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Introduction: European forests face increasing threats due to climate change-

induced stressors, which create the perfect conditions for bark beetle outbreaks.

The most important spruce forest pest in Europe is the European Spruce

Bark Beetle (Ips typographus L.). Effective management of I. typographus

outbreaks necessitates the timely detection of recently attacked spruce trees,

which is challenging given the difficulty in spotting symptoms on infested

tree crowns. Bark beetle population density is one of many factors that can

affect infestation rate and symptoms development. This study compares the

appearance of early symptoms in endemic and epidemic bark beetle populations

using highresolution Unmanned Aerial Vehicles (UAV) multispectral imagery.

Methods: In spring of 2022, host colonization by bark beetles was induced on

groups of spruce trees growing in 10 sites in the Southern Alps, characterized by

different population density (5 epidemic and 5 endemic). A multispectral sensor

mounted on a drone captured images once every 2 weeks, from May to August

2022. The analyses of a set of vegetational indices allowed the actual infested

trees’ reflectance features and symptoms appearance to be observed at each

site, comparing them with those of unattacked trees.

Results: Results show that high bark beetles population density triggers a more

rapid and intense response regarding the emergence of symptoms. Infested

trees were detected at least 1 month before symptoms became evident to the

human eye (red phase) in epidemic sites, while this was not possible in endemic

sites. Key performing vegetation indices included NDVI (Normalized Difference

Vegetation Index), SAVI (Soil Adjust Vegetation Index, with a correction factor of

0.44), and NDRE (Normalized Difference Red Edge index).

Discussion: This early-detection approach could allow automatic diagnosis of

bark beetles’ infestations and provide useful guidance for the management of

areas suffering pest outbreaks.

KEYWORDS

Ips typographus, remote sensing, early warning, UAV, early symptoms, epidemic
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1 Introduction

European forests are facing increasing threats and
vulnerabilities due to climate change-driven stress factors,
from high temperatures and droughts to violent storms (Fischer
and Knutti, 2015). These disturbances create favorable conditions
for forest pest outbreaks (Marini et al., 2012; Yu et al., 2021),
particularly bark beetles that depend on weakened trees to feed
and breed. The most important forest pest in Europe, which can
be fostered by these forest disturbances, is the European spruce
bark beetle Ips typographus L. (Wermelinger, 2004; Mezei et al.,
2017; Candotti et al., 2022). In the Southern Alps, the violent
windstorm that occurred at the end of 2018 (Vaia) elicited an
epidemic outbreak of I. typographus starting in windthrown
spruces, and then extending to nearby healthy ones (Faccoli
et al., 2022; Nardi et al., 2022a). Prompt detection of bark beetle
infestations in the regions affected by the disturbances is vital for
effective management (Faccoli and Bernardinelli, 2014; Dalponte
et al., 2020). However, identifying early infestation symptoms is
challenging for ground monitoring, especially on large and poorly
accessible areas (Iordache et al., 2020; Luo et al., 2022), since the
first signs of the infestation (i.e., entrance holes, resin flows, and
boring dust on the trunk) are only detectable when very near
to the trees’ trunks. New early detection approaches in the field
involve sniffer dogs trained to follow the scent of the I. typographus
aggregation pheromone. Dog-handler pairs showed an overall
higher efficiency in locating the recently attacked and colonized
spruce trees compared to the expert humans alone (Vošvrdová
et al., 2023), with the possibility to detect attacked trees over 100 m
away (Johansson et al., 2019). This new bio-detection approach has
proved very efficient for an immediate or very early detection time
scale. Nonetheless, it has still limitations regarding the spatial scale
(i.e., the limited area that can be covered), possible difficulties for
the access of dog-handler pairs in steep or inaccessible areas that
are often present in the alpine and pre-alpine environments, and
time needed to verify the attacks on each tree detected by the dogs.

Bark colonization by insects affects host health, producing
changes in the canopy reflectance in some bands of the light
spectrum (especially in the infrared spectrum) (Abdullah et al.,
2019). These changes occur a few months after the onset of
colonization, when the spruce crown still appears green (the so-
called green phase), up to the late infestation stages, when the
crown becomes first red (red phase) and then loses the needles (gray
phase, as shown in Figure 1). Remote sensing methods have a great
potential to obtain useful information about damage due to pests’
infestations, over a range of spatial extension and resolution (Näsi
et al., 2015). Examples of remote sensing methods used for this
purpose are time-series analysis of multispectral or hyperspectral
imagery acquired by satellites, airplanes, or Unmanned Aerial
Vehicles (UAV), i.e., drones. These methods are particularly
effective to map the damages caused by pests when infestations are
in their late stages, i.e., when symptoms are fully visible (Fassnacht
et al., 2014; Gomez et al., 2020). This is useful to quantify damages
but not to detect infestations at their early stages (green phase),
which would be needed in order to promptly map new infestation
spots and take effective actions to contain the outbreak by removing
infested trees before offspring emergence (Abdullah et al., 2019;
Fernandez-Carrillo et al., 2020; Huo et al., 2021; Bárta et al.,

2022). Previous works investigated the effectiveness of combining
remote sensing technology with machine learning models to detect
early vegetation stress symptoms, using images acquired both by
satellites (Meddens et al., 2011; Abdullah et al., 2018; Huo et al.,
2020, 2021), airplanes (Hellwig et al., 2021) and drones (Näsi et al.,
2015; Otsu et al., 2019; Honkavaara et al., 2020; Yu et al., 2021; Huo
et al., 2023).

