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Enhancing data-driven soil 
moisture modeling with 
physically-guided LSTM networks
Qingtian Geng , Sen Yan , Qingliang Li * and Cheng Zhang 

College of Computer Science and Technology, Changchun Normal University, Changchun, China

In recent years, deep learning methods have shown significant potential in soil 
moisture modeling. However, a prominent limitation of deep learning approaches 
has been the absence of physical mechanisms. To address this challenge, this 
study introduces two novel loss functions designed around physical mechanisms 
to guide deep learning models in capturing physical information within the data. 
These two loss functions are crafted to leverage the monotonic relationships 
between surface water variables and shallow soil moisture as well as deep soil 
water. Based on these physically-guided loss functions, two physically-guided 
Long Short-Term Memory (LSTM) networks, denoted as PHY-LSTM and PHYs-
LSTM, are proposed. These networks are trained on the global ERA5-Land 
dataset, and the results indicate a notable performance improvement over 
traditional LSTM models. When used for global soil moisture forecasting for the 
upcoming day, PHY-LSTM and PHYs-LSTM models exhibit closely comparable 
results. In comparison to conventional data-driven LSTM models, both models 
display a substantial enhancement in various evaluation metrics. Specifically, 
PHYs-LSTM exhibits improvements in several key performance indicators: an 
increase of 13.6% in Kling-Gupta Efficiency (KGE), a 20.7% increase in Coefficient 
of Determination (R2), an 8.2% reduction in Root Mean Square Error (RMSE), 
and a 4.4% increase in correlation coefficient (R). PHY-LSTM also demonstrates 
improvements, with a 14.8% increase in KGE, a 19.6% increase in R2, an 8.2% 
reduction in RMSE, and a 4.4% increase in R. Additionally, both models exhibit 
enhanced physical consistency over a wide geographical area. Experimental 
results strongly emphasize that the incorporation of physical mechanisms 
can significantly bolster the predictive capabilities of data-driven soil moisture 
models.
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1 Introduction

Soil moisture (SM) is a pivotal variable within the climate system, exerting profound 
influences on water, energy, and biogeochemical cycles. Its involvement in global-scale 
feedback mechanisms renders it crucial for climate change prediction (Seneviratne et al., 2010; 
Yamazaki et al., 2017). In the agricultural sector, there is potential for enhancing irrigation 
schemes (Ying et al., 2016), and mitigate the proliferation of agricultural pests and water 
pollution (Rosenzweig et al., 2001). In hydrology, soil moisture serves as a valuable indicator 
for refining parameterization schemes related to land surface models for hydrological processes 
(Brocca et al., 2017), and shapes the performance of physical models and the assessment of 
wet and dry conditions (Walker et al., 2009). Additionally, soil moisture assumes a critical 
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indicative role in climate change dynamics (Solomon et al., 2007). 
However, the significant spatial and temporal heterogeneity 
characterizing soil moisture variability, governed by diverse factors 
including soil properties, precipitation, and vegetation, presents a 
formidable challenge for accurate soil moisture forecasting (Thober 
et al., 2015). Over the past decades, researchers have endeavored to 
develop various models to capture the trends in soil moisture 
variability. These models can broadly be classified into two categories: 
physical process-based models (Penman, 1948; Thornthwaite, 1948; 
Chopart and Vauclin, 1990; Henderson-Sellers, 1996; Eltahir, 1998; 
Kroes et al., 2000) and data-driven empirical models (Fang et al., 2019; 
Diouf et al., 2020; Li et al., 2021, 2022a,b, 2023).

Models grounded in physical processes typically encompass land 
surface models and hydrological models. Land surface models employ 
meteorological forcing datasets (comprising precipitation, 
temperature, specific humidity, surface pressure, radiation, wind 
speed, etc.) to simulate physical processes through partial differential 
equations. However, they heavily rely on data, rendering them 
susceptible to inaccuracies in meteorological forcing data, which 
consequently yield erroneous outcomes (Cosgrove et  al., 2003). 
Hydrological models, on the other hand, consider water inputs (e.g., 
rainfall, irrigation) and outputs (e.g., evaporation, runoff) along with 
storage (water content in the soil) to predict changes in soil moisture. 
These models solve equations based on physical processes, such as the 
water balance equation and energy balance equation (Penman, 1948; 
Thornthwaite, 1948; Kroes et al., 2000). However, the accuracy of 
hydrological models hinges on the representation of system responses 
through the model structure and the reliability of the data utilized 
(Beven, 2006). In summary, a prominent limitation of physical 
process-based models lies in the empirical approach employed to 
determine key parameters, resulting in substantial uncertainties in the 
model results, particularly when applied at a global scale (Lazer 
et al., 2014).

In recent years, the rapid advancement of computer hardware has 
paved the way for data-driven models, notably Deep Learning (DL) 
approaches. Among these approaches, Long Short-Term Memory 
(LSTM) networks have demonstrated exceptional capacity for 
nonlinear fitting. LSTM networks effectively capture and manage 
long-term dependencies through the integration of gating mechanisms 
and memory cells. This characteristic makes them particularly suitable 
for handling short-term memory in soil moisture forecasting. 
Consequently, LSTM models have gained wide popularity in the field. 
For instance Fang et al. (2017) employed an LSTM model to predict 
surface soil moisture based on climate forcing data and geographic 
attributes such as soil texture and terrain slope. The model exhibited 
impressive performance, achieving a low test root mean square error 
(RMSE) of approximately 0.035 and a high correlation coefficient of 
approximately 0.87 over more than 75% of the continental U.S. Two 
years later, Fang et al. (2019) further enhanced their predictions by 
incorporating additional land surface attribute variables (e.g., 
topography, vegetation type, land surface roughness) to fuse LSTM 
and land surface process model (Noah) calculations through mean 
computation. This fusion approach enabled improved surface soil 
moisture predictions. In another study, Cai et al. (2019) developed a 
DL regression network with two hidden layers to establish a prediction 
model linking meteorological parameters to soil moisture at a depth 
of 20 cm in the Yanqing area of Beijing, China. The model achieved an 
impressive determination coefficient correlation of 98%. Diouf et al. 

