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Introduction: Crown width (CW) is a significant variable of tree growth, but

measuring crown width is laborious and time-consuming. Diameter at breast

height (D) is a commonly used growth variable in crown width prediction. Here,

a CW-D model was developed to estimate the crown width of larch.

Methods: The data of 1,515 larch trees were collected in Guandi mountain, the

northern China. We chose linear function, quadratic function, and other form

of base functions to develop the CW models, and we introduced non-linear

least squares techniques (NLS), non-linear mixed-e�ect (NLME), and Bayesian

method in modeling process. Because the data was from di�erent plot, we

added a plot level random e�ect in NLME method to predict the e�ect from

environment. For equally comparing the Bayesian method with the NLME, we

also added the plot level random e�ect to the Bayesian MCMC procedure. We

selected Akaike’s information criterion and logarithm likelihood to evaluate NLS

and NLME models, and chose deviance information criterion and stationary test

to test Bayesian method. These methods had another three same indicators (the

determination coe�cient, root mean square error, and mean absolute deviation)

in model evaluation.

Results and discussion: Heteroskedasticity wasn’t occurred in this study. The

model I.2 (quadratic formula) showed a best fitting e�ect in each method, and

Bayesian method with random e�ect was slightly superior than other methods.

Therefore, the selected final model was quadratic function by Bayesian method

with plot level random e�ect, this combination had the highest prediction

accuracy in the larch trees’ crown width estimation of Guandi mountain.

KEYWORDS

crownwidth, diameter at breast height, nonlinear least squares, nonlinearmixed-e�ect,

Bayesian method

1 Introduction

Crown width (CW) is one of the important tree variables that is often used to infer

tree vigor (Sattler and Lemay, 2011; Fu et al., 2013). Crown width usually indicates the

crown shape, crown size, and crown ratio of a tree and reflects the competitiveness of a tree

and that of those around it (Hamilton, 1969; Holdaway, 1986; Hasenauer and Monserud,

1996; Baldwin and Peterson, 1997; Purves et al., 2007). Crown width enables to predict tree
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growth and aboveground biomass, and it can also reflect the forest

age, forest density, and the health degree of a forest (Gering and

May, 1995; O’Brien et al., 1995; Gill et al., 2000; Gilmore, 2001;

Bernetti et al., 2004; Zarnoch et al., 2004; Tahvanainen and Forss,

2008; Paulo and Tomé, 2009; Sönmez, 2009). Many researchers

have described the advantages and effects of crown biomass in the

forest. Crown width has extensive applications, but measuring the

CW of every sampled tree is costly and time-consuming (Bragg,

2001; Condés and Sterba, 2005; Kalliovirta and Tokola, 2005;

Sharma et al., 2016). Therefore, many researchers aimed to estimate

the crownwidth according to the relationship between crownwidth

and tree growth (Gering and May, 1995; Monserud and Marshall,

1999; Gill et al., 2000; Gilmore, 2001).

To estimate crown width, researchers often use models that

rely on key variables such as height, height-diameter ratio, and

diameter at breast height. Among these, diameter at breast height

is the most commonly used factor (Gering and May, 1995; Sharma

et al., 2016). A simple and common way to predict crown width

is by building a model that mainly uses diameter at breast height

as a predictor variable (Bechtold, 2003; Fu et al., 2013, 2017b).

Significant relationships between crown width and stem diameter

have been well-established for many species of trees. Simple linear

relationships, quadratic expressions, and other forms of functions

between crown width and stem diameter have been developed by

many researchers, and these models are usually estimated using

ordinary least squares techniques (NLS) (Bechtold, 2003; Sedmák

and Scheer, 2012; Fu et al., 2013). However, the crown width is

not only related to the tree growth but also connected with the

environment around the tree. For example, climatic conditions,

site conditions, and density of the stand can affect crown width to

different degrees. Observations from the same plot are likely to be

significantly correlated, while the environment will influence the

independence between observations. Consequently, for accurately

estimating the crown width, the plot level effects as a random effect

should be taken into consideration (Fu et al., 2013).

