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Vegetation cover degradation is often a complex phenomenon, exhibiting strong 
correlation with climatic variation and anthropogenic actions. Conservation of 
biodiversity is important because millions of people are directly and indirectly 
dependent on vegetation (forest and crop) and its associated secondary 
products. United Nations Sustainable Development Goals (SDGs) propose 
to quantify the proportion of vegetation as a proportion of total land area of 
all countries. Satellite images form as one of the main sources of accurate 
information to capture the fine seasonal changes so that long-term vegetation 
degradation can be assessed accurately. In the present study, Multi-Sensor, Multi-
Temporal and Multi-Scale (MMM) approach was used to estimate vulnerability 
of vegetation degradation. Open source Cloud computing system Google Earth 
Engine (GEE) was used to systematically monitor vegetation degradation and 
evaluate the potential of multiple satellite data with variable spatial resolutions. 
Hotspots were demarcated using machine learning techniques to identify 
the greening and the browning effect of vegetation using coarse resolution 
Normalized Difference Vegetation Index (NDVI) of MODIS. Rainfall datasets of 
Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) for 
the period 2000–2022 were also used to find rainfall anomaly in the region. 
Furthermore, hotspot areas were identified using high-resolution datasets in 
major vegetation degradation areas based on long-term vegetation and rainfall 
analysis to understand and verify the cause of change whether anthropogenic or 
climatic in nature. This study is important for several State/Central Government 
user departments, Universities, and NGOs to lay out managerial plans for the 
protection of vegetation/forests in India.
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1 Introduction

Land is referred as an entity with zero consumption rate (Thepade 
and Chaudhari, 2021). Therefore, it is one of the most important 
resources to maintain the functioning of the socioeconomic system 
perfectly (Xie et  al., 2022). Degradation of land is based on the 
continuous or long-term loss of natural resources. World’s 40% of land 
area is currently degraded and is increasing over time and directly 
threatening (Shao et  al., 2024). Among all landscapes, forests are 
critical strongholds for environmental services and can help for 
ecological restoration (Fa et al., 2020; Sharma et al., 2022) apart from 
forest monitoring, natural resources such as agriculture monitoring is 
also important for understanding the consequence of a mismatch 
between land suitability and land use (Kılıç et al., 2024). According to 
the Forest Resource Assessment by Food and Agriculture Organization 
(FAO), 4 billion hectares of global land come under forest, half of 
which is found in the tropics and subtropics (Forneri et al., 2006; 
Singh et  al., 2022; Nabuurs et  al., 2023). Among all land uses, 
quantifying forest extent and change in forest is most important not 
only because forest protects climatic condition but also it supplies 
most essential flow of ecosystem services, such as fiber, energy, 
supports biodiversity, carbon storage, flux, and water (Coulston et al., 
2014; Ferreira et al., 2023). Due to massive importance of forests, 
United Nations Framework Convention on Climate Change 
(UNFCCC) has shown significant interest on the protection of forest 
patches; the convention outlined that forest degradation contributes 
to total global carbon emission to a large extent, leading to global 
warming, and therefore, forest degradation needs immediate 
protection (Gao et al., 2020; Liang and Gamarra, 2020).

Tropical forests have always been critically acclaimed for rainfall 
generation because forests in these areas produce rainfall twice more 
than in any other latitude (Doughty et al., 2023); therefore, forest 
degradation in these regions can cause a reverse convective cloud 
cover and disturb the global rainfall circle (Watson et al., 2018; King 
et al., 2024). Tropical forest is niche of several species (Noulèkoun 
et al., 2024); therefore, deforestation and degradation of forest can lead 
to the extinction of biological diversity by habitat destruction and 
isolation of formerly contiguous forest and significant physical and 
biological consequences at the fringe or boundary zone between forest 
and deforested areas (Gascon et al. 2000; Rani et al., 2024). In the past, 
tropical deforestation globally reported approximately 1.1–2.2 PgC/
year release (Gullison et al. 2007; Sasaki and Putz, 2009, Pujar et al., 
2024) due to continuous increase in threats and pressure on forest 
resources; therefore, it is believed that demand for quantitative 
measurement, timely and accurately, can help in sustainable 
management of forests.

