore, acquiring accurate and real-time data on the spatial

distribution of coastal wetlands is crucial for optimizing ecosystem management and

achieving sustainable development goals.

Remote sensing technology, with its advantages of wide observation range, extensive

data acquisition, and robust data comparability, has been widely used in coastal wetland

resource surveys, ecological monitoring, and ecosystem service assessment (Liu et al.,

2017). Reviewing 50 years of research in wetland remote sensing, Mao et al. (2023)

concluded that despite diverse trends in the field, the accurate extraction and mapping

of wetland distribution remains a critical theme of wetland remote sensing research.
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Multi-scale wetland mapping researches continuously released and

updated in recent years provide strong support for this view (Gong

et al., 2010; Niu et al., 2012; Murray et al., 2019; Zhang et al., 2022;

Wang M. et al., 2023).

However, the precise mapping of coastal wetlands remains

an essential challenge. Hydrological dynamics and environmental

gradient fluctuations make wetlands one of the most challenging

land cover categories to classify accurately in global datasets

(Gong et al., 2016). Frequent changes in hydrological conditions

create highly dynamic wetland environments throughout the year

and seasons, leading to pronounced spectral variations. These

variations cause rapid transitions in vegetation communities within

short distances in the transition zones between land and sea.

For instance, species such as Phragmites australis (P. australis)

and Suaeda salsa (S. salsa) can quickly alternate within steep

environmental gradients, resulting in spectral confusion among

different vegetation types and posing the challenges of classification

and mapping.

Time-series remote sensing analysis combined with deep

learning techniques provides a solution for precise coastal wetland

mapping. Time-series images offer ample phenological information

about wetland vegetation, essential for enhancing classification

accuracy (Zhu and Woodcock, 2014; Kovács et al., 2022). Feature

extraction from time-series images generally involves phenological

feature extraction and time-series composite methods (Zhang

et al., 2024). Phenological feature extraction typically employs

filtering or curve-fitting techniques to reconstruct vegetation

indices, capturing essential phenological information (Verbesselt

et al., 2010; Cai et al., 2017). Techniques such as thresholding,

curve-based analysis, and mathematical methods are commonly

used (Liu and Li, 2021; Sun et al., 2021). This method is

sensitive to the spatiotemporal resolution of the imagery, and the

choice of reconstruction and extraction methods can significantly

impact the accuracy of the extracted phenological features (Xiang

et al., 2018; Xie and Zhang, 2023). Time-series composite

methods aggregate remote sensing images over a defined period

and use statistical techniques, such as maximum, mean, and

median, to extract land cover features from the images (Ni

et al., 2021; Wang Y. et al., 2023). This method may reduce

the data size in the temporal dimension and extract essential

features of typical wetland vegetation. However, the choice of

time scale critically impacts the composite results (Wu and Wu,

2023). Extended time scales may lead to the loss of critical

information, affecting wetland vegetation classification accuracy.

In contrast, short time scales may increase the complexity of

data processing. Consequently, refining existing time-series feature

extractionmethods and identifying key temporal phases (KTPs) are

essential for precise wetland classification (Henderson and Lewis,

2008).

Deep learning models, with their robust capabilities in

managing high-dimensional and complex data sets, show

promising applications in coastal wetland mapping (O’Neil

et al., 2020; Cheng et al., 2023). Several architectures, including

Convolutional Neural Networks (CNNs), Generative Adversarial

Networks (GANs), U-Net, DeepNet, and Transformers, have

achieved impressive outcomes in wetland remote sensing mapping

(Ludwig et al., 2019; Jamali et al., 2021a,b; Li et al., 2021; Zhang

W. et al., 2023). Mahdianpari et al. (2020) reported that CNN-

based methods achieved the highest accuracy compared to

other classification algorithms, followed by the random forest

(RF) model. However, the superiority of deep learning methods

is not absolute. Research by Heydari and Mountrakis (2018)

demonstrated that the standard machine learning methods

outperformed deep learning in land cover classification using

Landsat images. In addition, the extensive need for annotated data

and computational resources also limits practical deep learning

(Günen, 2022). Therefore, further research and assessment are

needed to confirm the accuracy and effectiveness of machine

learning and deep learning in coastal wetlands mapping.

As the northernmost estuarine wetland in China, the Liaohe

Estuary wetland preserves a typical and intact temperate coastal

wetland ecosystem and estuarine landscape. Wetland vegetation,

represented by S. salsa and P. australis communities, is widely

distributed here, serving as a typical example of a secondary

succession of plant communities in the northern plains of China’s

rivers. To decrease the impact of human activities on the

ecosystem, the Liaohe Estuary Reserve (simply “LER” for short)

has implemented strict restriction management and ecological

restoration projects in recent years. It has also been incorporated

into the national park creation zone, making the LER an ideal

area for preciselymapping coastal wetlands and assessing ecological

restoration effects.