Satellite imagery, while very useful to monitor outbreaks over
very large areas, has some limits for detection of the early stages
of infestation, mainly because of the coarse resolution of the most
accessible imagery (e.g., Sentinel-2) (Bárta et al., 2021; Minařík
et al., 2021; Bozzini et al., 2023). Even imagery with higher spatial
resolution, such as PlanetScope (Planet Labs PBC, USA), Pléiades
(CNES, France), or WorldView (Maxar, USA) may not be available
for certain areas, especially on mountains, and can be affected
by local issues such as shadows or clouds. The use of imagery
acquired by UAVs offer promising solutions for early detection.
Indeed, the higher spatial resolution (i.e., the possibility to analyze
the reflectance of single trees instead of groups of trees or wider
areas) could help to overcome some of the issues of the use of
satellite imagery alone (like the mixed signal caused by different
conditions within the same area/pixel) (Mandl and Lang, 2023).
Näsi et al. (2015) pioneered the use of UAV-based hyperspectral
imagery to distinguish various stages of I. typographus infestations,
obtaining an overall accuracy of 76% when using three color classes
(healthy, infested, and dead). Honkavaara et al. (2020) applied
Random Forest classification on hyperspectral and multispectral
UAV images to classify the categories “bark beetle green attack,”
“root-rot,” and “healthy,” while Klouček et al. (2019) tested the
detection ability of UAV images over different time points. They
calculated a set of vegetational indices (VIs) and analyzed their
variation in time, applying a Maximum Likelihood Classifier
to distinguish infested from healthy trees, obtaining increased
accuracies with later time of image acquisition for all indices.
Turkulainen et al. (2023) combined machine learning algorithms
with UAV multispectral and hyperspectral images, finding overall
high classification accuracies for the healthy (green and faded green
trees) and dead (reddish/brown and gray) spruce classes, but poorer
accuracies for the infested class (yellow-yellowish trees). Finally,
Huo et al. (2023) employed UAV multispectral images in spruce
forests in Sweden to follow I. typographus infestation development
over time. They observed large variances between individual trees
within the same infestation stage, and they were able to georefer
90% of the infested trees after 10 weeks of infestation, and proposed
weeks 5–10 of the infestation as a key period for detection.

The success, often limited, in detecting and classifying recently
attacked trees is due to the variability and inhomogeneity of
symptoms emergence on tree crowns (Cessna et al., 2021). In
fact, symptoms emergence may vary in time and space, depending
on factors such as, for instance, water availability and bark
beetles’ population density (Kautz et al., 2023). The effects of
water availability (i.e., drought stress) on the vitality of trees
and the susceptibility to pest attacks have been investigated, also
using remote sensing methods (Anderegg et al., 2015; Müller
et al., 2022; Nardi et al., 2022b; Le et al., 2023). The effects that
population abundance may have on symptoms’ emergence and
severity are also interesting factors to be addressed. Boone et al.
(2011) observed that the effects of host defense mechanisms at
the tree level on contrasting bark beetles (mountain pine beetle)
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FIGURE 1

The three phases of spruce trees infested by Ips typographus: green phase (left), red phase (middle), gray phase (right). Remote detection of red
and gray phases (red frame) is useful for damage quantification and the monitoring of outbreaks’ expansion, while remote detection of the green
phase (blue frame) is necessary for an effective outbreak management and damage limitation.

attacks and reproductive success can change depending on beetle
population density at the stand level. Weslien and Regnander
(1990) stated that, although the density of I. typographus galleries
within the attacked parts of the trees’ stems were similar in
both the non-outbreak (endemic phase) and outbreak (epidemic
phase) conditions, trees had higher proportions of their stem
length colonized during the epidemic phase than trees killed under
endemic conditions. According to these observations, symptoms
occurrence and severity and hence their detectability may differ
in trees attacked by I. typographus in endemic or epidemic
populations. Nevertheless, we do not know either if infestations can
be detected equally in all population density conditions, or if the
symptoms of infestation develop in the same way in trees colonized
by I. typographus in endemic and epidemic populations.

In this respect, utilizing high-resolution UAV multispectral
imagery on spruce-covered areas with endemic and epidemic
bark beetles’ populations, we tested if the detectability of the
infestations’ early symptoms would be affected by the different
local population abundance. We induced host colonization by bark
beetles on groups of spruce trees growing in sites with endemic
and epidemic populations in the Southern Alps. We then used
revisiting multispectral UAV imagery to check for differences in
the infested trees’ reflectance features and symptoms emergence in
time from the infestation onset. Meteorological data (temperature
and precipitation) and tree growth performance parameters (mean
DBH, i.e., diameter at breast height, average height, number of tree
rings occurring in the outer 5 cm of the trunks) were also taken into
account, to check possible effects on symptoms emergence.

2 Materials and methods

2.1 Study areas

The study was conducted in 2022 in two localities of North-
Eastern Italy (northern part of the Veneto region) (Figure 2). Both

localities (municipality of Canale d’Agordo, 46.3280◦N 11.8970◦E,
thereafter called “epidemic”; municipality of Limana, 46.0405◦N
12.2345◦E, thereafter called “endemic”) are characterized by alpine
and pre-alpine ecoregions, as defined by Blasi et al. (2014).
These ecoregions are dominated by conifer forests with a strong
prevalence of Norway spruce [Picea abies (L.) H. Karst.] followed
by larch (Larix decidua Miller) and silver fir (Abies alba Miller).
At lower elevations, spruce stands are often mixed with beech
(Fagus sylvatica L.). In general, the Southern Alps I. typographus
populations are bivoltine at low altitude (Faccoli and Stergulc,
2006). According to the captures gathered from pheromone
traps set up in 2021 in the experimental area (deployed by the
phytosanitary service of the Veneto Region), the epidemic locality
was characterized by high population abundance (46,608 mean
captures per trap for n = 7 traps, SE = 1,824). This was about
twice the abundance of the endemic locality (28,936 mean captures
per trap for n = 4 traps, SE = 1,601). Both capture values were
much higher than the threshold-risk for I. typographus outbreaks
(8,000–10,000 captures per trap) (Faccoli and Stergulc, 2004),
due to the regional increase of the population density after the
storm event. However, the ratio between summer (July–August
period) and spring captures (May–June period) were 1.51 in the
epidemic localities indicating an increasing trend, and only 0.17 in
the endemic sites indicating decreasing populations (Faccoli and
Stergulc, 2006). An overview of the captures per trap gathered in
2021 (mean and SE) is presented in Supplementary Table 1. We set
up 10 experimental sites, 5 in epidemic localities (site 1–5, average
size of 1.69 ha) and 5 in endemic localities (site 6–10, average size of
1.72 ha) (Supplementary Figure 1). Epidemic sites 1–5 were placed
on an elevation ranging from 1,150 to 1,270 m asl, while endemic
sites 6–10 were placed on a lower elevation, ranging from 875 to
1,050 m asl. The experimental sites were characterized by not steep
slope, mature spruce stands and vicinity to previous I. typographus
infestations. The characteristics of the 10 sites are summarized in
Supplementary Table 2.
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FIGURE 2

Location of the two types of sites affected by Ips typographus infestations (endemic, i.e., non-outbreak, and epidemic, i.e., outbreak conditions) in
the northern part of the Veneto Region, NE Italy.