(2020) utilized data from the European Centre for Medium-Range 
Weather Forecasts 5th Generation Land Surface Reanalysis Dataset 
(ERA5-Land) specific to the West Africa region. They constructed a 
deep neural network comprising two sequentially connected hidden 
layers to successfully predict soil moisture in layers 1 and 2 for the 
subsequent 2 to 7 days. The average absolute error ranged between 
0.01 and 0.03 m3/m3, demonstrating low prediction discrepancies.

Li et al. (2022a) incorporated a transfer learning approach into 
three types of DL prediction models: spatial models based on 
convolutional structures, temporal models based on LSTM 
structures, and spatio-temporal models based on ConvLSTM 
structures. They used 3-day lagged meteorological forcing data 
(specifically rainfall) and land surface variables (soil temperature 
and soil moisture) to enhance surface soil moisture prediction 
accuracy after 3–7 days. This approach aimed to alleviate the issue 
of overfitting during DL training, which can arise due to limited 
data availability. The following year Li et  al. (2022b) further 
advanced their predictions by utilizing 10-day lagged meteorological 
forcing data (rainfall, long wave radiation, short wave radiation, 
atmospheric temperature, atmospheric pressure, and wind speed), 
land surface variables (soil temperature and soil moisture), and 
temporal statistical variables (values representing days and months 
of the year). They designed an LSTM model with a multi-feature 
attention mechanism, enabling soil moisture predictions at a depth 
of 10 cm for 1 to 7 days. Notably, this model yielded interpretable 
results that explained the changing importance of variables during 
the training process. Collectively, the aforementioned studies 
illustrate that DL models are particularly suited for handling high-
dimensional, nonlinear, and complex meteorological data.

However, “pure” DL models also encounter certain challenges and 
frequently lack traceability to fundamental physical laws (Dueben and 
Bauer, 2018). To address this issue, researchers have started exploring 
the integration of scientific knowledge into DL models (Willard et al., 
2022). This integration can be  achieved through three main 
approaches: (1) employing physical knowledge-constrained DL loss 
functions (Karpatne et al., 2017; Read et al., 2019; Kahana et al., 2020; 
Zhang et  al., 2020; Jia et  al., 2021; Xie et  al., 2021), (2) utilizing 
simulation results from physical models to guide the initialization of 
DL parameters (Read et al., 2019; Jia et al., 2021; Xie et al., 2021), and 
(3) designing DL model structures that ensure their simulation results 
are physically consistent (Karpatne et al., 2017; Zhang et al., 2020).

Physical knowledge constraints on the loss function of a DL 
model can guide its predictions to be  consistent with physical 
principles. By incorporating physical constraints for regularization, 
the search space for model parameters can be reduced, constraining 
the model to adhere to physical laws. This approach ensures the 
model’s consistency with the laws of physics throughout the 
optimization process. Compared to traditional DL models, DL models 
with physical constraints demonstrate improved generalization 
performance and greater robustness when faced with unseen samples 
(Read et al., 2019; Jia et al., 2020). For instance, Kahana et al. (2020) 
introduced a method that integrates the solution of the fluctuation 
equation into a neural network, incorporating physical information. 
By penalizing the model based on the physical understanding of the 
fluctuation equation, more accurate and robust results can be achieved, 
with the IOU score decreasing from 66 to 35% in the absence of noise.

On the other hand, Zhang et al. (2020) trained a CNN model 
using a limited dataset and physical constraints. The laws of dynamics 
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were utilized to provide constraints on the network output and 
mitigate the overfitting problem. By comparing the predictions of 
both physically constrained and unconstrained CNN models, the 
correlation coefficients of the predicted displacement time series on 
four different datasets were found to be  0.95, 0.92, 0.87, 0.61 
(PhyCNN prediction) and 0.60, 0.72, 0.66, 0.37 (CNN prediction), 
respectively.

Xie et al. (2021) demonstrated that a DL model incorporating 
physical mechanisms exhibited a strong explanatory power for 
extreme events and monotonic relationships in rainfall-runoff 
simulations. They further enhanced the model’s performance and 
optimization objectives by introducing synthetic samples and external 
loss functions. As a result, the average Nash-Sutcliffe efficiency (NSE) 
for daily simulations during local model testing improved from 0.52 
to 0.61.

Karpatne et  al. (2017) employed the physical relationship 
between temperature, density, and water depth to formulate a 
physical loss function, guaranteeing that the density of water at 
lower depths remained greater than the density of water at any 
higher depth. In Lake Mendota, the mean test RMSE for the PGNN 
model were 1.79 and 1.93 with and without the inclusion of the 
physical constraint, respectively. The corresponding physical 
inconsistency scores, which indicate the percentage of time steps in 
which the density-depth relationship was violated, were 0 and 0.33, 
respectively.