This paper aims to develop a coastal wetland mapping

method based on time-series remote sensing imagery and a

deep learning model, using the LER as a case study to verify its

effectiveness. The main contributions of this paper include (1)

developing a new method for temporal feature extraction and

highlighting the importance of selecting KTPs and optimized

features to improve classification accuracy; (2) combining

Temporal Optimize Features (TOFs) with Residual Neural

Networks (ResNet) to further enhance wetland classification

accuracy; and (3) revealing the ecological restoration effects

within the LER from 2017 to 2022 and identifying the primary

sources of these restoration effects. The results provide technical

support for precise monitoring of coastal wetland ecosystems,

offer reference data for evaluating ecological restoration

effectiveness, and are essential for managing and conserving

coastal wetlands.

2 Study area and data

2.1 Study area

The LER is located in the southern region of Panjin

City, Liaoning Province, China (121◦28′24.58
′′

-121◦45′27.49
′′

E,

40◦45′00
′′

-41◦05′54.13
′′

N), with a total area of about 120,000

hectares (Figure 1). The wetland is formed by the deposition

of the Liao River, Daling River, Xiaoling River, and other

rivers, mainly mudflats, with flat and open terrain and <7

meters above sea level. The average annual temperature in the

study area is 8.5◦C, and the average annual rainfall is 650mm.

Natural wetlands include various types, such as tidal flats, salt

marshes, and shallow marine siltation. S. salsa and P. australis
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FIGURE 1

The location of the study area. (A) China, (B) Near-infrared (NIR) band of Sentinel-2 MSI.

are two typical salt marsh vegetation types. In response to

the increasing effects of climate change and human activities

on coastal wetlands, the reserve manager adopted a series of

conservation projects, such as “retreating to wetland”. Additionally,

the reserve began enforcing prohibition management measures in

2017 to mitigate the impacts of human activities on the ecological

environment. In this context, the study focused on LER in 2017

and 2022 to verify the applicability of the mapping method and

to reveal the ecological restoration effect of the reserve since

its prohibition. The results of this study can provide essential

information and a basis for decision-making in managing the

reserve’s ecosystem.

2.2 Wetland classification system

This study classified the land cover types in the study area

into six primary categories: S. salsa, P. australis, paddy, water, tidal

flat, and impervious, based on field surveys of the study area and

referencing current classification standards and existing research

(Wen et al., 2011; Tan et al., 2022). These primary categories

were identified using remote sensing interpretation methods. To

distinguish between artificial and natural surfaces and reveal

the effects of artificial restoration and natural restoration, this

study further subdivided the water category into four secondary

categories through visual interpretation: inlandwater, coastal water,

aquaculture, and reservoir. The wetland classification system and

its details are shown in Table 1.

2.3 Sample data

This study collected 1,400 initial samples, with 300 from 2017

and 1,100 from 2022. The 300 samples obtained in 2017 were

based on visual interpretation of remote sensing imagery. To

ensure the spatial distribution and class balance, 50 samples were

uniformly selected for each land category, totaling 300. The 1,100

samples for the year 2022 were obtained through field surveys and

visual interpretation. The field survey was conducted on September

28, 2022, using handheld geographic positioning systems and

unmanned aerial vehicles, collecting 387 field samples. Visual

interpretation of Google Earth imagery was used to supplement

the data due to the concentrated distribution of the points and

ensure a uniform sample distribution in the study area. All initial

samples were used to construct TOFs and assess the importance

of features.

To obtain sufficient samples for comprehensive training of

the deep learning model, this study expanded the initial samples

by referring to the method described by Wang M. et al. (2023).

Specifically, the study area’s remote sensing images were pre-

classified using the initial samples and the RF algorithm. The

classification results were then converted into vector data for

manual review and modification, obtaining different land class

vector patches within the study area. Based on the spatial extent

of the vector patches, 3,000 samples were randomly generated for

each land class, ensuring the balance and representativeness of the

sample data during the training of the deep learning model. All

initial and expanded sample points were merged and divided into

training and validation samples at a 7:3 ratio. These samples were

Frontiers in Forests andGlobal Change 03 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1409985
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Ke et al. 10.3389/�gc.2024.1409985

TABLE 1 Wetland classification system in this study.

Category I Category II Description Image example

S. salsa Natural wetland with dominant herbaceous vegetation in coastal areas.

P. australis Natural wetland with dominant woody vegetation.

Tidal flat Natural land cover type with no or shallow vegetation coverage.

Water Inland water Natural linear waterbody with flowing water in inland areas.