Earlier studies have often suggested that forest degradation is one 
of the major reasons for the discrepancy of forest cover maps (Sexton 
et al., 2015; Qin et al., 2024). To overcome this draw back, UNFCCC 
has defined forest as an area of more than 0.5–1.0 ha with tree 
crowning covering 10–30% (UNFCCC, 2002; Romijn et al., 2013; 
Asante et  al., 2017). Furthermore, the convention has recognized 
forest habitats as important factors influencing the decline in forest-
dependent fauna and flora (Rurangwa et al., 2021); therefore, it is 
important to understand forest degradation for forest restoration work 
(Roy et al., 2013; Jashimuddin et al., 2024). Southeast Asian countries 
have highest rate of tropical deforestation globally (Miettinen et al., 
2011; Chen et al., 2023; Stan et al., 2024). In this region, food insecurity 
and poverty are the main concern enduring undue pressure on 

agricultural and forested land, and therefore, reconciliation of these 
lands is the main priority (Carrasco et al., 2016; Gonzalez-Redin et al., 
2024). India is one of the mega-biodiversity nations lying in junction 
between three major biogeographic realms, namely, the Indo-
Malayan, the Eurasian, and the Afro-tropical (Reddy et al., 2015). 
According to Forest Survey of India (FSI) reports, the country’s forest 
covers 7, 13,789 km2 (Forest Survey of India, 2021), which represents 
21% of the total geographical area of the country. Although change in 
forest cover is highly debatable due to seasonal inference in countries 
such as India, Pasha and Dadhwal, 2024 claimed that forest cover is 
declining at the rate of 2.43 ha across the country.

In recent decades, remote sensing has gained its popularity due to 
its unique capability for providing imageries of the Earth’s surface in 
such a way that it allows easy identification of features, location, and 
characteristics in accordance to different time span (Singh et al., 2022; 
Chauhan et  al., 2024). Remote sensing technologies use spectral 
properties to reveal information regarding the health of the canopies 
(Houborg et al., 2015; Wen et al., 2024). The vegetation dynamics of 
any land mass have always been treated as a significant indicator that 
can be used to quantitatively detect ecosystem processes at different 
scales by remote sensing experts (Sur et al., 2018). Absorption of leaf 
signatures is prominent due to leaf pigmentation (such as chlorophylls, 
carotenoids, and xanthophylls) in the visible spectral region 
(400–700 nm), with moderate absorptions by water in the shortwave-
infrared (SWIR, 1300–2,100 nm) and only slight absorption by leaves 
in the near-infrared (NIR, 700–1,300 nm) region (Huete, 2012; 
Santana et al., 2024). To add further, in recent years, the increased 
availability of computing power through openly available cloud 
platforms (e.g., Google Earth Engine) and readily accessible machine 
learning algorithms from open source software tools (e.g., Python 
Scikit-learn) has enabled the processing of large volumes of satellite 
imagery over increasingly large geographical areas with reduced 
complexity and time (Gorelick et al., 2017; Sur et al., 2021; Verma 
et al., 2023; Singh et al., 2024). Therefore, this study is designed to 
make a spatial framework in GEE to compute forest degradation using 
a special Multi-Sensor, Multi-Temporal and Multi-Scale (MMM) 
approach. This approach is unique of its own because it will help to 
assess vegetation degradation over any selected period. This particular 
study is based on the temporal window 2000–2022 in a single frame 
capturing three distinct seasonal variations (summer, monsoon, and 
winter) using machine learning techniques for entire India. 
Furthermore, it demonstrates the distinctive utility of satellite images 
in GEE platform to identify the hotspots and evaluate the causes of 
vegetation degradation and take sustainable combating measures.