However, when it comes to predicting large-scale soil moisture 
with spatial and temporal consistency, physically constrained DL 
models face challenges due to the varying sensitivity of soil moisture 
predictors across different regions (Luo et  al., 2022). Designing 
globally applicable physically constrained loss functions and utilizing 
them as guides for DL models is a challenging task. In this study, 
we  aim to explore the effectiveness of physically constrained loss 
functions for soil moisture forecasting. Specifically, we propose two 
physically based loss functions based on the principle of surface water 
balance, which captures the cyclic relationship between rainfall 
(inflow water), evapotranspiration (outflow water), and soil moisture 
(stored water).

These include the design of two monotonic loss functions: one 
based on the monotonic relationship between inflow water minus 
outflow water and surface soil moisture and another based on the 
monotonic relationship between inflow water minus outflow water 
and deep soil water. The monotonic loss functions are designed to 
reflect the behavior of soil moisture, wherein its values increase with 
an increase in inflow water and decrease with an increase in outflow 
water during changes in moisture states.

In this study, we employ these two physically constrained loss 
functions as guides for training the DL model. By integrating physical 
principles into the loss functions, we  aim to enhance the model’s 
ability to learn and represent the underlying physical processes 
governing soil moisture dynamics.

2 Methods

2.1 Data sources

Prior research has indicated that employing atmospheric forcing 
data and static terrain attributes (surface model parameters) as inputs 

for DL models yields highly accurate soil moisture representations. 
Atmospheric forcing data encompasses variables such as precipitation, 
temperature, radiation, humidity, and wind speed, while static terrain 
attributes refer to soil texture, soil moisture capacity, and land cover 
(Feng et al., 2020; Li et al., 2023).

We previously established the LandBench dataset for predicting 
surface variables. This dataset includes a wide range of global variables 
from the ERA5-Land, ERA5 reanalysis, SoilGrid, SMSC, and MODIS 
datasets. The data has been processed into daily records at resolutions 
of 0.5°, 1°, 2°, and 4° for application in data-driven models (Feng 
et  al., 2020; Li et  al., 2024). In this study, we  utilize data with a 
resolution of 0.5°.

Our training objective involves predicting soil moisture 
(0–7 cm) sourced from the ERA5-Land reanalysis dataset. 
Meteorological forcing data (including precipitation, longwave 
radiation, specific humidity, surface pressure, downward 
shortwave radiation, surface temperature, and wind speed) and 
static attribute data (land cover, soil water-holding capacity, 
elevation data, and soil texture) serve as input features for the deep 
learning model. Land surface variable data (including soil 
moisture, evapotranspiration, runoff, and snow accumulation 
within the range of 7–100 cm) are also incorporated into the loss 
function design. Meteorological forcing and land surface variable 
data are sourced from the ERA5-Land reanalysis dataset, land 
cover data from Friedl et al. (2010), soil water-holding capacity 
data from the SMSC dataset (Xie et al., 2022), elevation data from 
the MERIT DEM (Yamazaki et al., 2017), and soil texture data 
(represented by parameters denoting sand, silt, and clay content) 
from the SoilGrid dataset.

2.2 Long short-term memory networks

We have adopted Long Short-Term Memory networks (LSTM) 
(Hochreiter and Schmidhuber, 1997) as the modeling framework 
for our model. In comparison to traditional Artificial Neural 
Networks (ANNs), Recurrent Neural Networks (RNNs) 
demonstrate the ability to effectively capture the relationship 
between the current time step and previous time steps in time series 
data. However, RNNs encounter challenges in preserving long-term 
dependencies within the input sequence when the distance between 
correlated information across time steps increases. To address the 
issue of gradient vanishing or exploding in RNNs, LSTM networks 
were developed. LSTMs incorporate a gating mechanism that 
enables the effective storage and transfer of long-term dependency 
information, resulting in improved handling of time series data.

The LSTM architecture (Figure 1) processes a sequence of input 
features x = [x 1[ ],…, x T[ ]] spanning T time steps. Each element x t[ ] 
represents a vector containing features at time step t. A vector of 
recurrent cell states c t[ ] is updated based on the input features and the 
current cell state values at time t. These cell states also determine the 
LSTM outputs or hidden states h t[ ]. The hidden states h t[ ] are then 
passed through a head layer, where they are combined to generate 
predictions y[t] that aim to match the target data. The specific 
structure of LSTM is shown in Equations 1–7:

 i t W x t U h t bi i i[ ] = [ ] + −[ ] +( )σ 1  (1)
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 f t W x t U h t bf f f[ ] = [ ] + −[ ] +( )σ 1  (2)

 g t W x t U h t bg g g[ ] = [ ] + −[ ] +( )tanh 1  (3)

 o t W x t U h t bo o o[ ] = [ ] + −[ ] +( )σ 1  (4)

 c t f t c t i t g t[ ] = [ ]⊗ −[ ] + [ ]⊗ [ ]1  (5)

 h t o t c t[ ] = [ ]⊗ [ ]( )tanh  (6)

 [ ]ˆ = +t d dW h ty b
 (7)

In the LSTM architecture, the symbols i t[ ], f t[ ], and o t[ ] 
represent the input, forgetting, and output gates, respectively. The gate 
g t[ ] corresponds to the cell input, x t[ ] represents the network input 
at time step t, h t −[ ]1  is the output of the LSTM (referred to as the 
cyclic input), and c t −[ ]1  denotes the cell state from the previous 
time step.

The cell state serves as the memory of the system at the current 
time and is initially set to an all-zero vector. The Sigmoid activation 
function σ .( )  is applied to constrain the values within the range of 
[0, 1]. These Sigmoid functions are employed in the forgetting, input, 
and output gates, analogous to the on/off states of switches. 
Multiplying any value by [0, 1] corresponds to a decay operation. The 
forgetting gate determines the time scale of memory for each cell state, 
while the input and output gates control the information flow from 
the input features to the cell state and from the cell state to the output 
(cyclic input), respectively.