Coastal water Natural waterbody in coastal areas, such as shallow marine water and estuarine water.

Aquaculture Artificial polygon water bodies are used for aquaculture, with regular shapes and close to the sea.

Reservoir Artificial waterbody used for water storage, typically with a larger and regular shape.

Paddy Artificial polygon fields generally shaped as regular rectangles, with vegetation cover during the

growing season.

Impervious Artificial land use types include buildings, settlements, roads, oil wells, etc.

used to train and validate the ResNet and RF models based on

different feature combinations.

2.4 Data preprocess

A total of 400 available Sentinel-2 images were obtained in

this study based on the Google Earth Engine (GEE) platform,

including 298 in 2022 and 102 in 2017. All images were

filtered based on a cloud content of <30%, followed by cloud

masking using quality assessment bands. Finally, mosaicking

and clipping were performed on images with the same imaging

dates, resulting in time-series image stacks for the study area

of 2017 and 2022. The 2017 time-series image stack included

37 high-quality observations, while 2022 included 67 high-

quality observations.
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FIGURE 2

The research framework of this study. Dashed lines represent the control experimental group using monthly mean composite features.

3 Methods

Figure 2 illustrates the research framework of this study.

Initially, conventional single temporal features (STFs) were

constructed using available images close to the field survey date,

including spectral reflectance, vegetation indices, and water indices.

Subsequently, TOFs were extracted by applying NDVI time-

series reconstruction and Jeffries-Matusita (J-M) feature distance

algorithms to time-series remote sensing images, supplementing

the STFs with temporal information. To test the effectiveness of

the TOFs, monthly composite features (MCFs) were extracted from

time-series remote sensing imagery using the monthly average

composite algorithm as a control experiment. The importance of

different features was examined using the RF algorithm, and the

enhancement effects of the two types of temporal features onmodel

classification accuracy were compared. Finally, by post-processing

the results of the RFmodel, an equal number and evenly distributed

set of samples were produced, enabling the training, accuracy

validation, and classification mapping of the ResNet model.

3.1 TOFs extraction

3.1.1 Identification of KTPs
Seasonal and periodic variations in the spectral reflectance of

vegetation during the year resulted in evident differences in the

separability of land cover type samples at different temporal phases

(Wang et al., 2024). Figure 3 displays histograms representing the

frequency distribution of normalized vegetation indices (NDVI)

for samples of S. salsa, P. australis, paddy, and tidal flats. The

separation and overlap between the different categories along

the horizontal axis indicate the separability between the land

cover samples. As shown in Figure 3, vegetation land classes

are mostly indistinguishable throughout the year, with better

separability observed in July, August, and September. Therefore,

selecting KTPs for classification from time-series remote sensing

images is essential for improving the classification accuracy of

vegetation communities.

To capture the phenological changes in coastal wetlands,

researchers have filtered or fitted time-series vegetation indices due

to apparent annual variations in the growth state of salt marsh

vegetation (Liu and Li, 2021). This study employed the Savitzky-

Golay (S-G) filtering method for the time-series reconstruction of

NDVI. The spatiotemporal scale of the data does not limit this

algorithm and can capture local information anomalies, effectively

removing noise from the time-series data (Schafer, 2011). The

expression is shown as follows in Formula (1) (Wu and Wu, 2023).

Y∗
j =

i = m
∑

i = − m

CiYj + i

N
(1)

Where j is the index value in the original NDVI value, Y∗
j is the

filtered time-series data value, Yj+i is the original time-series data

value, Ci is the filter coefficient of the i-th NDVI value, obtained

through least squares polynomial fitting; andm denotes the sliding

window broadband (2∗ m +1). After several adjustments, when

m =5 and the polynomial fitting order was set to 3, an ideal

fitting effect on the NDVI time-series data was achieved. Thus, the

difference between any two types of land classes in the time-series
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FIGURE 3

Variations in sample separability across di�erent months within the year. The statistical distribution map of sample is based on sampling from the

monthly maximum composited NDVI feature map.

FIGURE 4

NDVI temporal reconstruction curve. The scatter points represent the average NDVI true values of the sample, while the curve represents the

temporal growth curve obtained after S-G filtering and fitting. The dashed line indicates the determined KTPs.
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FIGURE 5

Separability and J-M distance of TOFs for di�erent land cover pairs.

curve was used to determine the KTPs for the complete phenology

period, as shown in Figure 4.