A solution to the aforementioned problem is to use a nonlinear

mixed-effect (NLME) modeling approach (Fu et al., 2017a,c; Duan

et al., 2022). Because the NLME method can explain the fixed and

random effects simultaneously, it can provide an efficient means

to make accurate local predictions. In recent years, it has become

increasingly applied to forest growth and yieldmodeling. The fixed-

effects parameters in NLME models express the same meanings

as in general regression, and the random-effects parameters can

explain the randomness caused by random factors. The NLME

method may have better predictive accuracy than the NLS method,

and some research studies supported this conclusion (Fu et al.,

2013; Chen et al., 2021; Guo et al., 2023). Therefore, comparing the

NLME method with the NLS method in terms of fitting ability is

meaningful, especially for crown width estimation.

The NLS and NLME methods are regarded as the classical

methods in parameter estimation. The Bayesian model is the

other method to efficiently describe complex data and evaluate

the uncertainty in parameters (Zhang et al., 2015). The basic

difference between the NLS and Bayesian statistics is a different

understanding of the probability concept (D’Agostini, 2003;

Sedmák and Scheer, 2012). In Bayesian estimation, the prior

distribution of probabilities of possible parameter values of

the model with the previously defined hyperparameters is

combined, and new objective information is included in the

measured data of a particular experiment (Sedmák and Scheer,

2012).

In recent years, the Bayesian method has been introduced

to estimate parameters for tree growth and yield models

(Zhang et al., 2013, 2014; Wang et al., 2019). Zapata-Cuartas

et al. (2012) introduced the Bayesian method to estimate tree

biomass with high precision. Zhang et al. (2015) used the

Bayesian method to estimate the self-thinning line. A Comparison

between the classical method and the Bayesian method is also

found in some studies, most of which show that the Bayesian

method has a slightly better fitting than the classical method

(Zell et al., 2014; Zianis et al., 2016; Wang et al., 2019).

Some studies also found no significant differences between the

mixed model and the Bayesian hierarchical model (Chen et al.,

2017).

However, most of these studies only compared the NLS with

the Bayesian method, and no random effects were added to the

models. Wang et al. (2019) compared the Bayesianmethod with the

NLMEmethod to ensure that all models were compared at the same

level; all models had the plot level random effect added in the same

position in the NLME and Bayesian methods. The result showed

that the Bayesian method was slightly superior to NLME, especially

in a small sample size. The systematic comparison of these methods

needs further study.

Therefore, this study aims to systematically compare four

methods in modeling (NLS, NLME, Bayesian, and Bayesian with

random effect) and seeks to determine the magnitude of the

differences among them. First, six selected CW-diameter base

models were fitted independently to the full sample data using four

methods. Several indicators of these base models were calculated

for the best model selection in each method, and four superior

models were identified. Second, we compared these four models,

representing four modeling methods, to determine the best CW

model and the best modeling method for 1,515 larch trees.

2 Materials and methods

2.1 Data

The experimental area was located at Guandi Mountain,

Jiaocheng County, Shanxi Province, northern China (Figure 1).

The growth data of 1,515 Prince Rupprecht larch trees were

collected from 25 permanent sample plots (PSP), which were

established in the natural stands of the Guandi Mountain forest.

The 25 PSPs, each with a square shape, were established in 2015.

Guandi Mountain is one of the most important regions where

Prince Rupprecht larch is prevalent in China (Fu et al., 2017b).

The selected natural PSPs provided representative information on

various stand structures, densities, and dominant heights (Table 1).

Data collection was undertaken by the Research Institute of

Forest Resources Information Techniques, The Chinese Academy

of Forestry.

Crown width and diameter at breast height of all standing

trees with diameter at breast height of ≥3 cm were measured in

all 25 PSPs. Crown width was calculated as the half-sum of the

four crown radii. The four crown radii were measured as the
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FIGURE 1

The experimental area, Guandi Mountain, Jiaocheng County, in the Shanxi Province. The red point denotes sample plots, and Shanxi province was

described using a black border line and gray base.

horizontal distances extending from the center of the tree trunk

to the outermost extent of the crown in four cardinal directions

(North, South, East, and West) using a laser rangefinder and a

compass. A summary statistics of the stand factors of the study

plots are presented in Table 1. The relationship between CW and D

of all 1,515 larch trees is shown in Figure 2. The nonlinear mixed

effects models were constructed using R-3.5.1, and the Bayesian

models were run through the MCMC procedure in SAS Institute,

Inc (2011).