2.2 Test trees and insect monitoring

In each experimental site, five healthy spruces (test trees)
were baited by sticking an I. typographus aggregation pheromone
dispenser on the trunk [Superwood, Serbios, composed by 2-
Methyl-3-buten-2-ol (98%) and cis-Verbenol (97%) with mean
release rate of 40 and 3 mg/day, respectively], at approximately 2 m
above ground to elicit the bark beetles’ colonization. The effect of
these pheromone dispensers last up to 2 months, and the dispensers
were removed from the trees at the end of the study period. All
test trees were baited between the 21st of April and 4th of May,
before the beginning of post-winter beetle emergence. For every
experimental site five control unbaited trees were also identified
among the trees that remained green and unattacked at the end of
the study period (2 August 2022). Only in site 2 (epidemic) it was
not possible to identify control trees because all trees were attacked
by bark beetles at the end of the study period. The set of all the test
trees and the control trees constituted the “experimental” dataset,
both for the endemic and the epidemic sites. A stylized scheme of
the experimental design is represented in Figure 3.

In total, 50 test trees and 45 control trees were selected
and monitored. Insect development within the infested trees was
monitored regularly in the field by periodically removing portions
of bark (c. 10 × 15 cm, sampled under 2 m of height) on the
test trees and checking presence and developmental stage of the
insects (eggs, larvae, pupae, and callow adults). The monitoring
was conducted twice per month, approximatively every 15 days,
until the end of the study period, on 11th and 31st of May, 15th
of June, 1st and 22nd of July, and 2nd of August 2022. The time of

the infestation symptoms’ appearance on the tree crowns was also
noted. The sample of infested and healthy trees was extended from
the experimental set of trees (95 trees, “experimental dataset”) by
including, for each experimental site, all the spruce trees occurring
in the whole experimental area (Figure 3). The extended set of
trees (“extended dataset”) included 742 spruce trees, of which
202 resulted infested at the end of the period (“infested”) and
540 remained unattacked and healthy until the end of the study
period (“healthy”). The procedure for the selection of the extended
set of trees is described in detail in section “2.5 Brightest pixels
extraction.”

To monitor the population abundance, eight black Theysohn
traps (four in the epidemic sites and four in the endemic sites) were
set up in the vicinity of the experimental sites but far enough away
to not affect the process of tree colonization by I. typographus, and
baited at the end of April with the same aggregation pheromone
blend used on the test trees. The position of the traps in relation to
the experimental sites can be seen in Supplementary Figure 2.

2.3 Meteorological data and tree growth

For the whole 2022 and for the period of study (11th of May –
2nd of August 2022) the meteorological data (temperature and
precipitations) were provided by two meteorological stations of the
local agency for environmental protection (ARPAV).1 The station

1 https://www.arpa.veneto.it/dati-ambientali/dati-storici/meteo-idro-
nivo/ultimi_anni
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FIGURE 3

Scheme of the experimental design for one experimental site. In each experimental site, five healthy spruces (test trees, “experimental” dataset) were
baited by sticking an Ips typographus aggregation pheromone dispenser on the trunk (Superwood, Serbios) to elicit the bark beetles’ colonization.
Five control unbaited trees were also identified among the trees that remained green and unattacked at the end of the study period, and were
included in the “experimental” dataset. In each experimental site, all the detected trees (in addition to the ones belonging in the “experimental”
dataset) were included in the “extended” dataset. Photo: a spruce tree baited with the aggregation pheromone (dispenser visible as an orange bag)
attached 2 m above ground.

located near to the epidemic sites (station “Gares,” 46.3131◦N
11.8827◦E) was 840 m from the nearest epidemic site (3) and
2,843 m from the farthest epidemic site (4). The station located
near to the endemic sites (station “Sant’Antonio Tortal,” 46.0480◦N
12.1540◦E) was 5,658 m from the nearest epidemic site (7), and
6,705 m from the farthest epidemic site (9). Temperatures were
also measured locally using temperature data-loggers (HOBO U23
Pro v2, HOBO R©) placed in two experimental sites (epidemic site
3 and endemic site 1). The data-loggers were hung on a tree at
2 m above ground, and registered the air temperature (◦C) every
hour through two probes, positioned on the north and south faces
of the tree. Because of technical issues with one of the two data-
loggers, only the data for the month of July are reported. For
precipitations, only the number of rainy days from May to August
was considered. The amount of daily rainfall (mm) was considered
to be not representative for the areas of study, in particular for the
endemic sites, because the meteorological station (“Sant’Antonio
Tortal”) is not located within the valley where the experimental sites
were located (about 5 km west of the experimental sites). Instead,
the number of rainy days was considered to be less susceptible
to local variations, and therefore more representative than the
total quantity (mm) of rainfall. The same ARPAV meteorological
stations were used to retrieve temperature and precipitation data
for the year 2021, to compare the meteorological conditions of
the experimental sites in the 2 years. Temperature data of 2021
refer to the average temperature of the whole year and the average
temperature from May to August (from 1st of May to 31st of July),
to have the comparison for the same time as the study period of
2022.

Growth performance of the trees occurring in the experimental
sites was assessed on a set of spruce trees in the close proximity
to the test and control trees (growth dataset), divided as follows.

The mean DBH (diameter at breast height) and average height were
measured with an altimeter (Altimeter BL7, Carl Leiss Berlin) on a
total of 40 trees (20 in the epidemic and 20 in the endemic sites).
The number of tree rings occurring in the outer 5 cm of the trunks
was measured in 50 spruce stumps of recently cut trees growing in
the experimental sites (25 in the epidemic and 25 in the endemic
sites), for which also the diameter was measured.

2.4 Image acquisition by drone and
processing

Drone flights were performed on the same dates as sampling
on bark of the test trees in every experimental site, for a total of
six flights from May to August 2022. The drone (drone Phantom
4 RTK MS DJI) was equipped with a photocamera, to capture
RGB images, and a multispectral sensor with a filter for five
separate spectral bands (center wavelength ± bandwidth / 2):
Blue (B): 450 nm ± 16 nm, Green (G): 560 nm ± 16 nm, Red
(R): 650 nm ± 16 nm, Red-Edge (RE): 730 nm ± 16 nm, and
Near Infrared (NIR): 840 nm ± 26 nm. The RTK (Real-Time
Kinematic) module operates automatic georeferencing corrections
when connected, through the internet, to the local GNSS network,
allowing images to be collected with a high spatial precision,
between 2.5 and 4 cm horizontally. When RTK cannot connect to
internet, the georeferencing information can be retrieved through
PPK (Post-Processed Kinematic), using georeferenced files of the
nearest GNSS station. By these characteristics (RTK module and
possible PPK correction) it was always possible to precisely identify
the position of the test trees baited with pheromones. A specific
flight plan was set for every experimental site to keep the same

Frontiers in Forests and Global Change 05 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1385687
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1385687 June 6, 2024 Time: 16:29 # 6

Bozzini et al. 10.3389/ffgc.2024.1385687

flight characteristics, such as heights and trajectories, through all
dates and sites. The height of the drone above ground level (AGL)
was set at 100 m, according to the average height of the trees
(between 20 and 40 m), and the home point (the point where the
drone takes off and lands) set when the drone was switched on.
For the trajectories, the lateral overlap (overside), representing the
percentage of image overlapping sideways to the flight direction,
and the longitudinal overlap (overlap), representing the percentage
of image overlapping along the flight direction, were set at 85%
and 82%, respectively. The images acquired by the drone undergo
an automatic radiometric correction through a white balancing
function carried out at the beginning of every flight.