3.1.2 Spectral separability evaluation
The J-M distance is a widely recognized measure of spectral

separability (Ni et al., 2021), providing a quantitative metric for

measuring the separation between two ormore categories in feature

space, and has been extensively applied in remote sensing image

classification and feature optimization. This study calculated the J-

M distance based on the Bhattacharyya distance between samples to

determine the features at each KTPs. The expression is as follows

in Formulas (2, 3):

B =
1

8
(ea − eb)

2 2

σ 2
a + σ 2

b

+
1

2
ln

(

σ 2
a + σ 2

b

2σ 2
a · σ 2

b

)

(2)

JM = 2
(

1− e−B
)

(3)

Where B denotes the Bhattacharyya distance between ground

sample a and ground sample b, eaand σa are the mean and standard

deviation of ground sample a, respectively. JM denotes the feature

distance between the two land classes of samples, reflecting the

separability between the samples, with a range of [0,2]. The closer

the value of the J-M distance is to 2, the better the separability

between the samples. A total of eight TOFs were extracted by the

above method, and the results of the separation and J-M distance

calculation between the land classes are shown in Figure 5.

3.2 Random forest model

The RF model is an ensemble machine-learning algorithm

known for its noise resistance, prevention of overfitting, and

simplicity in model construction (Breiman, 2001). The algorithm

provides a global explanation of each feature’s contribution to

accurate classification, allowing comparison of feature importance.

The objectives of using the RF model in this study are: (1)

to compare the importance of features across different feature

sets, thereby confirming the effective capture of temporal remote

sensing image information by TOFs; (2) to investigate differences

in classification accuracy among three feature sets using typical

machine learning algorithms, thus assessing the effectiveness of

TOFs for classifying coastal wetlands; and (3) using the RF

model with a small training sample, the study areas of 2017 and

2022 were pre-classified. A large-scale random sample set was

generated for training and testing deep learning models via post-

classification processing.

3.3 Residual neural network

CNN excels at remote sensing image classification, object

recognition, and semantic segmentation due to its local feature

extraction and spatial relationship modeling capabilities. While

issues such as gradient vanishing and exploding limit its

classification accuracy and training efficiency (Ma et al., 2019).
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FIGURE 6

Schematic diagram of the residual module.

ResNet addresses these issues by introducing residual connections

(He et al., 2016), deepening networks, and improving model

stability and training efficiency. The key of ResNet lies in

its residual units and shortcut connections. Each residual unit

comprises convolutional layers, batch normalization layers, and

ReLU activation functions (Figure 6). The input x is processed

through a shortcut, computes the residual feature F(x) = H(x) –

x, and then adds it back to the input, resulting in the final output

F(x) + x. This design ensures the network can learn new features

while retaining original information.

This study adjusted the ResNet18 model to meet this

study’s specific feature input and output category requirements.

Adjustments include adding a 3 × 3 convolutional layer at the

input layer to handle multi-channel inputs equal to the number

of features, retaining the residual blocks and pooling layers in the

middle layers of ResNet18, and modifying the fully connected layer

at the output layer to accommodate six output categories. The

model training uses the Adam optimizer with a learning rate of

0.001 and the loss function as cross-entropy. After multiple training

sessions and debugging, the study established 20 epochs as the

training rounds for the model, with each batch size being 16. Under

this configuration, the loss function stabilizes, indicating that

the model’s training process has converged. The model supports

running on both GPU and CPU to ensure training efficiency

and stability.

3.4 Accuracy assessment

Using a confusion matrix, this study evaluated the accuracy of

coastal wetland mapping results in the LER. The accuracy metrics

include user’s accuracy (UA), which measures the proportion of

correctly classified pixels for each class, and producer’s accuracy

(PA), which measures the proportion of correctly classified pixels

for each class. Overall accuracy (OA) also represents the percentage

of correctly classified pixels out of the total number of pixels. The

confusion matrix is calculated by comparing each measured pixel

in the reference image with the corresponding pixel in the classified

image. The Kappa coefficient serves as a metric to evaluate the

consistency of classification results, with values ranging from 0 to

1, where higher values indicate greater accuracy.

3.5 Ecological restoration e�ect evaluation

This study quantified the scale and sources of salt marsh

vegetation ecological restoration using a land use transition matrix,

distinguishing restoration into natural and artificial. Natural

restoration was defined as converting natural land cover types

to salt marsh vegetation, encompassing S. salsa, P. australis,

tidal flat, inland water, and coastal water. Artificial restoration

referred to converting artificial land use types to salt marsh

vegetation, including paddies, reservoirs, aquaculture ponds, and

impervious. This study evaluated the scale and direction of

ecological restoration, clarified the relative contributions of natural

regeneration and artificial restoration, and provided critical data

support for formulating ecological restoration strategies.