2 Study area

The study area (Figure  1) is focused on Indian landmass 
comprising of 28 states and 8 union territories. Since 1990, after 
economic liberalization of India, socio-economic development lead to 
considerable stress on the natural ecosystem (Visser, 2017), which 
needs immediate sustainable management strategies. Therefore, the 
study concentrates on vegetation including 14 major forest types of 
India based on multi-season satellite images, biogeography, climate, 
and elevation. Wet evergreen and semi evergreen forests are mainly 
located in the high-rainfall areas of Western Ghats, Andaman and 
Nicobar Islands, and north eastern region. Central India is mainly 
dominated by dry and moist deciduous forests. Mangroves are found 
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in the coastal region of West Bengal, Odisha, Andhra Pradesh, Tamil 
Nadu, Maharashtra, Goa, and Gujarat. Montane, sub-alpine, and 
sub-tropical pine forests are distributed in the high-altitude Himalayan 
and north-east regions (Chakraborty et al., 2018). India has a typical 
climatic condition, often affected by heat waves, cold waves, fog, 
snowfall, floods and droughts, monsoon depressions, and cyclones 
(Dash et al., 2007). Combined action of physical factors and socio-
economic factors makes Indian landmass more vulnerable and fragile.

3 Methodology

The overall methodology adopted for the study is shown in Figure 2. 
Google Earth Engine (GEE) is an open source platform for geospatial data 
analysis. Its interface used in this study uses Java script and Python for 
data processing. The entire methodology can be divided into four broad 
structural domains: (i) selection of database for analysis, (ii) technical 
algorithm for understanding greening and browning, (iii) technical 
algorithm for understanding anomaly leading to wet and dry regions, (iv) 
visualization of degraded vegetation in high resolution.

3.1 Selection of database for analysis

3.1.1 Vegetation index datasets
The vegetation index product MOD13Q1 (V6.1) (Didan et al., 

2015) is provided by Terra Moderate Resolution Imaging 
Spectroradiometer (MODIS). This study uses this product from 2000 
to 2022 for analysis. It consists of two layers (a) Normalized Difference 
Vegetation Index (NDVI) and (b) Enhanced Vegetation Index (EVI) 

per pixel basis. The EVI layer minimizes canopy background 
variations and maintains sensitivity over dense vegetation conditions. 
The EVI also uses the blue band to remove residual atmosphere 
contamination caused by smoke and sub-pixel thin cloud. The EVI 
products are computed from atmospherically corrected bi-directional 
surface reflectance that has been masked for water, clouds, heavy 
aerosols, and cloud shadows. This product provides dataset of 250-m 
spatial resolution.

3.1.2 Rainfall datasets
Dataset from Climate Hazards Group Infra Red Precipitation with 

Station data (CHIRPS) is a quasi-global rainfall dataset (Funk et al., 
2012). The CHIRPS dataset incorporates 0.05° resolution satellite 
imagery with in-situ station data to create gridded rainfall time series 
for trend analysis and seasonal monitoring of rainfall. In this study, 
monsoon datasets for the period 2000–2022 were utilized to compute 
the anomaly of the rainfall distribution.

3.1.3 Landsat datasets
Landsat is a joint program of the USGS and NASA, and since 1972 

it has been observing the Earth continuously. The Landsat satellites 
image the entire surface of the Earth at a 30-m resolution 
approximately once every 2 weeks, including multispectral and 
thermal data. Three bands (Red, Green, and Blue) were used for 
monitoring vegetation degradation between 2000 and 2022.