The single images collected by the drone were processed
using a Structure from Motion (SfM) software [Agisoft Metashape
Professional 1.7.1 (RRID:SCR_018119), Agisoft LLC] to obtain
orthomosaics that represented, bidimensionally, the whole study
areas. Orthomosaics are composite images obtained by the
mosaicking and geometric correction of the single images, for every
multispectral band and for the RGB images. The orthomosaics
contain the georeferencing information obtained at the collection
of the images, and therefore they also maintain the spatial precision.

2.5 Brightest pixels extraction

Because during image acquisition the crowns of the trees were
partially sunlit and partially shadowed, a supervised classification
was carried out to extract from the drone photos taken on each
date only the pixels corresponding to the brightest portion of
every tree crown. The extraction and use of the brightest pixels
instead of the whole tree crowns was also used in similar studies
(Puttonen et al., 2010; Näsi et al., 2018; Cessna et al., 2021) with
successful results. The supervised classification of the brightest
pixels was done using the Semi-Automatic Classification Plugin
in QGIS [QGIS 3.32.0 (RRID:SCR_018507)], identifying different
regions of interest (ROI) in a multiband raster containing the
information of all five spectral bands. The final result consists
of polygons corresponding to different classes (e.g., sunlit part
of the tree, shadowed part of the tree, soil, etc.), of which only
those corresponding to the brightest pixels throughout all the
period of study were extracted. If, on one or more dates, the
supervised classification could not extract the pixels corresponding
to the brightest portion of a tree crown, the polygon for that tree
crown was not created. An example of the supervised classification
product, with the highlight of the brightest pixels of the tree crowns
throughout all the period of study, can be seen in Figure 4.

The centroids of every tree crown were also extracted from
the supervised classification product to separate polygons of pixels
belonging to different trees, using a circular buffer of 1.5 m. This
way, every polygon corresponded only to a tree and therefore
every tree in each site could be numbered (have a tree identity).
Only polygons corresponding to spruce trees were kept, excluding
polygons belonging to other classes, such as other tree species or
trees dying or dead at the beginning of the study. After these steps,
the final product consisted in polygons (an average of 357 pixels)
of the brightest part of a total of 742 spruce tree crowns, which
constituted the “extended” dataset for both the endemic and the
epidemic sites and were used for the following analysis. Of the 742

FIGURE 4

Detail from drone image of one experimental site (epidemic site 1).
The greenish polygons correspond to the brightest pixels (visible
light) of the tree crowns.

spruce trees identified, 202 trees resulted infested at the end of the
period (“infested,” 160 in the epidemic sites, 42 in the endemic
sites) and 540 trees remained unattacked and healthy until the end
of the study period (“healthy,” 249 in the epidemic sites, 291 in
the endemic ones).

2.6 Spectral analysis

The temporal spectral variation of the test trees (i.e., infested)
and control trees was assessed by a set of 10 vegetation indices (VIs)
calculated from the brightest pixels of the tree crowns, using the
Raster Calculator function in QGIS, and looking for the index or
indices better describing such variability. The VIs used are listed in
Table 1.

The vegetation indices NDVI (Normalized Difference
Vegetation Index), GNDVI (Green Normalized Difference
Vegetation Index), NDRE (Normalized Difference Red-Edge
Index), and SAVI (Soil Adjust Vegetation Index) were chosen
because they are commonly used to assess vegetation health and
stress (Abdullah et al., 2019; Navarro et al., 2019; Dalponte et al.,
2023; Trubin et al., 2023). The last six indices of Table 1 were
used following Huo et al. (2023). The authors tested various ratios
(R1, R2, and R4) that should increase under water-related stress,
together with combinations of these ratios to try and magnify the
effects of vegetation stress. Other vegetation indices (Huo et al.,
2023) could not be applied in this study due to the different sensors
used. Similarly, the multiple ratios indices used in this study
(MR_mDSWI2, MR_mDSWI3, and MR_mDSWI4) were adapted
from Huo et al. (2023) according to the available spectral bands.
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TABLE 1 List of vegetation indices (VIs) used in this study.

Abbreviation Name Equation Reference

NDVI Normalized Difference Vegetation Index NIR−R
NIR+R Index DataBase [IDB] (2023), Sentinel-2A

sensor (index 114)

GNDVI Green Normalized Difference Vegetation Index NIR−G
NIR+G Index DataBase [IDB] (2023), Sentinel-2A

sensor (index 46)

NDRE Normalized Difference Red-Edge Index NIR−RE
NIR+RE Index DataBase [IDB] (2023), Sentinel-2A

sensor (index 115)

SAVI Soil Adjusted Vegetation Index (1+L) × (NIR−R)
(NIR+R+L) , L = 0.44 Index DataBase [IDB] (2023), Sentinel-2A

sensor (index 219)

R1 Red/Green Ratio R
G Huo et al., 2023

R2 Red-Edge/Green Ratio RE
G Huo et al., 2023

R4 NIR/Red-Edge Ratio NIR
RE Huo et al., 2023

MR_mDSWI2 Multiple Ratio modified Disease–Water Stress Index 2 R2 × R4 = RE
G ×

NIR
RE Huo et al., 2023

MR_mDSWI3 Multiple Ratio modified Disease–Water Stress Index 3 R2 × R1 = RE
G ×

R
G Huo et al., 2023

MR_mDSWI4 Multiple Ratio modified Disease–Water Stress Index 3 R2 × R1 × R4 = RE
G ×

R
G ×

NIR
RE Huo et al., 2023

The equations are written using the names referring to the spectral bands used: blue (B), green (G), red (R), red-edge (RE), and near infrared (NIR).