4 Results

4.1 Analysis of TOFs

Figure 7 shows the ranking of the feature importance index,

indicating that the accuracy of the RF model was enhanced by

adding temporal information. Among the top 10 most important

features, eight were temporal features, including five TOFs and

three MCFs, along with two STFs, demonstrating the critical role

of temporal information in model performance and the relative

superiority of TOFs over MCFs and STFs. In the interval of the

10th to 20th most important features, STFs were predominant,

with MCFs and TOFs each representing 2. Among the 10 least

important features, MCFs constituted 6, while TOFs and STFs

each comprised 2. Overall, the order of importance for the three

types of features was TOFs > STFs > MCFs, and this ranking

remained consistent across different model parameters (see S1 in

Supplementary material).

4.2 Classification accuracy analysis

The accuracy assessment results (Table 2) indicated that

temporal features effectively enhance the overall classification

accuracy of the RF model. Incorporating TOFs resulted in an

11.8% increase in OA of the RF model, accompanied by a Kappa

coefficient improvement of 0.14. These enhancements surpassed

the effects of MCFs on single-temporal-phase remote sensing

image classification, which showed an 8.5% increase in OA and

a 0.10 improvement in Kappa, respectively. The differences in

accuracy highlighted the information disparities inherent in the two

types of temporal features. Specifically, in terms of different land

cover types (Figure 8), the inclusion of TOFs achieved the most

improvement in PA for S. salsa (26.2%) and the most increase in

UA for P. australis (28.3%). Meanwhile, there was no pronounced

improvement in accuracy for water and tidal flat.

From the perspective of classifiers, deep learning models

demonstrated a clear accuracy advantage. Comparing the ResNet

model to the RF model using the same input features, the

ResNet model exhibited higher OA and Kappa coefficient

values (Table 2). Additionally, the ResNet model improved

accuracy across almost all land cover types (Figure 8). The RF
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FIGURE 7

Feature importance ranking results.

TABLE 2 Accuracy evaluation results.

Classifier Random Forest ResNet18

Features STFs STFs + MCFs STFs + TOFs STFs + TOFs

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

S. salsa 68.9 85.6 92.1 85.2 95.1 90.4 96.0 94.0

P. australis 88.1 61.2 81 84.5 96.6 89.5 98.6 93.4

Paddy 88.3 86.2 97.4 96.6 98.8 96.9 99.6 98.6

Water 99.8 73.1 99.8 74.6 99.8 74 99.9 92.7

Tidal flat 55.3 87.1 66.7 88.9 61.3 92 92.6 88.5

Impervious 59.6 81.6 74 85.6 79.4 95.4 77.9 98.9

OA (%) 76.7 85.2 88.5 94.1

Kappa 0.72 0.82 0.86 0.93

FIGURE 8

Accuracy improvement e�ect of temporal features and deep learning model on STFs. The (left panel) represents producer’s accuracy, while the

(right panel) represents user’s accuracy.

model exhibited a lower PA for tidal flats, ranging from 55.3

to 61.3%. While the ResNet model improved this accuracy,

achieving a PA of 92.6%. In terms of UA, the ResNet

model enhanced the accuracy of water. Within the RF model,

the classification accuracy for water ranged from 73.1 to

74.6%, indicating intense misclassification. In contrast, the
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FIGURE 9

Classification results of coastal wetlands based on TOFs with the ResNet18 model. The red box indicates the zoom-in tiles comparison area.

ResNet model achieved a user’s accuracy (UA) of 92.7% for

water, suggesting better sensitivity to water pixels and a lower

misclassification rate.

Figure 9 illustrates the classification results using TOFs and

the ResNet model, while Figure 10 further displays four sites

with complex land cover compositions to compare the effects

of different classification strategies. Site 1 was characterized by

numerous mixed pixels formed by abandoned roads and adjacent

water channels. STFs identified these mixed pixels as paddy and

S. salsa, leading to a “salt and pepper” noise in the classification

results. Incorporating MCFs suppressed the noise, but some mixed

pixels were still misclassified as paddy and S. salsa. Including

TOFs improved this issue by correctly identifying some mixed

pixels as built-up areas and roads, with fewer pixels misclassified

as vegetation. The ResNet model achieved smoother classification

results with more precise and more distinct contours of oil wells

and surrounding transport roads. The disappearance of adjacent

water channels and small abandoned roads may be attributed to

the deep learning model’s receptive field and parameter-sharing

mechanisms. Specifically, omissions and oversights may occur

when the network classifies tiny mixed pixels as the predominant

surrounding categories due to parameter sharing.

The results for Site 2 show that STFs and the RF model

may exhibit pixel confusion between P. australis and paddy.

Adding temporal features (MCFs or TOFs) reduced this confusion

but underestimated the extent of P. australis communities. In

comparison, the ResNet model accurately identified the extent of

P. australis communities. For Site 3, the RF model struggled with

fragmented and small aquaculture ponds. In contrast, the ResNet

model effectively extracted these ponds and their boundaries from

the complex land cover.