The calibrated parameters W, U, and b are associated with specific 
gate matrices/vectors, as indicated by the subscripts. The hyperbolic 
tangent activation function tanh(·) introduces non-linearity and is 
used in the cell input and cyclic input. The symbol ⊗ denotes element-
by-element multiplication. Finally, yt



 represents the predicted value 
of the soil moisture.

The theoretical foundation of our model is rooted in the 
fundamental principle of mass conservation. The conservation of mass 
is a crucial law in water balance models and hydrological model 
implementations, serving as a pivotal element in assessing the physical 
validity of soil moisture predictions. To ensure the adherence to this 
principle, we  have devised two loss functions based on the water 
balance concept. These loss functions will serve as guidance in training 
the LSTM model. The integration of these aforementioned 
components constitutes the core framework of our study (see 
Figure 2).

2.3 Model training and parameter 
adjustment

This study focuses on a global scale (excluding Antarctica). Given 
the relatively high resolution and large dataset, the study adopted a 
point sampling training method as proposed by Fang and Shen (2020), 
significantly enhancing model training speed. The training period 
spans from January 1, 2018, to December 23, 2019, with 75% of the 
data used for training and the remaining 25% for validation, 
progressing in chronological order. The testing period ranges from 
January 1, 2020, to December 31, 2020. Before the model training 
commenced, all input features were normalized to expedite 
convergence. The loss function was defined as the root mean square 
error (RMSE) between observed values and predictions.

In the parameter adjustment section, reference was made to our 
previous work (Li et al., 2024). The hyperparameters of the model 
were set as follows: 1000 epochs, but typically, the model reached its 
optimal performance after approximately 200–300 epochs. To enhance 
training efficiency, a validation was performed every 20 epochs, and 
an early stopping technique was employed to prevent overfitting. 
When the validation loss did not decrease for ten consecutive 
validation sets, the model was halted, and the model with the lowest 
validation loss was saved. The optimizer chosen was the Adam 
optimizer, the model featured one hidden layer with 128 hidden units, 
a dropout rate of 0.15, a learning rate of 0.001, and a sequence length 
of 7. To ensure reproducibility and eliminate the impact of random 
factors on results, a fixed random seed was employed for weight 
initialization. The model did not include a warm-up period.

All experiments were conducted on a server equipped with an 
Intel Core (TM) i9-10980XE, 3.00GHz × 36 CPU, 128GB of memory, 
and two NVIDIA RTX A5000 graphics cards.

2.4 Methodology

The fundamental concept behind the design of the loss function 
is to account for the relationship between the change in soil moisture 
(the difference between the previous time step’s soil moisture and the 
current time step’s soil moisture) and the water entering the soil 
(precipitation at the current time step) minus the water leaving the soil 

FIGURE 1

The individual time steps of a standard LSTM model. At each time 
step t, the model incorporates input features xt, cell states ct, and 
cyclic inputs ht. The forgetting gate ft, input gate it, and output gate ot 
are employed to control the flow of information. Additionally, the 
cell input gt is utilized. The boxes labeled σ and tanh represent a 
single Sigmoid activation layer and hyperbolic tangent activation 
layer, respectively, both containing the same number of nodes as the 
cell state. The symbol “+” signifies element-wise summation, while 
“ ⊗ ” denotes element-wise multiplication.
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(evapotranspiration at the current time step). Ideally, these should 
be equal (representing absolute water balance, which is challenging to 
achieve) or exhibit a certain level of correlation with a degree of 
monotonicity. Specifically, when the amount of water entering the 
system at the current time-step exceeds that of the previous time-step, 
soil moisture should increase. Conversely, when the current inflow is 
less than the previous one, soil moisture should decrease. When there 
is no significant change in the incoming water, soil moisture variation 
should also be minimal. Consequently, this study devised two loss 
functions based on the aforementioned principles. These include the 
physically monotonic loss function that enforces the physical 
monotonicity of the changes in soil moisture’s inflow (precipitation, 
condensation, snowmelt) and outflow (evaporation, runoff), as well 
as the changes in single-layer and multi-layer soil moisture, as 
illustrated below:

 Loss Loss Lossi RMSE PHY
i= +λ λ1 2  (8)

 
Loss

N
SM SMRMSE t t= −( )1 2



 
(9)

Equation (8) presents a monotonic loss function designed on the 
principle of surface water balance in the topsoil. Here, LossRMSE  
represents the root mean square error between observed topsoil 
moisture SMt and predicted topsoil moisture SM t



, as expressed 9 in 
Eq. (9). On the other hand, LossPHY

i  signifies a monotonic loss 
function designed based on the surface water balance principle. 
Specifically, LossPHY1  corresponds to scenarios excluding deep soil 
water, while LossPHY2  accounts for deep soil water. The weights λ1 and 

λ2 denote the importance assigned to RMSE and physical losses, 
which will be elaborated on in the experimental section. Here, N 
denotes the total number of data points.

The surface water balance principle influences soil moisture by 
describing the increase or decrease in the quantity of water entering 
or leaving the system, as shown below:

 W P E SRO SDt t t t t
1 = − − + ∆  (10)

In Eq. (10), Pt  represents the precipitation at the current time step, 
Et  represents the evapotranspiration at the current time step, SROt  
represents the surface runoff at the current time step, and ∆ tSD  
represents the change in snow depth water equivalent at the current 
time step. Wt1 represents the water inflow or outflow to and from the 
surface soil layer (excluding the deep soil moisture) at the current 
time step.