3.1.4 Technical algorithm for understanding 
greening and browning

Theil–Sen slope and Mann–Kendall test were used to analyze long 
term (2000–2022) vegetation trend in a time-series of each pixel 
(Fensholt et  al., 2012). Theil–Sen slope algorithm was preferred 
because of its efficiency to handle huge discrete dataset, and on the 
other hand, Mann–Kendall test was used along with Theil–Sen slope 
due to its advantage of not requiring samples to confirm a specific 
distribution and is free from the effect of outliers’ interference (Feng 
et al., 2023). Therefore, this study uses Theil– Sen slope and Mann–
Kendall test to estimate the greening and browning trend of the time-
series over the forest cover.

3.1.5 Technical algorithm for understanding 
rainfall anomaly

The impact of rainfall variability on vegetation in Indian landscape 
was characterized based on the analysis of time-series anomalies. The 
response of vegetation to moisture availability was analyzed, especially 
in dry, normal, and wet years. The spatiotemporal variability in rainfall 
anomalies was produced using the annual mean rainfall from 2000 to 
2022. Equation (1) is the standard anomaly equation which is 
generally used in statistics to estimate the Z-score (Atkinson et al., 
2011). Since the study covers a vast region, rainfall quantity is different 
in dry and wet regions. Thus, we have to standardize rainfall in order 
to compare the relative variability across the country.
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where RA (i, x, y) represents the annual standardized rainfall anomaly 
in the ith year at the pixel location (x, y) and rainfall (i, x, y) represents 

FIGURE 1

Study area.
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the annual rainfall of ith year being processed. Mean [rainfall 2000–
2022 (i, x, y)] represents the long-term mean annual rainfall from 
2000 to 2022. STD [rainfall 2000–2022 (i, x, y)] represents the standard 
deviation of annual rainfall from 2000 to 2022.

3.1.6 Visualization in high resolution
Places with high browning trend in all three seasons and high 

rainfall anomaly were further observed in high-resolution datasets to 
infer the actual cause of the vegetation degradation.

4 Results and analysis

The main approach of this study was based on Multi-Sensor, 
Multi-Temporal and Multi-Scale (MMM) approach in an automotive 
way using cloud computing system Google Earth Engine (GEE) to 
identify vegetation degradation easily. The distinct patterns in three 
seasons (summer, monsoon, and winter) clearly demonstrated the role 
of climate variation in the region. In Figure 3, monsoon has the most 
greening effect with respect to the other two seasons, summer shows 
maximum browning effect, and winter shows moderate browning 
effect in the region. It is carefully observed that mostly degraded 
vegetation boundaries are clearly found in extreme eastern part of the 
country in the Seven Sisters states, Punjab, and Haryana foot hill 
region and a small portion of Jharkhand and Odisha.

The bar graph in Figure 4 and Table 1 shows the browning and 
greening effect of summer season in India. The browning effect is 
most prominent in Madhya Pradesh due to the presence of large 
forest area in the state, which is highly affected in summer. 
Approximately 131271.577 km2 is under browning in this region, 
whereas 177416.1116 km2 remains green even in summer. Among 
Union territories, the most affected region is Delhi during summer, 
wherein approximately 516.049 km2 is affected by browning.

Maximum rainfall in India is received in monsoon season during 
July and mid-November. The bar graph in Figure 5 and Table 1 shows 
the browning and greening effects of monsoon season in India. The 
greening effect is most prominent in monsoon season due to the 
availability of water in the country from rainfall. Rajasthan, the driest 
state of India, also shows profound greening effect on monsoon 
(319787.27 km2) because this is the only season in which vegetation 
and crop growth in Rajasthan is abundantly observed in the area. 
Apart from Punjab and Haryana, the two most agriculturally 
dominating states show a high concentration of greening area during 
Monsoon. Punjab state shows 47522.15 km2 under greening and 
3550.737 km2 as browning, whereas Haryana state shows 40634.58 km2 
under greening and 4131.61 km2 under browning.

Winter season in India is very crucial because in most regions, 
it offer a chance for dual cropping, but on the other hand, 
deciduous forest in India suffer from browning effect and leaf 
shedding during this period, except for rain forests. Considering 

FIGURE 2

Schematic diagram of the methodology.
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FIGURE 3

Greening and browning trend of NDVI for the time span 2000–2022.