2.2 Methods

2.2.1 Candidate CW-D models
Six candidate models were chosen to model the relationship

between crown width and D for trees (Fu et al., 2013). The

simplest model used is the linear model (Model I.1). Additionally,

some nonlinear models were used in this study for selecting the

best model (Models I.2–I.6). These standard models with their

function details and function forms are listed in Table 2. All

candidate models except Model I.1 are nonlinear, and all functions

except Model I.2 have two formal parameters and Model I.2 has

three parameters.

2.2.2 Nonlinear mixed e�ect model
This study involves only one level hierarchical variable. It is a

one-level nonlinear mixed effect model as defined by Pinheiro and

Bates (2000), and formulated as follows (Carey, 2001; Tang et al.,

2015):

{

yij = f (φij, xij)+ εij,i = 1, ...,M; j = 1, ..., ni
φij = Aijβ + Bijui, ui ∼ N(0,ψ)

where the indices i and j denote the plot level and observation,

respectively. yij is a response value of the jth observation (tree)

on the ith group, M is the number of the plot level groups, ni is

the number of observations (larch trees) on the ith group, and f

(. . . ) is a real-valued and differentiable function of a group-specific

parameter vector ϕij and a covariate xij. β is a p-dimensional

vector of fixed effects, and the plot level random effect ui is the

independent normally distributed q-dimensional vector with zero

mean and respective variance–covariance matrix ψ . Aij and Bij are

design matrices. ui and εij are independent. The within-group error

εi = (εi1, εi2, · · · , εini )
T is assumed to be normally distributed

with zero expectation and a positive-definite variance–covariance

structure Ri is generally expressed as a function of the parameter

vector λ (Fu et al., 2013):
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TABLE 1 Summary of stand factors of the study plots.

Plot Area/ha Density/stems·ha−1 Dominant
height/m

D/cm CW/m

Mean SD Mean SD

1 0.04 350 25.7 27.8 6.1 4.0 1.1

2 0.04 650 26.9 33.9 3.4 4.2 1.1

3 0.04 750 30.6 27.5 10.7 3.6 1.1

4 0.04 875 31.3 24.3 12.4 3.5 1.1

5 0.04 1,200 31.0 26.1 7.9 2.1 0.8

6 0.04 725 29.8 29.0 5.8 2.2 0.6

7 0.04 950 29.5 28.8 8.5 2.5 0.9

8 0.04 825 30.3 31.4 7.7 2.4 0.7

9 0.04 950 28.4 26.9 6.6 2.6 0.7

10 0.04 575 26.1 30.5 8.8 4.6 1.7

11 0.04 1,150 29.2 26.4 7.4 3.5 1.2

12 0.04 650 29.0 30.5 6.2 4.3 1.1

13 0.04 700 30.6 28.7 9.1 3.8 1.2

14 0.04 475 26.0 25.6 12.8 3.8 1.3

15 0.04 525 31.3 30.4 12.6 4.0 1.3

16 0.04 875 27.7 26.8 11.0 4.2 1.3

17 0.04 325 27.8 35.4 10.3 5.7 1.4

18 0.25 325 27.1 29.5 12.8 5.3 1.7

19 0.25 500 28.5 27.3 10.7 4.2 1.3

20 0.25 338 28.7 28.6 12.5 4.4 1.9

21 0.25 571 29.0 28.0 9.3 3.5 1.2

22 0.25 592 24.2 25.0 7.8 4.6 1.5

23 0.25 417 24.7 29.3 8.1 5.4 1.4

24 0.25 671 23.5 22.5 8.6 3.8 1.1

25 0.25 638 24.0 24.8 7.3 3.9 1.2

The density was calculated as the number of trees per hectare in each plot. Four or twenty-five tallest trees were selected at a density of 100 trees/ha to calculate the dominant height for each

plot. D represents diameter at breast height, and CW represents crown width. SD indicates the standard deviation of D or CW.

εi ∼ N(0,Ri(λ)),

In this study, the sample plot provides the random effect.

2.2.3 The Bayesian method
This study applies Bayesian statistics as one of the ways to

develop a CW-D model by modeling six candidate functions.

Bayesian statistics is a method developed based on Bayes’

rule, which transforms prior probabilities into posterior

probabilities, updating the inference of parameters as evidence

starts accumulating.