 W W SMt t t
2 1 2= − ∆  (11)

In Eq. (11), 2∆ tSM  represents the change in deep soil moisture at 
the current time step. Wt2 represents the water inflow or outflow to 
and from the surface soil layer (including deep soil moisture) at the 
current time step.
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FIGURE 2

Flowchart of building a land surface water model using the physically guided LSTM network. This figure illustrates the process of establishing a land 
surface water model using the Physically Guided LSTM network, where meteorological forcings and static variables are used as input features. Within 
the process, data that adheres to monotonic relationships is selected and included in the calculation of the physical loss term.
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In Eq. (12), ∆ i
tW  represents the difference between the water 

inflow or outflow to and from the land surface balance system at the 
current time step and the previous time step. When this value is 0, it 
indicates that the water inflow and outflow at the current time step 
have remained unchanged compared to the previous time step. In this 
case, the physical loss term at the current time step should not 
be included in the overall loss calculation. The threshold of 0 is set as 
a condition. Only when there is an increase or decrease in the water 
inflow and outflow to and from the land surface balance system at the 
current time step compared to the previous time step, does it 
contribute to the calculation of the physical loss.

 
∆ ∆W W SM SMt

i
t
i

t t= ⊗ −( ) >−0 01,
 (13)

In Eq. (12), by assigning an initial value to ∆ i
tW , it is used to 

indicate that the water inflow and outflow to and from the land surface 
balance system at the current time step have changed compared to the 
previous time step. In theory, this change should correspond to a 
change in soil moisture, and there should be a positive correlation 
between the two. However, in practice, the relationship between soil 
moisture and changes in water inflow or outflow from the soil is not 
always strictly monotonous. For example, if the soil is already 
saturated, additional rainfall may lead to increased runoff rather than 
an increase in soil moisture. Conversely, in very dry soil conditions, 
precipitation may be  directly lost to evaporation rather than 
contributing to soil moisture. Additionally, the design of the loss 
function may not fully encompass all variables in the entire land 
surface water system (e.g., some groundwater components), the model 
might use lagged meteorological and land surface data, and there may 
be discrepancies between observed and actual data. Therefore, it is 
necessary to remove data from the training dataset where the changes 
in water inflow and outflow and soil moisture are non-positively 
correlated and exclude them from the calculation of the physical loss. 
Equation (13) serves this purpose.

 
L ss

ReLU W SM SM

NPHY
i j

N
t
i

t t
o =

⊗ −( )( )( )= −∑ 1
1

2

∆ 

 
(14)

In Eq. (14), SMt−1 represents the observed soil moisture at the 
previous time step, and SM t



 is the predicted soil moisture at the 
current time step. The inclusion of the ReLU function is intended to 
ensure that the variations in the predicted SM t



 align with the changes 
in ∆ i

tW  as described in Eq. (13). For instance, when ∆ i
tW  is equal to 

1, indicating an increase in the water inflow to the system, the two 
should exhibit a positive correlation. In this scenario, SMt is expected 
to be  greater than SMt−1. Conversely, when ∆ i

tW  equals −1, 
indicating a decrease in the water inflow to the system, SMt should 
be less than SMt−1.

2.5 Evaluation metrics

This study employs the following metrics to assess the predictive 
performance of the DL model: Pearson’s correlation coefficient (R), 
root mean square error (RMSE), coefficient of determination (R2), and 

the Kling-Gupta efficiency coefficient (KGE). R measures how well the 
model captures variations in the data, RMSE quantifies the accuracy 
of the model’s forecasts, R2 evaluates the goodness of fit between 
predicted and actual values, and KGE reflects the consistency between 
observed and predicted values. The formulas for calculating these 
criteria are as follows:
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In the above equations Equations 15–18, yi is the observed value 
at time i from the ERA5-Land dataset. yi

  is the predicted value at time i from 
the DL model. y  is the mean of observed values. y



 is the mean of 
predicted values. ystd  is the standard deviation of observed values. 
ˆstdy  is the standard deviation of predicted values.
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To incorporate physical mechanisms into the deep learning 
model, this study introduces a novel evaluation metric called “physical 
consistency” in addition to the conventional evaluation criteria. The 
physical consistency metric is computed by substituting the predicted 
results into Eq. (19). A positive calculated result indicates a negative 
correlation between the soil moisture trend and the ∆ tW  trend, 
indicating a case of physical inconsistency. Conversely, a negative 
calculated result suggests a positive correlation between the soil 
moisture trend and the ∆ tW  trend, indicating a case of physical 
consistency. When the calculated result is zero, it signifies that there 
is no change in ∆ tW  or soil moisture, and thus no statistical analysis 
is conducted. This evaluation metric effectively measures the 
alignment between the model output and the underlying physical laws.

3 Results

PHY-LSTM and PHYs-LSTM are models created using LSTM 
networks with loss functions designed based on surface water and 
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surface soil water, and deep soil water, respectively. Therefore, it is 
essential to compare the performance of the PHYs-LSTM and 
PHY-LSTM models with the traditional LSTM model to assess the 
effectiveness of incorporating coupled physical processes in the 
model conceptualization.

Various land surface variables exert distinct impacts on soil 
moisture as part of the broader context of the land surface water 
balance. In Section 3.1, we introduce alterations to different variables 
to compare their impact on soil moisture changes and evaluate their 
relative importance in the land surface water balance process.