FIGURE 4

Bar Graph showing greening and browning trend of vegetation for the time span 2000–2022 for 29 states of India and 6 Union territories in summer 
season.
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this reason, our analysis also brings out the fact that northern part 
of Himalayas remains green even in winter, while the degradation 
in vegetation is clearly observed as we  come down to lower 
Himalayas or southern part of the region. The dynamics of 
vegetation degradation is exactly opposite to that of summers. The 
greening of vegetation is maximum in Madhya Pradesh during 
winter, wherein greening and browning is 291667.69 km2 and 

17,012 km2, respectively. Apart from Madhya Pradesh, greening is 
also observed more in states of Gujarat and Maharashtra.

From the bar graphs shown in Figures 4–6, it is clear that almost all 
the states are undergoing browning effect in India. Alarming proportions 
are observed in Jammu and Kashmir, Odisha, and Andhra Pradesh, apart 
from the North-Eastern states such as Assam, Nagaland, Mizoram, 
Tripura, Manipur, Arunachal Pradesh, and Meghalaya. The proportion of 

TABLE 1 Long-term dynamics of vegetation (greening and browning) for 29 states of India and 6 Union territories.

Summer Monsoon Winter

Sl no State Browning sq. 
km

Greening sq. 
km

Browning sq. 
km

Greening sq. 
km

Browning sq. 
km

Greening sq. 
km

1 Jammu & Kashmir 66013.486 176876.5686 35929.861 206920.8158 56466.583 186193.9775

2 Punjab 22508.028 28565.8836 3550.737 47522.15783 7344.427 43768.66949

3 Himachal Pradesh 15462.6 20567.9476 8130.016 27896.22283 7076.757 28971.59049

4 Uttaranchal 21678.594 32656.7856 9378.011 44956.74183 10298.69 44044.87849

5 Chandigarh* 60929.281 75186.5716 25315.498 110804.4798 23379.589 112688.2965

6 Rajasthan 55987.347 286978.2266 23243.451 319787.2778 32301.089 310662.8115

7 Haryana 9739.95 35029.8156 4131.619 40634.58383 6603.677 38203.26349

8 Delhi* 516.049 1650.2746 562.095 1600.501829 579.53 1626.116486

9 Arunachal Pradesh 43534.45 39209.3466 26164.26 56573.16683 19591.843 63103.60949

10 Nagaland 9994.642 7261.1916 7314.766 9936.067829 2620.257 14668.06549

11 Madhya Pradesh 131271.577 177416.1116 68656.221 240045.0338 17012.002 291667.6935

12 Meghalaya 12200.123 10902.8306 11348.144 11748.95783 4386.73 18744.75049

13 Manipur 10165.275 12797.5396 8151.392 14806.29583 5560.574 17423.17349

14 Assam 33869.441 45240.3386 29608.607 49495.31483 20016.481 59065.13449

15 Uttar Pradesh 106645.535 134672.9376 26652.777 214686.8948 29904.965 211442.9805

16 Bihar 35123.207 59593.1386 11348.569 83371.00283 9616.885 85129.45349

17 Mizoram 10409.014 11346.5716 8554.759 13196.21583 7330.816 14443.01349

18 Tripura 5570.793 5528.8246 4126.637 6968.527829 3171.655 7956.244486

19 Jharkhand 34847.713 45686.6136 9948.728 70589.14483 10201.733 70346.60549

20 West Bengal 17289.127 70204.7786 16371.478 71114.03483 16258.81 71207.99049

21 Gujarat 86634.994 95392.2306 29945.085 152090.6838 17100.133 164865.9235

22 Daman & Diu* 48.34 707.7386 47.989 703.6768286 13.586 782.6464857

23

Dadra & Nagar 

Haveli 341.612 814.8826 114.657 1037.602829 70.889 1125.399486

24 Maharashtra 83469.906 224397.7726 41188.338 266684.0588 24637.307 283181.5905

25 Pondicherry* 168.227 992.7776 125.209 1032.237829 190.869 1009.474486

26 Goa 1803.121 2481.2346 1217.836 3062.502829 447.244 3873.245486

27 Tamil Nadu 31548.307 98796.6416 32504.04 97837.53683 22773.762 107465.5355

28 Kerala 16631.058 22713.1226 17556.248 21780.94083 13975.62 25381.80349

29 Lakshadweep* 17.148 671.4906 13.357 671.0888286 15.678 712.8414857