Zhang et al. (2013, 2014) presented Bayes’ rule in detail. Let y

= (y1, y2,..., yn) represent a vector of data and θ = (θ1, θ2,..., θn)

be a vector of parameters to be estimated. Bayes’ expression is given

as follows:

p(y, θ) = p(y
∣

∣θ)p(θ) = p(θ
∣

∣y)p(y) ,

where p(θ) is the prior distribution for the parameters, and p(θ |y)

is the posterior distribution of the Bayesian frameworks.

This study applies the Bayesian method to build crown width

models, obtain prior distributions of parameters, and finally

achieve posterior distributions. The initial prior information comes

from the parameter estimation of NLME. The prior information

is adjusted continuously to reach convergence based on the initial

prior distribution. All the Bayesian processes were performed in

SAS by using the MCMC process. For every Bayesian estimation

process, a burn-in period of 10,000 steps and 100,000 iterations

were used to estimate parameters. The thinning parameter was

set to 5 to reduce the correlation between neighboring iterations

(Wang et al., 2019).
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FIGURE 2

The scatter plot of CW and D of all 1,515 larch trees.

2.2.4 Model selection
For testing the goodness-of-fit of six functions, several

indicators were calculated. The best functions of the NLS

and NLME methods were selected by Akaike’s information

criterion (AIC) and log-likelihood (Loglik). In contrast, the

deviance information criterion (DIC) and stationary test were

used for Bayesian model selection. All methods calculated the

determination coefficient (R2), mean absolute deviation (MAD),

and root mean square error (RMSE) at the same time for the

best model selection and different methods of comparison. These

indicators are introduced in detail as follows:

DIC = D̄+ N,

where D̄ = Eθ {−2log[p(y
∣

∣θ)]} represents the posterior mean of

the deviance, N = D̄ + 2log[p(y
∣

∣θ)] is the effective number of

parameters in the model, and DIC represents the complexity of the

model. A smaller value of DIC for a model indicates a better fit to

the data.

The stationary test is a random statistical process that tests

whether candidate models are converged. When a model reaches

convergence, it means that it has passed the stationary test.

R2 = 1−
∑ (y− “y)2

(y− ȳ)2
,

MAD =
∑

∣

∣y− “y
∣

∣/n,

RMSE =

√

e2 + σe2,

where y is the observed tree crown width, “y is the predicted tree

crown width, ȳ is the mean value of the observed tree crown width,

and n is the number of individual trees. RMSE combines mean

bias and bias variance to provide a robust measure of the overall

model accuracy, where e =
∑

(y − ŷ)/n is the mean bias and

σe
2 =

∑

(y− ŷ− ē)2/(n− 1) is the bias variance (Fu et al., 2017b).

A higher R2 and lower value of RMSE and MAD indicate a good

model performance.

TABLE 2 CW-D base models considered in the research.

Model no. Function Function form

I.1 CW = a1 + a2D Linear

I.2 CW = a1 + a2D+ a3D
2 Quadratic

I.3 CW = a1D
a2 Power

I.4 CW = a1[1− exp(a2D)] Monomolecular

I.5 CW = D/(a1 + a2D)]
2 Hossfeld1

I.6 CW = exp(a1 + a2D) Growth

CW, crown width; D, diameter at breast height; a1, a2, and a3 are formal parameters.

3 Results

3.1 NLS CW models

Several fitting indicators of six base functions are presented in

Table 3. According to these indicators, these six models had a big

difference in fitting. R2 of Models I.4 and I.5 was lower than 0.3,

and R2 of the other four models was higher than 0.3. The MAD

of Models I.4 and I.5 was lower than 1, while that of the other

four models was higher than 1, which indicated that Models I.4

and I.5 were not suited for crown width modeling. Table 3 shows

Models I.2 and I.6 presented superior fitting abilities than the other

four base models. We compared all the indicators, and Model

I.2 (a quadratic form) showed a slightly better predictive ability.

Therefore, Model I.2 was selected as the best model for developing

the crown width model using the NLSmethod. The parameters and

standard error of this function are listed in Table 4.

3.2 Bayesian CW models

Table 3 shows the goodness-of-fit of the Bayesian method; all

models passed the stationary test and reached convergence. Model

I.5 had the lowest R2 (0.256) and the highest RMSE, MAD, and

DIC; thus, it was not appropriate for use as a CW model. Model

I.2 consistently had the best performance with or without random

effect, as it had the lowest DIC value. Therefore, Model I.2 was

selected as the best model for the Bayesian method, and the

parameters of the function are shown in Table 4.