The allocation of appropriate weights is crucial for model 
performance. In Section 3.2, we adjust the weight distribution of the 
traditional loss term RMSE and the physical loss term by comparing 
various weight ratios to identify the optimal weight combination for 
the model.

Different climate regions exhibit unique climate characteristics 
and patterns of soil moisture variation. Model fitting varies across 
different climate regions, and in Section 3.3, we  evaluate model 
performance in varying environmental conditions by comparing 
model predictions across different climate regions. This analysis 
enhances our understanding of the model’s applicability and accuracy 
under diverse climate conditions, aiding in the identification of 
potential limitations and areas for improvement.

In Section 3.4, we enhance model interpretability and credibility 
by employing a physical consistency comparison method. When the 
model’s soil moisture predictions align with actual observed values in 
a physically meaningful way, it boosts our confidence in the model’s 
effectiveness and enables it to provide reasonable explanations for soil 
moisture variations. This process is crucial for practical model 
applications and decision support.

To validate the model’s ability to effectively capture soil moisture 
changes, in Section 3.5, we compare time series graphs of three models 
with actual soil moisture trends. This validation aids in assessing the 
models’ capability to capture dynamic soil moisture changes and 
evaluates their performance in short-term soil moisture predictions.

3.1 Refining the impact of multiple factors 
on soil moisture

Groups A (multi-layer soil water) and B (single-layer soil water) 
represent experimental results obtained from LSTM models using the 
monotonicity design of the water balance loss function between 
surface water and multi-layer or single-layer soil water. The traditional 
LSTM model exhibits an RMSE range between 0.0353 and 0.0377, 
while LSTM models employing the water balance loss function yield 
a narrower RMSE range, varying from 0.0324 to 0.0358 for A1 to A4 
and B1 to B4. This suggests that LSTM models using the water balance 
loss function have lower prediction errors and are closer to 
observational data.

The traditional LSTM model’s R fall within the range of 0.771 to 
0.795, whereas LSTM models utilizing the water balance loss function 
achieve higher R ranging from 0.793 to 0.830 for A1 to A4 and B1 to 
B4. This indicates that LSTM models using the water balance loss 
function might exhibit better linear correlation with observational 
data, especially in A3 and A4 models where R are relatively high.

The R2 range for the traditional LSTM model is 0.394 to 0.463, 
while LSTM models incorporating the water balance loss function 

exhibit a higher R2 range from 0.452 to 0.554 for A1 to A4 and B1 to 
B4. This further supports the idea that LSTM models with the water 
balance loss function might perform better in terms of linear 
correlation with observational data.

The KGE for the traditional LSTM model range from 0.516 to 
0.600, while LSTM models using the water balance loss function 
achieve higher KGE ranging from 0.537 to 0.689 for A1 to A4 and B1 
to B4. This indicates that LSTM models with the water balance loss 
function offer more accurate simulation and predictions that align 
better with actual observational data (Table 1).

In summary, LSTM models employing the water balance loss 
function outperform traditional models in several aspects, including 
lower root mean square error (RMSE), higher linear correlation (R, 
R2), and improved simulation and prediction performance (KGE). It 
may be more suitable for modeling and predicting the relationship 
between surface water and single-layer soil water, possibly due to the 
more coherent and direct physical connection between surface water 
and single-layer soil water. Surface water is typically directly 
influenced by factors like precipitation, evaporation, and surface 
runoff, which interact more directly with single-layer soil water. This 
direct interaction makes it easier for the model to capture the physical 
processes between surface water and soil water. Additionally, the 
relationship between surface water and single-layer soil water is 
relatively simple, resulting in lower predictive uncertainty. In contrast, 
multi-layer soil water systems may involve more unknown factors, 
leading to greater predictive uncertainty. This highlights the crucial 
role of appropriately designed loss functions and water balance 
formulas in improving model performance.

3.2 Investigation of weight impact on loss 
functions

The results in groups C and D are based on our study of weight 
adjustments. We chose to compare A4 (group C) and B4 (group D) for 
our analysis. Different experiments employed varying ratios of RMSE 
and physical loss weights, ranging from 1:9 to 9:1. These weight ratios 
determine the relative importance of RMSE and physical constraints 
during model training. A higher RMSE weight ratio places more 
emphasis on data fitting, while a higher PHY weight ratio signifies 
greater focus on fitting physical constraints (Table 2).

From the experimental results, we observed that different weight 
ratios significantly influenced the model’s predictive performance. In 
group C, C1 performed exceptionally well across all metrics, indicating 
its superior predictive capabilities. This is attributed to the 1:9 
RMSE:PHY weight ratio, which places stronger emphasis on the 
influence of physical factors. Conversely, C5 exhibited relatively poor 
performance across all metrics, suggesting weaker predictive abilities, 
possibly due to an excessive emphasis on data fitting. C2 and C4’s 
performance may have been influenced by their relatively unbalanced 
weight ratios, failing to clearly emphasize one aspect, resulting in less 
outstanding performance in any specific area. C3, adopting a 5:5 
RMSE:PHY weight ratio, performed moderately well across all 
metrics, demonstrating overall stable predictive capabilities without 
excelling in any specific aspect.

The situation in group D is largely similar to that of group 
C. However, we found that D3 performed exceptionally well across all 
aspects, showing relatively stable predictive abilities. The experimental 
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results underscore the critical role of weight ratios in model 
performance. Different tasks and problems may require distinct 
weight ratios to balance data fitting and physical constraints. In 
practical applications, careful consideration is needed to select the 
appropriate weight ratios based on task requirements and the relative 
importance of data and physical constraints.