30 A & N Islands* 3016.06 4160.0956 2459.623 4711.066829 1900.724 5287.202486

31 Sikkim 2803.369 4991.1926 1675.059 6115.818829 1333.003 6493.378486

32 Odisha 38156.318 117461.0556 21436.843 134180.1768 19145.658 136486.5045

33 Andhra Pradesh 48212.1 112289.9836 44853.119 115655.9258 30182.601 130308.8615

34 Karnataka 44213.755 147715.4386 34269.637 157664.8398 35351.268 156560.6435

35 Telengana 37537.912 77946.5866 18037.988 97448.74883 20946.948 94561.24749

TGA 3,287,263 3,287,263 3,287,263

*Union Territory.
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forest cover in North Eastern India and Jammu and Kashmir is high 
because less agricultural land is available and the terrain is composed of 
hard and rocky mountains. Therefore, these regions are very vulnerable 
and needs proper management of plans over time by central and local 
government bodies.

Since rainfall in India is predominantly dependent on the 
monsoon, the rainfall datasets of monsoon months from July to 
October were considered. According to Figure  5, it is clear that 
anomaly of rainfall is high in the regions, which significantly shows 
red in color during 2000–2022, indicating them as dry zone, whereas 
on the other hand, the region which is almost black indicates that 
mostly the rainfall is constant over the selected years during monsoon 
season. Resultantly, the rainfall variation might affect the vegetation/
forest cover in India because rainfall has significant effect on soil 
moisture and other climatic phenomena.

After the greening and browning analysis, the vegetation 
degradation hotspots were clearly visible; therefore, Natural Color 
Composite (RGB) was built using the Landsat archive datasets to 
clearly visualize the changes in forest cover in GEE. Two hot spot 
zones, namely, (a) Punjab and (b) Assam are shown as representatives 
of the entire study area. Two years (2000–2022) RGB datasets of 
Punjab clearly demonstrate the encroachment/anthropogenic pressure 
leading to the degradation of vegetation cover, and Assam forest patch 
has been cleared for agricultural purposes.

5 Conclusion

Remote sensing-based vegetation indices and rainfall datasets 
for 22 years were used to investigate the response of forest cover 
over Indian landmass. The research revealed a complex spatial 
pattern of diverse vegetation responses to seasonal variation, 
which is expressed through long-term trends. Indian vegetation 
condition showed resistance to dry spells and water scarcity 
despite abrupt rainfall trends. This means that the productivity of 
vegetation has been sustained even during dry conditions in 
different years. Nevertheless, it was found that rainfall impacted 
vegetation growth to some extent: negatively in summer years 
(2002) and positively in monsoon years. The research presented 
here used a new technique, named as MMM technique, using 
Multi-Sensor, Multi-Temporal and Multi-Scale datasets, which 
helped to compute in a single platform, for a unique visualization 
for the first time so as to manage sustainable vegetation cover 
from further degradation. It is recommended to set up a network 
of rainfall stations, runoff measurements, phenocams, and eddy 
covariance towers, to quantify the impacts of climate change and 
assess vegetation degradation vulnerability relative to future 
changes/developments across India. Such a network may also help 
to understand the exchange of carbon and water fluxes, water use 
efficiency, and the impact of drought at the microlevel.

FIGURE 5

Examples of Vegetation Degradation Hotspots.
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