2.7 Statistical analysis

Generalized linear mixed models with a Gaussian distribution
were built and validated to identify the date corresponding to
a significant deviation in VIs of infested trees from healthy
ones, the response variables were the median values of the VIs,
considered independently. Considering the response variable’s
nature (Domain of Real numbers), we deemed the Gaussian
distribution most appropriate. Other distributions, such as Poisson,
negative binomial, and binomial, were deemed unsuitable due to
the variable’s requirement to be an integer or a Rational number.
The categorical explanatory variables were tree condition (infested
vs. healthy), survey date and their interaction. Site identity (1–5
for epidemic sites, 6–10 for endemic sites) and tree identity within
each site (number of the tree in each site, as explained in section
“2.5 Brightest pixels extraction”) were included in the models as
nested random factors. For each generalized linear mixed model,
pairwise comparisons between infested and healthy trees for each
survey date were run using Tukey correction of p-values. We used a
contrasts comparison matrix to visualize all the differences between
healthy and infested trees within each sampling date. However, with
the aim of maintaining clarity while managing the presentation’s
length, we chose to display only the values corresponding to the
earliest detection date in Supplementary Table 3. The response
variables were ln-transformed when necessary to improve linearity
(i.e., a log-normal distribution was used). To assess possible
statistical power improvements, the analyses were conducted
both on the experimental dataset and on the extended dataset,
consisting of the total set of trees extracted from the images
as per the definitions stated in section “2.1 Study areas.” The
experimental dataset consisted of 95 trees (the pheromone-baited
test trees, 25 for the epidemic and 25 for the endemic sites, plus
the control trees, 20 for the epidemic and 25 for the endemic
sites), while the extended dataset consisted of 742 trees (the total
infested trees observed at the end of the field experiment, 160
for the epidemic and 42 for the endemic sites, plus the respective
healthy trees, 249 for the epidemic and 291 for the endemic

sites, including the 95 trees of the experimental dataset). The
analyses were conducted separately for epidemic and endemic
sites. For the VIs that returned a statistically significant healthy-
infested deviation (p-value < 0.05), the threshold for the detection
of infested trees was identified as the VI value outside the VI
range of healthy trees, as suggested by Huo et al. (2023), e.g.,
the lower or upper confidence limit of the healthy estimate. For
each linear mixed model, an effect size analysis was carried out
to compare healthy and infested trees at the earliest detection
date, following the approach proposed by Nakagawa and Cuthill
(2007). A power-size analysis was also carried out for each model,
to assess the power of the models applied on the experimental
and the extended datasets. The statistical analyses were carried out
together with a statistician. All the analyses were performed in R
software version 4.2.2 (R Core Team, 2022). Models were fitted
using the “lme4” package [ Bates et al., 2021 (RRID:SCR_015654)],
and checked for residual distribution and residual autocorrelation
using the “DHARMa” package [ Hartig, 2022 (RRID:SCR_022136)].
Pairwise comparisons and effect size analyses were run using the
“emmeans” package [ Lenth, 2022 (RRID:SCR_018734)]. Power-
size analyses for each model were run using the “simr” package
[Green and MacLeod, 2023 (RRID:SCR_019287)].

3 Results

3.1 Test trees and insects monitoring

Every pheromone-baited test tree was successfully colonized
by bark beetles. The developmental stages that were observed
during the field surveys in every experimental site are summarized
in Supplementary Table 2. In all sites, the color of the infested
tree crowns started to change around the 22nd of July, almost
7 weeks after oviposition, appearing red on the 2nd of August
2022, 9 weeks after oviposition. Only in three sites (one epidemic
and two endemic), the crown color changed before the 22nd of
July. Despite all the test trees being successfully colonized by bark
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beetles, there were visible differences in the appearance of the
infestation symptoms among the sites. The total test trees that
had developed visible symptoms on their crowns at the end of
the study period were 42 out of 50. In the epidemic experimental
sites, 23 out of 25 test trees showed visible symptoms (red crowns)
at the end of the study period on the 2nd of August, and the
nearest spruce trees were also attacked and showed symptoms
(in site 2 all trees in the area were attacked, so there were no
healthy trees to be used as control). The endemic experimental
sites were instead characterized by a minor symptoms appearance,
often limited just to the test trees (in site 5 only two trees showed
symptoms on the crown), for a total of 19 symptomatic test
trees out of 25.

The bark beetles’ captures data from the traps during the
study period (from May to August of 2022) show mean annual
values per trap almost five times higher in the epidemic sites
(23,243 captures per trap for n = 4 traps, SE = 2,299) than
in the endemic ones (4,703 captures per trap for n = 4 traps,
SE = 553). This confirms the trend of infestation found in
2021, with a higher population abundance in the epidemic sites
that showed a population density well over the threshold-risk
for outbreaks (8,000–10,000 captures per trap), and therefore
persisting epidemic conditions. At the same time, the prediction
of a strong decreasing population in the endemic sites (ratio
between summer and spring captures of 0.17 indicates decreasing
populations, Supplementary Table 1) passing from 2021 to 2022
was also confirmed, with a much lower population density and
effectively reaching endemic conditions. An overview of the
captures per trap gathered in 2022 (mean and SE) is presented
in Supplementary Table 4, while flight activity of I. typographus
according to the captures gathered from the pheromone traps
during the study period (from May to August 2022) is shown in
Supplementary Figure 3.

3.2 Meteorological trend and tree growth
variables

The epidemic sites were characterized by a lower average
temperature (7.3◦C during the whole year, 14.8◦C during the
period of study) than the endemic sites (11.7◦C during the whole
year, 19.7◦C during the period of study) according to the ARPAV
meteorological stations. This trend was also confirmed by the
data-loggers, which registered an average temperature of 15.1◦C
in the epidemic sites and 17.5◦C in the endemic ones from May
to August (Supplementary Figure 4). As for precipitations, there
were more rainy days in the epidemic sites (106 days) than the
endemic ones (92) during the whole of 2022, but there were no
substantial differences in the number of rainy days during the
study period (32 vs. 31 days) (Supplementary Figure 4). A similar
climatic trend was observed in 2021, when the epidemic sites were
colder (5.9◦C during the whole year, 12.4◦C from May to August)
than the endemic sites (10.3◦C, 17.3◦C from May to August). The
epidemic sites were characterized by more rainy days (113 during
the whole year, 43 from May to August) than the endemic sites (103
during the whole year, 36 from May to August). Comparisons of the
meteorological data of the two types of sites for 2021 and 2022 are
shown in Supplementary Figure 5.