3.3 Influence of different climates on 
model performance

Examining Figure 3A, it is evident that the R of the PHYs-LSTM 
model are slightly lower than those of the LSTM model in equatorial 
regions. This may be  due to the high precipitation in equatorial 
regions, which results in more infiltration processes and multi-layer 
soil moisture saturation, ultimately leading to a decrease in the model’s 
predictive performance. Conversely, the PHYs-LSTM model 
outperforms the LSTM model in arid and polar climate regions. This 
might be  attributed to lower precipitation in these regions and a 
higher linear correlation between deep soil moisture and surface 
water, resulting in better performance by the PHYs-LSTM model in 
these areas. The PHY-LSTM model surpasses the LSTM model in all 
climate zones, with slight exceptions in some regions. This could 
be linked to higher linear correlation between surface soil moisture 
and surface water in well-watered areas, whereas in drier regions, the 
correlation between surface soil moisture and surface water is more 
dependent on changes in deep soil moisture.

As shown in Figures  3B,C, the RMSE of PHYs-LSTM and 
PHY-LSTM models in various climate zones are quite close and lower 
than those of the LSTM model. This indicates that using physical loss 
functions (PHYs-LSTM and PHY-LSTM) to some extent helps the 
model fit observed data better and reduce prediction errors. R2 of 
PHYs-LSTM and PHY-LSTM models in all climate zones are higher 
than those of the LSTM model, consistent with the RMSE. This 
suggests that physical loss functions contribute to improving the 
model’s explanatory power and better fitting the data trends.

The KGE of PHYs-LSTM and PHY-LSTM models outperform the 
LSTM model in most climate zones (Figure  3D), indicating that 
physical loss functions are better at capturing the consistency and 
relative errors in model performance. The lower performance of the 
PHYs-LSTM model in equatorial regions might be due to the high 
precipitation in that area. It may necessitate a reconsideration or 
redesign of the horizontal balance loss function for regions with 
prolonged rainfall.

In summary, the use of physical loss functions (PHYs-LSTM and 
PHY-LSTM) enhances model performance, especially in regions with 
different climate characteristics. These findings demonstrate that 
physical constraints can improve the model’s fit to observed data and 
its interpretability, but they also require appropriate adjustments and 
optimizations under varying geographic and climatic conditions. 
Different loss functions may require different parameter settings for 
optimal performance in different regions (see Table 1).

3.4 Physical consistency

Figure 4 illustrates the improvements in physical consistency for 
the PHYs-LSTM and PHY-LSTM models relative to the traditional 

LSTM model. Both the PHYs-LSTM and PHY-LSTM models 
demonstrate positive improvements in physical consistency compared 
to the traditional LSTM model in most regions. This indicates that 
physical loss functions (PHY-LSTM and PHYs-LSTM) offer better 
fitting to observed data and account for physical constraints, further 
enhancing model performance in these areas. However, there is a 
decline in the effectiveness of these models in Western Europe, 
Northwestern India, and Eastern Australia. This might be associated 
with the unique climatic, geographical, and soil characteristics of these 
regions, which may require more model adjustments and physical 
constraints to achieve improved performance. These regions are 
influenced by monsoon climates, typically characterized by seasonal 
rainfall distribution with abundant summer rains and relatively dry 
winters. This climatic feature could significantly impact water resource 
management and soil moisture prediction. Despite experiencing 
substantial precipitation during monsoon seasons, these areas may 
have uneven rainfall distribution across regions, leading to variations 
in wet and dry seasons. The impact of this non-uniform rainfall 
distribution on soil moisture can vary by region.

In summary, variations in meteorological, soil, and geographical 
factors, as well as differences in data availability between regions, can 
lead to variations in prediction quality across regions. In each region, 
careful adjustment of model parameters and loss function weights is 
necessary to best adapt to specific geographical and meteorological 
conditions (see Table 2).

3.5 Time series plots

In Figure 5, it is evident that the prediction curves of the PHYs-
LSTM and PHY-LSTM models, highlighted within the red circles, 
closely align with the observed data curves, especially when the soil 
moisture is not at saturation. This suggests that LSTM models 
incorporating physical constraints (PHYs-LSTM and PHY-LSTM) 
effectively capture changes in soil moisture, whether it is increasing or 
decreasing. This indicates the reasonableness of the designed balance 
loss function concerning soil moisture unsaturation, and it highlights 
a monotonic relationship between surface water variables and soil 
moisture during significant soil moisture fluctuations.

Moreover, even during time periods when soil moisture remains 
relatively stable, the predictions of these two physical models surpass 
those of the LSTM model using RMSE as the loss function. This 
improvement could be attributed to the dynamic equilibrium that 
exists between surface water and soil moisture during these time 
periods. Models incorporating physical constraints perform better in 
simulating such dynamic equilibrium states.

These results emphasize that physically constrained models 
utilizing balance loss functions exhibit strong performance in 
simulating the relationship between soil moisture and surface water, 
particularly when soil moisture undergoes significant changes or 
remains in a dynamic equilibrium state. This provides a valuable tool 
for water resource management and soil moisture prediction.