3.3 Bayesian CW models with random
e�ects at sample plot level

Table 3 also lists the fitting indicators of the Bayesian models

with random effects at the sample plot level. All the models passed

the stationary test. Compared to the NLS, the R2 of all six models

was higher than 0.3, and MAD was lower than 1. Though the

predictive ability was approved in all six models, Model I.2 was still

the best CWmodel in this modeling method.
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TABLE 3 Fitting performance of four methods for CW-D base models.

Methods Model no. R
2 RMSE MAD AIC Loglik DIC Stationary test

NLS I.1 0.330 1.243 0.968 4,964.63 −2,479.31 – –

I.2 0.353 1.222 0.947 4,914.82 −2,453.41 – –

I.3 0.308 1.264 0.986 5,014.89 −2,504.44 – –

I.4 0.275 1.293 1.013 5,083.51 −2,538.75 – –

I.5 0.256 1.310 1.027 5,123.20 −2,558.60 – –

I.6 0.349 1.225 0.950 4,920.89 −2,457.44 – –

NLME I.1 0.395 1.181 0.926 4,881.20 −2,436.60 – –

I.2 0.412 1.164 0.912 4,837.88 −2,413.94 – –

I.3 0.373 1.202 0.948 4,932.74 −2,462.37 – –

I.4 0.343 1.231 0.975 5,004.80 −2,498.40 – –

I.5 0.327 1.246 0.987 5,041.97 −2,516.98 – –

I.6 0.410 1.167 0.914 4,840.94 −2,416.47 – –

Bayesian I.1 0.326 1.25 0.971 – – 4,971.35 Passed

I.2 0.353 1.22 0.947 – – 4,912.65 Passed

I.3 0.305 1.27 0.988 – – 5,017.72 Passed

I.4 0.275 1.29 1.013 – – 5,082.14 Passed

I.5 0.256 1.31 1.028 – – 5,121.97 Passed

I.6 0.349 1.23 0.950 – – 4,920.48 Passed

Bayesian (u) I.1 0.383 1.19 0.935 – – 4,883.72 Passed

I.2 0.413 1.16 0.913 – – 4,810.21 Passed

I.3 0.375 1.20 0.946 – – 4,904.71 Passed

I.4 0.344 1.23 0.973 – – 4,975.06 Passed

I.5 0.328 1.25 0.985 – – 5,013.46 Passed

I.6 0.411 1.17 0.913 – – 4,815.54 Passed

NLS, ordinary least-squares regression; NLME, nonlinear mixed effects model; Bayesian, Bayesian model; Bayesian(u), Bayesian mixed-effects model; R2 , the determination coefficient; RMSE,

root mean square error; MAD, mean absolute deviation; AIC, Akaike information criterion; Loglik, log-likelihood; DIC, deviance information criterion; u, random effect.

TABLE 4 Parameters of four best models selected by four methods.

Model no. a1 (SD) a2 (SD) a3 (SD)

I.2 (NLS) 2.679 (0.186) −0.007 (0.014) 0.0018 (0.0002)

I.2 (NLME) 2.625 (0.194) 0.0008 (0.013) 0.0016 (0.0002)

I.2 (Bayesian) 2.668 (0.031) −0.0064 (0.004) 0.0018 (0.0001)

I.2 (Bayesian-u) 2.669 (0.014) −0.0053 (0.005) 0.0017 (0.0001)

a1, a2, and a3, formal parameters of models; SD, standard deviation.

3.4 NLME CW models

The NLME method can explain the general regression and the

random effects at the same time. The fitting effects of this method

are also listed in Table 3. Compared to the NLS method, all base

models had better goodness-of-fit; furthermore, R2 values were

higher, while RMSE, MAD, and AIC values were lower than the

NLSmethod. Similar to the three methods discussed, Model I.2 was

observed as the best CWmodel in NLME.