The results of the analysis on the growth dataset showed that
spruce trees in the endemic sites were on average characterized
by greater diameters and heights (mean ± SD) (diameter
47.2 ± 2.5 cm, and height 24.4 ± 0.4 m for 20 trees) than
those in the epidemic sites (diameter 32.9 ± 1.6 cm, and
height 20.6 ± 1.2 m for 20 trees). Similarly, the stumps’
average diameter measured in the endemic sites were higher
(53.9 ± 2.1 cm for 25 trees) than in epidemic sites (43.8 ± 2.5 cm
for 25 trees), but there were no substantial differences in the
number of rings in the outer 5 cm of the trunks (17 in
the endemic and 18 in the epidemic sites). An overview of
the meteorology and growth performance data is presented in
Table 2.

3.3 Statistical analysis on the spectral
variations

Analysis of the temporal spectral variations of the infested trees,
and consequently the determination of early-detection timing (i.e.,
detection of the infested trees before the color change of the tree
crowns, occurred around late July-beginning of August 2022), gave
different results for the two types of sites, with an earlier detection
in the epidemic sites (between 1 and 2 months before symptoms
emergence) while no early detection was possible in the endemic
sites. The results, referred to the earliest date of significant deviation
in the tested VIs (listed in Table 1) of the infested trees from the
healthy ones, are shown in Supplementary Table 3.

For the epidemic sites, the best results were obtained by the
analysis on the dataset, with the earliest detection of infested
trees on 31st of May 2022 (during the oviposition phase) by the
NDVI and SAVI indices, with threshold values (lower healthy
confidence limit, Table 3) of 0.079 and 0.114, respectively, almost
2 months before the visible symptoms appearance. The analysis
on the experimental dataset was less performing, with the earliest
detection date on 1st of July 2022 (first generation beetles’
emergence and sister brood larvae development), by the NDRE,
GNDVI, and MR_mDSWI2 indices, with threshold values of 0.020,
0.014, and 1.018, respectively.

For the endemic sites, early detection of the infested trees was
not possible, as only the differences of infested from healthy trees’
values of the indices NDVI and NDRE were statistically significant
(threshold values of −0.015 and 0.016, respectively), but only on
the last survey date (2nd of August 2022) when the tree crowns
had already changed color. NDRE threshold value in the endemic
sites (0.016) could also be used as a threshold value in epidemic
sites, as it is more conservative [i.e., lower than NDRE value in
epidemic sites (0.020) and could better discriminate infested from
healthy trees]. We can hypothesize that the slight increase of the
NDRE of the infested trees in that phase could be due to the
reflectance features of the images on that date (01/07/2022). In fact,
the difference between healthy and infested trees was not significant
on that date (pupal phase), the date before (larval phase), and the
date after (first generation emergence), and the spectral behavior
was not consistent for other indices. The spectral variation of the
best performing VIs, with the indication of the developmental stage
of bark beetles corresponding to the survey dates, is shown in
Figures 5, 6.
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TABLE 2 Overview of the growth performance and meteorology measurements obtained in the experimental sites in 2022.

Growth performance measurements

Epidemic Number
of trees

Mean SD Endemic Number
of trees

Mean SD

Height (m) 20 20.6 1.2 Height (m) 20 24.4 0.4

DBH (cm) 20 32.9 1.6 DBH (cm) 20 47.2 2.5

Number of rings 25 18 1 Number of rings 25 17 1

Diameter at the base (cm) 25 43.8 2.5 Diameter at the base (cm) 25 53.9 2.1

Meteorology measurements

Whole year

Temperature (ARPAV, ◦C) 12 7.3 2.0 Temperature (ARPAV, ◦C) 12 11.7 2.2

Precipitation (ARPAV,
number of rainy days)

12 106 1 Precipitation (ARPAV, number of
rainy days)

12 92 1

From May to August

Temperature (ARPAV, ◦C) 3 14.8 1.7 Temperature (ARPAV, ◦C) 3 19.7 1.9

Temperature (data-loggers,
◦C)

3 15.1 1.2 Temperature (data-loggers, ◦C) 3 17.5 1.2

Precipitation (ARPAV,
number of rainy days)

3 32 2 Precipitation (ARPAV, number of
rainy days)

3 31 2

Growth performance measurements are related to the growth dataset spruce trees in the experimental sites (mean, SD, and number of trees are provided for the two types of sites). The first
couple of measures (height and diameter) refer to trees’ height and DBH (diameter at breast height), while the second couple of measures (number of rings in the outer 5 cm of the trunks and
diameter at the base of the trunk) refer to a sample of stumps measured after salvage cutting. Meteorology measurements are provided for the whole year and for the study period (from May to
August 2022). Mean, SE, and number of months used for the averaging of temperature and precipitation are provided. Temperature and precipitation data were provided by two meteorological
stations of the local agency for environmental protection (ARPAV). Additional temperature data were collected during the study period using temperature data-loggers (HOBO U23 Pro v2,
HOBO R©), positioned inside two experimental sites (one for the epidemic and one for the endemic sites).

4 Discussion

In this study, revisiting high-resolution UAV multispectral
imagery allowed early-symptom detectability in endemic versus
epidemic bark beetle populations to be assessed. Early detection was
successful in the epidemic sites, where infested trees were identified
1–2 months prior to symptoms emergence, according to the VIs
adopted. Differently, in the endemic sites, with a low population
density, early detection of infested trees was not possible.

The hypothesis that the variability in the symptoms occurrence
and detectability depends mainly on population abundance rather
than other environmental factors is supported by meteorological
data. In epidemic sites (where the symptoms occurred more
frequently and severely) the average temperature was lower than
in the endemic sites, and precipitation were higher, in both the
year of the study and in the previous one. These features should
lead to less stressed trees, with more favorable effects on the hosts
and a later appearance of the colonization signs (Jakuš et al., 2011;
Majdák et al., 2021; Marvasti-Zadeh et al., 2022; Müller et al.,
2022), but the symptoms of infestation were not affected and they
occurred clearly and quickly against what could be predicted with
meteorological data. The effect of population density could also
have been enhanced by the tree growth features. Boone et al.
(2011) observed that larger trees are preferred by the beetles, but
they are also better defended (higher constitutive and induced
resin flow and higher induced monoterpenes). They therefore
hypothesized there would be higher rates of abandonment of the
beetles on large-diameter trees in endemic conditions rather than
epidemic conditions. The variations in symptoms occurrence and
development during the study period could therefore be explained

by different levels of colonization in the two types of sites, where the
generally larger trees in the endemic sites could have determined a
lower colonization rate than in the epidemic sites.