4 Conclusion

This study conducted a comprehensive comparative analysis of 
LSTM models and two physically constrained models, PHYs-LSTM 
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and PHY-LSTM. The analysis primarily focused on the influence of 
multiple factors on different soil moisture depths, the impact of weight 
ratios on loss terms, variations under different climatic conditions, 

and the models’ physical consistency. When confronted with multiple 
influencing factors, LSTM models incorporating balance loss 
functions (PHYs-LSTM and PHY-LSTM) outperformed traditional 
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FIGURE 3

Boxplot of the performance of three deep learning models in predicting 1-day future outcomes in different climate regions. (A) the climate zone box 
plots showcase the R for each model. (B) displays box plots for the RMSE in different climate zones. (C) while illustrates the box plots for the R2 values 
across these zones. Lastly, (D) depicts the KGE box plots for climate regions. The horizontal axis of each figure represents distinct climate zones, and 
the vertical axis signifies the corresponding metric values. Each box plot consists of five horizontal lines representing the maximum, 75th percentile, 
median, 25th percentile, and minimum values derived from the simulations of each deep learning model.

TABLE 1 Impact of different loss functions on LSTM models.

Physical loss 
term

R RMSE R2 KGE

LSTM None 0.771 ~ 0.795 0.0353 ~ 0.0377 0.394 ~ 0.463 0.516 ~ 0.600

A1 W=P 0.793 ~ 0.822 0.0327 ~ 0.0358 0.452 ~ 0.539 0.558 ~ 0.616

A2 W=P-ET 0.798 ~ 0.821 0.0328 ~ 0.0352 0.467 ~ 0.529 0.576 ~ 0.637

A3 W=P-ET-SRO 0.794 ~ 0.821 0.0331 ~ 0.0348 0.470 ~ 0.525 0.537 ~ 0.682

A4 W=P-ET-SRO + SD 0.811 ~ 0.829 0.0327 ~ 0.0339 0.512 ~ 0.551 0.603 ~ 0.662

B1 W=P 0.813 ~ 0.827 0.0324 ~ 0.0334 0.512 ~ 0.545 0.599 ~ 0.675

B2 W=P-ET 0.811 ~ 0.826 0.0325 ~ 0.0340 0.505 ~ 0.543 0.591 ~ 0.689

B3 W=P-ET-SRO 0.801 ~ 0.830 0.0326 ~ 0.0343 0.482 ~ 0.554 0.591 ~ 0.689

B4 W=P-ET-SRO + SD 0.809 ~ 0.825 0.0329 ~ 0.0341 0.495 ~ 0.541 0.572 ~ 0.663
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LSTM models. They exhibited lower Root Mean Square Error (RMSE), 
higher linear correlations (R, R2), and superior simulation and 
prediction performance (KGE). This demonstrates that balance loss 
functions contribute to reducing prediction errors and improving the 
alignment of the models with observed data. Weight ratios 
significantly influenced model performance. Appropriate weight 
ratios can balance data fitting and physical constraints to achieve 
optimal performance. Higher RMSE weight ratios emphasize data 
fitting, while higher physical constraint weight ratios emphasize the 
fitting of physical factors. Different tasks may require different weight 
ratios, depending on the relative importance of data and 
physical constraints.

PHYs-LSTM and PHY-LSTM models exhibited positive 
improvements relative to traditional LSTM models in most 

regions, highlighting the positive impact of physical loss 
functions on fitting observed data and considering physical 
constraints to further enhance model performance. However, in 
some regions, such as Western Europe, Northwest India, and 
Eastern Australia, the improvements were less pronounced, 
possibly due to the unique climatic, geographic, and soil 
characteristics in these areas. Future improvements may involve 
further optimization of loss functions and adjustments to weight 
ratios to better balance data fitting and physical constraints. For 
instance, region-specific loss functions could be  designed, 
considering that each region may involve different surface water 
variables and soil moisture depths in their respective loss 
functions. Such customized differentiations have the potential to 
enhance model adaptability and performance.

FIGURE 4

(A, B) Improvements in physical consistency achieved by LSTM models in predicting soil moisture 1 day into the future guided by physical knowledge. 
Both panels present improvement maps relative to traditional LSTM results. The vertical axis corresponds to latitude, the horizontal axis represents 
longitude, and the color scheme denotes the degree of improvement. Blue indicates enhancement, while red signifies no improvement. The intensity 
of the color reflects the extent of improvement or lack thereof.

TABLE 2 Impact of different loss weights on LSTM models.

Weight ratio 
(RMSE:PHY)

R RMSE R2 KGE

C1 1:9 0.811 ~ 0.829 0.0324 ~ 0.0343 0.506 ~ 0.559 0.642 ~ 0.676

C2 3:7 0.810 ~ 0.821 0.0328 ~ 0.0343 0.505 ~ 0.533 0.625 ~ 0.657

C3(A4) 5:5 0.811 ~ 0.829 0.0327 ~ 0.0339 0.512 ~ 0.551 0.603 ~ 0.662

C4 7:3 0.808 ~ 0.825 0.0330 ~ 0.0339 0.502 ~ 0.540 0.610 ~ 0.632

C5 9:1 0.804 ~ 0.813 0.0335 ~ 0.0353 0.472 ~ 0.515 0.517 ~ 0.646

D1 1:9 0.792 ~ 0.825 0.0330 ~ 0.0357 0.459 ~ 0.542 0.598 ~ 0.650

D2 3:7 0.795 ~ 0.817 0.0331 ~ 0.0353 0.458 ~ 0.525 0.552 ~ 0.666

D3(B4) 5:5 0.809 ~ 0.825 0.0329 ~ 0.0341 0.495 ~ 0.541 0.572 ~ 0.663

D4 7:3 0.793 ~ 0.826 0.0330 ~ 0.0353 0.457 ~ 0.536 0.602 ~ 0.624

D5 9:1 0.807 ~ 0.816 0.0335 ~ 0.0339 0.504 ~ 0.517 0.619 ~ 0.634
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FIGURE 5

Time series plots for 1-day ahead predictions of 3 LSTM models in different regions.
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