3.5 Models evaluation

In this study, several indicators were used to select the best

models among the four methods. The results of each method and

each model are listed in Table 3. Table 3 also shows the fitting

performance of NLS and NLME. According to these indicators,

Model I.2 has the lowest AIC and the highest Loglik for both NLS

and NLME and the lowest DIC for the Bayesian method. Thus,

Model I.2 is the best model among the four methods. Comparing

these four models, we found a significant difference when the plot

random effect was added to the model. The R2 of NLME was

16.7% higher than that of NLS, and the RMSE, MAD, AIC, and

absolute value of Loglik all decreased than NLS. In addition, the

Bayesian method with random effects at the sample plot level was

superior to the general Bayesian method, and the R2 showed a

16.9% increase.

According to the results, although evaluation indicators of the

NLS and Bayesian methods were almost identical, the Bayesian

method was slightly superior to NLS. The same result was obtained

when comparing between NLME and Bayesian with random effects
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TABLE 5 The AIC and Loglik of NLME models.

Indicators No. a1 a2 a3 a1a2 a2a3 a1a3 a1a2a3

AIC I.1 4,881.20 4,881.41 – 4,879.27 – – –

I.2 4,837.88 4,839.11 4,854.67 4,838.66 4,834.88 4,838.76 Misconvergence

I.3 4,932.73 4,930.57 – Misconvergence – – –

I.4 5,004.8 5,018.56 – Misconvergence – – –

I.5 5,041.97 5,040.78 – 5,023.85 – – –

I.6 4,840.94 4,855.52 – 4,841.02 – – –

Loglik I.1 −2,436.60 −2,436.70 – −2,433.63 – – –

I.2 −2,413.94 −2,414.55 −2,422.33 −2,412.33 −2,410.44 −2,412.38 Misconvergence

I.3 −2,462.36 −2,461.28 – Misconvergence – – –

I.4 −2,498.4 −2,505.28 – Misconvergence – – –

I.5 −2,516.98 −2,516.39 – −2,505.92 – – –

I.6 −2,416.47 −2,423.76 – −2,414.51 – – –

a1 means to add the random effect into parameter a1, a1a2 means to add the random effect into parameter a1 and a2.

at the sample plot level. The parameters of the fourmodels are listed

in Table 4. All parameters of the four methods were similar; only a2

in NLME had a different sign. According to the standard deviation,

the Bayesian method has a lower standard deviation value than

the classical method, proving that the Bayesian method has better

stability than the classical method in parameter estimation.

4 Discussion

This study developed a general individual tree CW-D model to

estimate the CW of larch. Crown width is an important variable of

trees. It is the basis of crown biomass calculation, the crown layer

competition measurement, and the tree’s age estimation (O’Brien

et al., 1995; Bragg, 2001; Purves et al., 2007; Tahvanainen and Forss,

2008). In this study, we compared four different modeling methods

and six different basemodels to choose the best method and the best

model for CW estimation. This study also attempted to compare

four parameter estimation methods to determine the magnitude of

the differences.

The results showed that Model I.2 was the best model and

had the best fitting effect among all four methods. In fact, the

scatter plot of trees exhibited a quadratic or linear relationship

between CW and D, as shown in Figure 2. This finding could be

due to a great relationship between the location of the sample plot

and tree species (Smith, 1983; Dale et al., 1985). Many researchers

have concluded that species and experimental locations should be

taken into consideration when developing tree growth and yield

models as there may be a strong correlation between the adaption

of different species and different areas. Therefore, we need to use

a regional model to calculate biomass and tree height or develop

a new specific model tailored to specific tree species and locations.

From the results of the four methods (Table 3), we observed that

although the different methods had minor variations in parameter

values, the order of fitting effects in eachmodel remained consistent

across all methods. This conclusion also establishes that there is an

appropriate difference in each model, and this difference is similar

across all methods.

The difference in the area not only affected the base model

selection but also had effects on parameter estimation, and

therefore, NLME models were introduced. We also added the

random effect into each base model. This aid us in dealing with

the hierarchical data structure because observations were from

different sample plots (Li et al., 2011; Xu et al., 2014; Fu et al.,

2017b). For a better comparison between the Bayesian method

and the NLME method, we added the random effect into Bayesian

models when processing the Bayesian method in the SAS MCMC

procedure, which was used to compare these two methods at the

same level. In this study, our data was from only one area, Guandi

Mountain, thus we decided to develop a one-level NLME model

with a plot level random effect added; thus, the effect of different

sample plots would be predicted.

