Skip to main content

ORIGINAL RESEARCH article

Front. For. Glob. Change
Sec. Fire and Forests
Volume 7 - 2024 | doi: 10.3389/ffgc.2024.1385506

Exploration of Large-Scale Vegetation Transition in Wet Ecosystems: A Comparison of Conifer Seedling Abundance across Burned vs. Unburned Forest-Peatland Ecotones in Western Patagonia

Provisionally accepted
  • Portland State University, Portland, United States

The final, formatted version of the article will be published soon.

    Altered fire regimes, combined with a warmer and drier climate, have been eroding the resilience of temperate rainforests and peatlands worldwide and leading to alternative postfire vegetation communities. Chronic anthropogenic burning of temperate rainforests at the forest-peatland ecotone in western Patagonia appears to have shifted vegetation communities in poorly-drained sites from forests dominated by the threatened conifer, Pilgerodendron uviferum, to peat-accumulating wetlands covered by Sphagnum mosses. We collected and modeled post-reburn field data using ordinations and hierarchical Bayesian regressions to examine mechanisms through which P. uviferum forests may recover following fire or become locked into alternative development pathways by comparing biophysical factors of a reburned ecotone to those of an unburned (control) ecotone. We found that, 1) the significantly higher densities of P. uviferum trees and seedlings in the forested patches at both the reburned and control sites were associated with significantly lower seasonal water tables, lower cover of Sphagnum mosses and higher cover of other mosses (i.e., not in the Sphagnum or Dicranaloma genera); 2) despite abrupt boundaries in vegetation at both sites, successive fires homogenized the environment at the reburned site; and 3) the distinct life forms and individual species that characterized the understory plant communities across the ecotones affected seedling abundance by shaping microtopography and the substrates available for establishment. Together, our results suggest that fire can push edaphically wet P. uviferum-dominated sites towards a non-forested state by reducing the diversity of microsite structure and composition, thereby placing P. uviferum seedlings in direct competition with Sphagnum mosses and potentially limiting the availability of microsites that are protected from both seasonal inundation and seasonal drought. If wildfires continue under increasingly warmer and drier conditions, the forest-peatland ecotone of western Patagonia may be susceptible to large-scale transformation towards a non-forested state.

    Keywords: Pilgerodendron uviferum, Ciprés de las guaitecas, post-reburn establishment, Sphagnum, Western Patagonia, Temperate rainforests, Anthropogenic burning

    Received: 12 Feb 2024; Accepted: 22 Jul 2024.

    Copyright: © 2024 Zaret and Holz. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Kyla Zaret, Portland State University, Portland, United States

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.