The results for Site 4 show that rapid shifts in vegetation

communities along environmental gradients between land and

sea caused misclassifications. This transition from P. australis

to S. salsa and then to tidal flat posed difficulties in accurately

classifying coastal wetlands. Using STFs and the RF model,

transition areas between P. australis and S. salsa were misclassified

as paddies or impervious (as shown by the red box), and

the transition areas between S. salsa and tidal flats were

misclassified as impervious (as shown by the yellow box).

Including MCFs reduced the misclassification between salt marsh

vegetation and paddies, but confusion between S. salsa and tidal

flats remained. The RF model with TOFs further reduced the

confusion between salt marsh vegetation and tidal flats, but the

misclassification between salt marsh vegetation and impervious still

existed. Utilizing ResNet as the classifier effectively resolved the

confusion in the transition areas between salt marsh vegetation

types and between S. salsa and tidal flats while suppressing

the “salt-and-pepper” effect, significantly improving the overall

classification accuracy.
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FIGURE 10

Detailed comparison of classification results from various methods.

4.3 Temporal and spatial analysis of
wetland type changes

According to Figure 11, from 2017 to 2022, the LER

experienced substantial land cover changes, with the expansion

of S. salsa and the retreat of aquaculture ponds being the

most apparent changes. Table 3 shows that, from 2017 to

2022, aside from a notable increase in salt marsh vegetation,

other land cover types either decreased or remained stable

during this period. The area of salt marsh vegetation in the

LER increased from 42,330.68 hectares to 53,655.2 hectares,

representing a rise of 26.75%. Specifically, S. salsa expanded

from 2,682.96 hectares to 5,142.71 hectares, with a growth of

91.68% (2,459.75 hectares). P. australis also grew significantly,

increasing by 8,862.77 hectares, or 22.35%. Conversely, the

area of aquaculture ponds contracted from 7,808.03 hectares

to 4,073.83 hectares, with a reduction of 47.83%. Inland water

and tidal flats decreased by 30.80 and 22.89%, respectively.

The area of paddy fields decreased from 13,670.31 hectares to

10,967.85 hectares, representing a 19.77% reduction. Impervious

decreased from 11,940.21 hectares to 10,815.37 hectares, a

decrease of 9.42%. Coastal water and reservoirs showed minimal

change, fluctuating within ±1%. Overall, these data indicated

a substantial expansion of salt marsh vegetation and decreased

human activity, highlighting the impact of ecological protection

and restoration efforts.

Table 4 shows that artificial restoration was the primary driver

of the growth in salt marsh vegetation areas in the LER. Among

the newly added salt marsh vegetation, 65.91% originated from

the conversion of artificial land use types, while 34.09% came

from the conversion of natural land cover types. In terms of

spatial distribution (Figure 12), naturally restored S. salsa is more

dispersed, mainly distributed on both sides of the Liaohe Estuary

and at the boundary between P. australis and tidal flats. In contrast,

artificially restored S. salsa is predominantly concentrated west

of the Liaohe Estuary, where aquaculture facilities were removed.
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FIGURE 11

Comparative land cover change in the LER. (A) Year 2017, (B) Year 2022.

TABLE 3 Dynamic changes in land cover in the LER from 2017 to 2022.

Type Natural Artificial

Area
(ha)

S.

salsa

P.

australis

Tidal
flat

Inland
water

Coastal water Paddy Impervious Reservoir Aquaculture

2017 2,683 39,648 14,974 2,303 34,521 13,670 11,940 1,310 7,808

2022 5,143 48,511 11,547 1,594 34,910 10,968 10,815 1,296 4,074

Rate 91.7% 22.4% −22.9% −30.8% 1.1% −19.8% −9.4% −1.0% −47.8%

This suggests that ecological protection projects have had a crucial

impact on salt marsh vegetation restoration.

The reduction in aquaculture area was another obvious change.

According to Table 4, from 2017 to 2022, more than half of the

original aquaculture areas were converted into natural wetlands.

Among them, tidal flats, P. australis, and S. salsa accounted

for 24.56, 17.81, and 8.29% of the converted aquaculture area,

respectively. Additionally, there was a reduction in paddy and

impervious areas, with P. australis and S. salsa being the common

primary outflow directions, indicating the restoration of wetland

ecosystems. These changes reflect significant achievements in

ecological conservation efforts in the LER over the past few years.