After determining the random effect, we need to choose where

to place the random effect in the models. This study tested this

question. Regarding AIC and Loglik as indicators, we placed

the plot level random effect in any combination of the models’

parameters (for example, models with two parameters exist in

three combinations—a1/a2/a1a2). A lower AIC and higher Loglik

indicated better goodness of fit. The results of the NLME models

are listed in Table 5. It reveals a trend that the more parameters

the random effect added, the better the fitting effect would be, with

the exception of Model I.6. This trend might be because the plot

level random effect has effects on each parameter, although the

significant and partial effects were different. In short, the effect of

random effect was not fixed on one specific parameter, and it might

work on any parameter.

Another conclusion indicated that if the random effect was

added in all parameters, the model found it hard to reach

convergence. In our study, Models I.2, I.3, and I.4 showed

the mentioned problem; when we added the random effect

to all parameters, these models did not reach convergence.

Even in the Bayesian MCMC processing (SAS), when random

effects were added to two or more parameters, this convergence
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FIGURE 3

Residuals of best models chosen by four methods (Model I.2). (A) NLS. (B) NLME. (C) Bayesian. (D) Bayesian (u).

problem occurred. Therefore, to ensure all models and methods

are compared at the same level, and all models can reach

convergence, we added the plot level random effect only

in parameter a1; consequently our comparison of methods

is justified.

The results of the comparison showed that the Bayesianmethod

with plot random effect had a better fitness effect than the other

three methods. A similar comparison was made in previous studies

(Zapata-Cuartas et al., 2012; Wang et al., 2019). Wang et al. (2019)

proved that the Bayesian method was slightly superior to the

classical method (NLS, NLME), and the estimated results of the

parameters showed that the Bayesian method was more stable.

From Tables 3, 4, we obtained the same results; the predicted results

of parameters and indicators showed that the Bayesian method

was superior and stable. In addition, we can also conclude that the

Bayesian method has a good fitting effect when the sample data is

small (Wang et al., 2019). Zapata-Cuartas et al. (2012) compared

different sample data sizes and concluded that the Bayesian method

is better than the least-square regression in small sample sizes.

Wang et al. (2019) made the same comparison and showed

that the Bayesian method was more appropriate for estimating

aboveground biomass when the sample size was small. Due to

spatial constraints and the identified main focus of this study, we

did not compare different sample sizes, but we will attempt it in

future research.

In some studies, a heteroscedasticity problem often occurs

in preliminary analysis. Heteroscedasticity means the residuals

of models obviously tended to increase or decrease as the

predicted values increased (Fu et al., 2017b). Several functions

applied to a variable account for heteroscedasticity, and the

exponential variance function is one of the most commonly

used. These functions could cause the unusual trend to disappear

in modeling processing (Fu et al., 2017c). The residuals of

predictions from four superior CW models with or without

the plot level random effect are shown in Figure 3, which

shows that there was no heteroscedasticity problem in our

analyses, and therefore, we did not use those functions in

this study.

The CW models serve as valuable sub-models for tree growth

simulators, which are essential for forestry decision-making. The

models with random effects enhance prediction accuracy by

leveraging limited tree information (Meng and Huang, 2009;
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Fu et al., 2020). The key lies in selecting sample trees, which

must represent the entire population within the sample plot. By

estimating the random effect parameters from these selected trees,

the models with random effects can capture the inherent variability

within the dataset. However, when model users encounter

difficulties in localizing the models (NLME and Bayesian with

random effect) through the adjustment of sample plot-level random

effect parameters, such as ui, which can be estimated using

empirical best linear unbiased prediction theory (Pinheiro and

Bates, 2000), alternative approaches need to be considered. In such

scenarios, NLS may serve as a more practical alternative than the

mean response prediction of the models (NLME and Bayesian with

random effect) (Sharma and Breidenbach, 2015).

5 Conclusion

A predictive model for determining the crown width of

individual larch trees was formulated. Given its significant

influence on tree growth, the diameter at breast height was

selected as the primary predictor in this model. Model I.2

emerged as the optimal base model for predicting crown width,

as all four methods (NLS, NLME, Bayesian, and Bayesian with

random effect) concurred on its superiority. Furthermore,

the Bayesian model with random effect added in a1 was

proven to be the most effective approach in developing the

crown width model. Therefore, we recommend utilizing

Model I.2 by the Bayesian approach with a random effect

for estimating the crown width of Prince Rupprecht larch in

northern China.
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