As for the VIs reliability and the timing of early detection, our
results are in accordance with previous studies that employed a
temporal series of UAV imagery (Klouček et al., 2019; Honkavaara
et al., 2020; Bijou et al., 2023; Huo et al., 2023), as the detectability
of the infested trees grew during the study period toward the
last survey date. In particular, at the end of the survey period
the extended dataset (total of 202 infested and 540 healthy trees)
provided significant results in both endemic and epidemic sites,
while the experimental dataset (50 infested and 45 healthy trees)
provided significant results only for the epidemic sites. Different
datasets also produced differences in the VIs performance for the
detection in epidemic sites. NDRE, GNDVI, and MR_mDSWI2
performed better using the experimental dataset, similarly to the
results of Huo et al. (2023), who obtained the best detection
rates using NDRE2 (Normalized Difference Red-Edge Index 2)
and MR_DSWI2 (Multiple Ratio Disease–Water Stress Index 2).
These authors followed an approach similar to this study, inducing
attacks on samples of trees and following the development of the
infestation over time using UAV multispectral images. As explained
before, it was not possible to assess the same indices as Huo et al.
(2023) due to differences in the sensors used, but the indices we
used were adapted to be as similar as possible to those used by Huo
et al. (2023).

Normalized Difference Red Edge index, GNDVI, and
MR_mDSWI2 allowed an early detection of 1 month before
symptom’s occurrence in the epidemic sites of all infested trees
(first spectral detection of infestation on 1st of July, corresponding
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to first generation beetles’ emergence and sister brood larvae
development), i.e., 4 weeks after complete oviposition and about
7 weeks after the beetles’ bark colonization. In northern Europe,
Huo et al. (2023) found similar results, as in the first 5 weeks of
bark infestation they detected only 15% of infested trees, while
they detected 90% only after 10 weeks of infestation. However, at
lower latitudes this timing could be too late for an early-detection
because offspring swarming occurs earlier according to the warmer
temperature.

When using the extended dataset, the best performing VIs
in the epidemic sites were NDVI and SAVI, which provided
a significant difference between infested and healthy trees on
31st of May (2 months before the symptoms occurrence, during
development of the first generation), i.e., 3 weeks after colonization.
This difference from the Huo et al. (2023) study could be due
to the lower latitude and higher temperatures of our sites, which
could lead to a quicker appearance and development of infestation
symptoms on the tree crowns compared to the Swedish context.
We obtained distinction between infested and healthy trees earlier
than Bijou et al. (2023), who obtained accurate infestation detection
only at the end of summer (between end of July and beginning
of August) in the Czech Republic. In the endemic sites NDVI
and NDRE performed better than the other VIs when using the
extended dataset, but only for detection of the infestation on the
last survey date (in accordance with Bijou et al., 2023), when the
symptoms became visible (red crown) and the first generation
beetles’ left the hosts. This could be due to the highly unbalanced
sample of the infested trees (42 trees that manifested infestation
symptoms) compared to the healthy trees (291), which could have
led to misinterpretation between healthy and infested pixels in
those sites, due to lack of information related to the infested trees.
In this case, the consideration of the VIs values of the whole tree
crown could be taken into account, to compensate for the small
number of infested trees with a large sample of pixels per tree
crown. In some cases, a significant but reversed difference between
infested and healthy trees’ VIs values was obtained on the first
survey date (11th of May). This could be due to some anomalies
in the reflectance of the images for that date. Since the spectral
behavior of the tree crowns was consistent for the infested and
healthy trees on the later survey dates, i.e., after the colonization
and oviposition (which are the phases that determine the trees’
weakening), we considered the results after 11th of May reliable.
Beyond that, we conducted a power analysis for each model,
both for experimental and extended datasets. Notably, the power
analysis consistently yielded values close to 100% in both cases. This
observation is attributed to the high levels of statistical significance
achieved across our analyses. While it is acknowledged that power
analyses ideally should be conducted a priori, the consistently high
significance levels in our results underscore the robustness of the
observed effects. Nevertheless, future research may benefit from
pre-planned power analyses to provide additional insights into the
adequacy of sample sizes for detecting effects of interest.

Our results suggest that the success of remote sensing-
based early detection methods could be affected by the pest
population density, decreasing the early detection ability in
endemic conditions characterized by low population density.
Instead, in the epidemic population sites, using revisiting high-
resolution UAV multispectral imagery, we were able to obtain
an early detection between 1 and 2 months before symptoms
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FIGURE 5

Means from the generalized linear mixed models testing the spectral variation of different vegetation indices across the study period, for infested
(red) and healthy (blue) trees for the epidemic sites. The “Epidemic-experimental” group includes the variation of the NDRE (Normalized Difference
Red-Edge Index), GNDVI (Green Normalized Difference Vegetation Index), and MR_nDSWI2 (Multiple Ratio modified Disease–Water Stress Index 2)
indices on the infested and healthy trees of the experimental dataset, with the earliest detection on 1st of July 2022, almost 1 month before visible
symptoms appearance. The “Epidemic-extended” group includes the variation of the NDVI (Normalized Difference Vegetation Index) and SAVI (Soil
Adjusted Vegetation Index) indices for the extended dataset, with the earliest detection on 31st of May 2022, almost 2 months before visible
symptoms appearance. For every graph, the development stages of bark beetles that were assessed during the field surveys are shown (as described
in the legend). Symbols in the legend are modified by Biedermann et al. (2019). Statistical significance refers to p-values from Type II Wald χ2 test
with 5 degrees of freedom. p-Values (corrected using Tukey test): *0.05–0.01; **0.01–0.001; ***<0.001.

emergence (red phase) using five VIs (NDVI, NDRE, GNDVI,
SAVI, and MR_mDSWI2), for which we provided threshold values
to discriminate between healthy and infested trees. Another factor
that could have influenced the symptoms development and slower

emergence is the trees height. In fact, the endemic sites the trees
were on average taller (4 m more) than the epidemic sites. Further
work should be conducted to investigate the effect of tree size on
symptoms development and emergence. These results highlight
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FIGURE 6