5 Discussion

5.1 Time-series remote sensing image
analysis method

Previous studies have demonstrated that utilizing time-series

remote sensing imagery can improve the accuracy of wetland

mapping. However, the selection of image acquisition times

still requires further discussion. Henderson and Lewis (2008)

emphasized that increasing the number of images can improve

classification accuracy to a certain extent, whereas selecting KTPs is

more crucial. Existing temporal feature extraction methods neglect

this issue, which may lead to the loss of critical information or the

introduction ofmisleading information, thus affecting classification

accuracy. Compared to previous research, this study proposed a

temporal feature extraction method based on S-G filtering. By

analyzing the variations in temporal curves of different land cover

types, this method identified KTPs. Subsequently, TOFs were

extracted from these KTPs using the J-M distance to enhance the

discriminability among different wetland types.

The results demonstrated that TOFs had evident advantages

over STFs and MCFs in terms of feature importance and

classification accuracy. This suggests that TOFs contain more

crucial information and are more effective for accurately classifying

the model. Specifically, including TOFs resulted in an 11.8%

increase in the classification accuracy of the RF model and a 0.14

increase in the Kappa coefficient. In contrast, the improvements for

MCFs were only 8.5% and 0.10, respectively. Moreover, using TOFs
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TABLE 4 Land cover transition matrix of the study area from 2017 to 2022.

Area (ha) 2022

Natural Artificial

2017 S.

salsa

P.

australis

Tidal
flat

Coastal
water

Inland water Paddy Impervious Reservoir Aquaculture

S. salsa 967.9 949.0 282.5 42.7 13.9 12.5 302.7 0.0 111.7

P. asutralis 132.0 37,188.4 79.8 49.9 204.4 293.4 1,339.2 0.0 360.6

Tidal flat 3,022.8 909.9 7,338.1 1,848.2 195.5 13.2 1,121.6 0.2 524.2

Coastal water 16.5 19.6 1,463.1 32,939.7 5.6 0.1 25.4 0.0 51.2

Inland water 18.9 926.8 70.8 4.9 1,000.9 13.4 99.1 0.0 168.5

Paddy 87.9 2,412.3 25.6 1.1 17.4 10,129.1 976.5 0.0 20.3

Impervious 249.8 4,712.5 365.4 9.2 125.1 435.3 5,921.3 0.0 121.5

Reservoir 0.0 1.1 3.7 0.0 0.0 0.0 3.5 1,295.9 5.7

Aquaculture 646.9 1,390.8 1,917.9 14.2 31.1 70.8 1,026.0 0.0 2,710.2

FIGURE 12

Spatial distribution of S. salsa restoration. Red indicates restored S. salsa converted from human land use, i.e., artificial Restoration; green represents

restored S. salsa converted from natural wetlands, i.e., natural restoration.

significantly improved the accuracy of specific land covers: the PA

of S. salsa increased by 26.2%, and the UA of P. australis increased

by 28.3%. The advantage of TOFs was evident in resolving the

confusion in the transition areas between salt marsh vegetation

and salt marsh vegetation to tidal flats, leading to more accurate

classification results.

5.2 Deep learning model and time-series
remote sensing images

Conventional ResNet models were primarily applied to spectral

or spatial domains, with limited consideration given to the time

dimension, which restricted their ability to leverage the temporal

information of remote sensing images. This study integrated TOFs

with ResNet, providing crucial temporal information. ResNet,

extending the CNN framework, introduced residual connections

to extract spatial structural features through convolutional kernels.

Additionally, it employed pooling layers to reduce noise and

mitigate the “salt-and-pepper” effect, enhancing the model’s

adaptability to the complexity of coastal wetland ecosystems.

This approach profoundly improved classification accuracy by

leveraging the spatial and temporal information of remote sensing

images. The research findings can serve as a robust reference for

future studies exploring deep learning methods based on temporal

features. Through the combination of TOFs and deep learning
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FIGURE 13

Utilizing GEE to provide data foundation for deep learning model

training.

models, this study acquired high-resolution spatial distribution

information and fine wetland mapping in the LER.

A dependency accompanies deep learning models’ accuracy

advantage on massive annotated sample datasets and storage and

computing resources, which limits their application in remote

sensing. In this study, we utilized the GEE platform to accomplish

sample augmentation and convolutional sampling (Figure 13),

efficiently obtaining large-scale sample datasets for training

and validating deep learning models. Despite rigorous manual

inspection and modification, sample augmentation strategies may

still introduce potential biases in validation samples. Therefore,

future research could explore methods such as sample transfer,

weakly supervised learning, or unsupervised learning to reduce the

dependence of deep learning on large annotated datasets.

5.3 Ecological restoration e�ect evaluation

This study showed apparent changes in land cover types in

the LER from 2017 to 2022 by comparing land cover mapping

results. Specifically, it demonstrated the extensive recovery of salt

marsh vegetation and the substantial reduction in aquaculture

areas, consistent with the findings of Zhang G. et al. (2023),

indicating effective improvement in the wetland ecosystem of

the study area. Furthermore, using a land use transfer matrix,

this study identified the dominant role of artificial restoration in

the ecological restoration process of salt marsh vegetation in the

LER, providing strong evidence for the significant achievements

in ecological conservation efforts in the region in recent years.

The research results indicated that since the implementation of

prohibition management in the LER in 2017, the impact of human

activities has gradually decreased, and the area of anthropogenic

land cover types has significantly reduced.

This study revealed the sources of S. salsa ecological restoration

by using a land use transfer matrix based on different original

land cover types (such as artificial surfaces like impervious, paddy,

aquaculture, reservoirs, and natural surfaces like inland water,

coastal water, tidal flat, and P. australis). This method simplified

differentiating between natural and artificial restoration; however,

the intricate interplay between the two posed challenges for a clear

distinction. In practical ecological restoration projects, artificial and

natural restoration often occur interchangeably. In the initial stages

of a project, artificial restoration may be employed to accelerate

the restoration process. In later stages, as the ecosystem stabilizes,

there is greater reliance on natural restoration. This combined

strategy complicates the distinction between artificial and natural

restoration efforts. Moreover, complex interactions exist between

artificial and natural restoration. For instance, environmental

restoration projects may provide conditions conducive to natural

restoration, while natural restoration could also be an indirect

consequence of human intervention (Li et al., 2023). Therefore,

future research should further explore the factors and mechanisms

influencing wetland ecosystem restoration and develop more

scientifically rigorous methods to ensure the success of ecological

system restoration projects.

5.4 Influence of tidal variations on tidal flat
range and boundaries in coastal wetlands

The method employed in this study still has limitations

in addressing the influence of tidal variations on the range

and boundaries of tidal flats. Future improvements could

include integrating multi-source image fusion, enhancing

the density of temporal image stacks, and combining tidal

schedules to select remote sensing images during low tide

states, thus mitigating the effects of tidal changes. In addition,

exploring more advanced temporal analysis methods is essential.

For instance, Zhi et al. (2022) developed a tidal flat wetland

classification algorithm based on temporal remote sensing

indices using the GEE platform, accurately extracting the

extent of tidal flats using water frequency indices. He et al.

(2023) proposed a tidal flat identification index based on

spectral reflectance differences between tidal flats and other

land cover types, achieving good extraction accuracy in tidal

flat mapping. Jia et al. (2021) developed a method combining

maximum spectral indices composite with the Otsu algorithm

to produce a tidal flat map of China at a 10-meter resolution

(China_Tidal Flat, CTF). These studies serve as crucial

references for refining tidal flat classification and identification

methodologies, providing valuable insights for further optimizing

this study.

6 Conclusion

Aiming at the challenges posed by the dynamism and

complexity of coastal wetlands for precise mapping, this study

developed a novel mapping method using time-series remote

sensing images and a deep learning model. This method achieved

precise mapping and change analysis of the LER, revealing the
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ecological restoration effects and primary sources within the study

area from 2017 to 2022. The results demonstrate that TOFs,

constructed with S-G filtering and J-M distance, outperform

commonly used MCFs in feature importance and classification

accuracy. This highlights the superior capability of TOFs to

capture essential information in time-series remote sensing images,

enhancing precise mapping of coastal wetlands. The results indicate

that by incorporating TOFs into the ResNet model, temporal

and spatial information were effectively integrated, improving

coastal wetlands’ mapping accuracy and classification precision.

Moreover, by comparing land cover mapping results from 2017

to 2022 in the Liaohe Estuary wetlands, this study identified

trends in ecological restoration and highlighted the dominant role

of artificial restoration in rehabilitating salt marsh vegetation in

the region.

This study highlights the importance of selecting KTPs

and optimized features to improve classification accuracy. The

effectiveness of integrating time-series remote sensing image

analysis with a deep learning model in complex coastal wetland

mapping was also validated. Furthermore, the findings of this study

provide valuable technical support for the accurate monitoring of

coastal wetland ecosystems and offer essential data for ecological

protection and restoration efforts. These contributions are crucial

for promoting sustainable development in coastal zones amidst

the challenges posed by global climate change. Future research

can mitigate the effects of tidal variations by fusing multi-source

remote sensing images or temporal remote sensing indices to

obtain more accurate tidal flat boundaries. Advanced algorithms

like transfer learning can further enhance the efficiency and

accuracy of deep learning models by reducing sample bias during

training. Moreover, future studies should further analysis the

factors andmechanisms influencing wetland ecosystem restoration,

accurately distinguishing between artificial and natural restoration

effects to better understand their impacts. This comprehensive

understanding will guide ecological conservation and restoration

efforts, improve their efficiency and sustainability, and facilitate the

healthy development of coastal ecosystems.
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