Means from the generalized linear mixed models testing the
spectral variation of different vegetation indices across the study
period, for infested (red) and healthy (blue) trees for the endemic
sites. The “Endemic-extended” group refers to results on the
extended dataset for the endemic sites, with NDVI (Normalized
Difference Vegetation Index) and NDRE (Normalized Difference
Red-Edge Index) indices. Early detection was not possible for the
endemic sites. For every graph, the features refer to the legend of
Figure 5. Symbols in the legend are modified by Biedermann et al.
(2019). Statistical significance refers to p-values from Type II Wald
χ2 test with 5 degrees of freedom. p-Values (corrected using Tukey
test): **0.01–0.001; ***<0.001.

the need for further investigation on the early-symptoms features
and timing of occurrence in trees attacked by different population
densities, to improve the early-detection possibility by remote
sensing-based approaches. In particular, further research should be
conducted to assess the transferability of the detection methods
and timing obtained in this work to other contexts and on larger
scales, especially in epidemic conditions. This could be done, e.g.,
by employing airborne sensors or high-resolution satellite imagery.
This would allow to assess the possibility to detect early infestation
symptoms on larger regions and in other countries, provided that
the information about flight activity and the other environmental
factors considered in this study are available and considering all the
required logistics and economics. Further research should be also
conducted to integrate other detection methods to improve infested
tree identification in endemic conditions, e.g., integrating spectral
with structural data as suggested by Cessna et al. (2021). This would
allow to examine the vertical gradient of symptoms development
within the tree crown and to compare symptoms development in

trees of different age or height, thus overcoming the limitations
that spectral data alone could have. The proposed approach could
also be further developed to take into account the effects of other
environmental factors (e.g., water stress, soil variability, slope,
etc.) on the reflectance features of tree crowns, improving the
early detection ability. In fact, limitations of the presented study
include the lack of information about abiotic variables, such as soil
characteristics, and some biotic variables such as the colonisation
level on the infested trees. Further studies should consider these
factors for a more comprehensive understanding of the infestations
symptoms development mechanisms. Lastly, further study should
be conducted to assess the possibility to apply the proposed early-
detection method to other pests that cause similar symptoms to the
tree crowns, i.e., discoloration due to the interruption of the flux of
water and nutrients within the tree, or defoliation.

Effective management of forest areas affected by bark beetle
outbreaks faces various practical challenges, such as the timely
identification of early infestation symptoms, but also the difficulties
of felling scattered infested trees or trees in inaccessible areas
and transport them out of the forest in time. The proposed
remote sensing approach could be employed, possibly together with
methods of semiochemical detection in the field, e.g., sniffer dogs as
proposed by Johansson et al. (2019) and Vošvrdová et al. (2023),
within a more efficient and integrated early detection approach.
The latter method would allow a timely location of the recently
infested trees, providing their position as valuable ground truth
data to be used to validate remote sensed images, while remote
detection would allow to detect stressed trees over larger areas.
Ultimately, the proposed method could be a valuable tool for the
monitoring and identification of outbreaks and areas more at risk,
guiding operators in the management of outbreaks expansion and
helping to plan more efficient management strategies. It would be
also possible to integrate such approach with satellite imagery for a
more comprehensive forest monitoring over large areas.
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Minařík, R., Langhammer, J., and Lendzioch, T. (2021). Detection of bark beetle
disturbance at tree level using UAS multispectral imagery and deep learning. Remote
Sens. 13:4768. doi: 10.3390/RS13234768

Müller, M., Olsson, P. O., Eklundh, L., Jamali, S., and Ardö, J. (2022). Features
predisposing forest to bark beetle outbreaks and their dynamics during drought. For.
Ecol. Manag. 523:120480. doi: 10.1016/J.FORECO.2022.120480

Nakagawa, S., and Cuthill, I. C. (2007). Effect size, confidence interval and statistical
significance: A practical guide for biologists. Biol. Rev. 82, 591–605. doi: 10.1111/j.
1469-185X.2007.00027.x

Nardi, D., Finozzi, V., and Battisti, A. (2022a). Massive windfalls boost an ongoing
spruce bark beetle outbreak in the Southern Alps. Ital. J. For. Mountain Environ. 77,
41–52. doi: 10.36253/ifm-1617

Nardi, D., Jactel, H., Pagot, E., Samalens, J. C., and Marini, L. (2022b). Drought and
stand susceptibility to attacks by the European spruce bark beetle: A remote sensing
approach. Agric. For. Entomol. 25, 119–129. doi: 10.1111/AFE.12536

Näsi, R., Honkavaara, E., Blomqvist, M., Lyytikäinen-Saarenmaa, P., Hakala, T.,
Viljanen, N., et al. (2018). Remote sensing of bark beetle damage in urban forests at
individual tree level using a novel hyperspectral camera from UAV and aircraft. Urban
For. Urban Green. 30, 72–83. doi: 10.1016/J.UFUG.2018.01.010

Näsi, R., Honkavaara, E., Lyytikäinen-Saarenmaa, P., Blomqvist, M., Litkey, P.,
Hakala, T., et al. (2015). Using UAV-based photogrammetry and hyperspectral imaging
for mapping bark beetle damage at tree-level. Remote Sens. 7, 15467–15493. doi:
10.3390/rs71115467

Navarro, A., Catalao, J., and Calvao, J. (2019). Assessing the use of Sentinel-2
time series data for monitoring Cork Oak decline in Portugal. Remote Sens. 11:2515.
doi: 10.3390/rs11212515

Otsu, K., Pla, M., Duane, A., Cardil, A., and Brotons, L. (2019). Estimating the
threshold of detection on tree crown defoliation using vegetation indices from uas
multispectral imagery. Drones 3, 1–23. doi: 10.3390/drones3040080

Puttonen, E., Litkey, P., and Hyyppä, J. (2010). Individual tree species classification
by illuminated—shaded area separation. Remote Sens. 2, 19–35. doi: 10.3390/
RS2010019

R Core Team (2022). R: A language and environment for statistical computing.
Vienna: R Foundation for Statistical Computing.

Trubin, A., Kozhoridze, G., Zabihi, K., Modlinger, R., Singh, V. V., Surový, P., et al.
(2023). Detection of susceptible Norway spruce to bark beetle attack using PlanetScope
multispectral imagery. Front. For. Glob. Change 6:1130721. doi: 10.3389/FFGC.2023.
1130721/BIBTEX

Turkulainen, E., Honkavaara, E., Näsi, R., Oliveira, R. A., Hakala, T., Junttila,
S., et al. (2023). Comparison of deep neural networks in the classification of bark
beetle-induced spruce damage using UAS images. Remote Sens. 15:4928. doi: 10.3390/
RS15204928
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