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Introduction: Pinus koraiensis is a dominant tree species in northeastern China.

Estimating its biomass is required for forest carbon stock monitoring and

accounting.

Methods: This study investigates biomass estimation methods for P. koraiensis

components. A Bayesian approach was used to synthesize the parameter

distributions of 298 biomass models as prior information to estimate the trunk,

branch, leaf, and root biomass of P. koraiensis. The results were compared with

non-informative prior and the minimum least squares (MLS).

Results: The results indicated that the Bayesian approach outperformed the

other methods regarding model fit and prediction error. In addition, the

responses of different components to tree height varied. The models of trunk

and root biomass exhibited a smaller response to tree height, whereas those

of branches and leaves showed a larger response to tree height. The model

parameters yield precise estimations.

Discussion: In sum, this study highlights the potential of the Bayesian methods in

estimating P. koraiensis biomass and proposes further enhancements to improve

estimation accuracy.

KEYWORDS

Pinus koraiensis, Bayesian, tree component, biomass, carbon

1 Introduction

Estimating tree biomass is essential to comprehend the material cycling and energy
flow in forest ecosystems (Zeng and Hausmann, 2022). During the 75th session of the
United Nations General Assembly in September 2020, China announced its commitment to
reducing peak carbon emissions by 2030 and achieving carbon neutrality before 2060. This
acknowledgment underscores the significance of forest carbon sinks and the imperative to
monitor, protect, and enhance terrestrial carbon stocks. It is grounded in the recognition
that alterations in forest carbon stocks can impact atmospheric CO2 concentrations (Kurz
and Apps, 2006). Research on biomass estimation methods can enhance the accuracy of
estimating forest carbon stocks and deepen our understanding and analysis of carbon
cycling in forest ecosystems (Campbell et al., 2009; Stinson et al., 2011). However, due to
the high cost and time consumption of collecting biomass data, it is necessary to estimate
biomass accurately for carbon accounting and monitoring. Biomass models can be used
with tree survey data (Wagers et al., 2023; Zanvo et al., 2023), such as diameter and height
measurements.
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Biomass estimation models have been established for Pinus
koraiensis, a dominant tree species in Northeast China. Allometric
growth models utilizing the diameter at breast height (DBH), tree
height (H), and D2H have provided accurate biomass estimates
(Wang, 2006; Dai et al., 2013). A major limitation of biomass
models is that they cannot be universally applied to different species
and locations due to the variability in allometric relationships (West
et al., 1997; Enquist et al., 1998). The allometric relationships of
trees are significantly influenced by environmental and competitive
factors, which vary over time and across locations (Holbrook
and Putz, 1989; King, 1991; Chambers et al., 2001). For instance,
different light, soil fertility, and moisture conditions can affect
tree growth patterns. Additionally, trees face competition from
both conspecific and heterospecific plants, leading to variations
in growth relationships (von Oheimb et al., 2011). Even within
the same species, growth relationships can vary significantly
across different locations, contradicting the universal scaling rules
predicted by metabolic scaling theory for diverse species and
biological communities (Li et al., 2005; Muller-Landau et al., 2006;
Návar, 2009). Probability distributions can be used to overcome this
limitation (Dong et al., 2014; Dogn et al., 2015; Widagdo et al., 2021;
Xie et al., 2022b). Specifically, the probability distribution of scaling
coefficients can assess the range of variation in these coefficients
across different locations, providing prior information for Bayesian
inference. Moreover, combining this information with field data
can effectively capture the variability of growth parameters under
different environmental conditions, thereby establishing a more
general and accurate biomass estimation model. Building upon
these findings, we propose a method using these parameter
distributions to formulate new biomass models and apply it to
P. koraiensis, a tree species indigenous to Northeast China.

Bayesian Statistics are employed to establish biomass models
for different components of P. koraiensis. Non-informative and
informative priors are used in the Bayesian framework. A total of
298 biomass models are synthesized for P. koraiensis components
using data from the literature. The parameter distributions of the
data are used as prior distributions to establish biomass models
using Bayesian inference, an alternative approach in inferential
statistics frequently used for assessing ecological models (Amir
et al., 2022; Leach et al., 2022; Piccioni et al., 2022). Despite
the discussion over Bayesian and classical Statistics in different
scientific disciplines, research has revealed two notable advantages
of Bayesian Statistics. First, Bayesian Statistics aims to learn
from experience by incorporating prior knowledge about the data
(Ghazoul and McAllister, 2003; Ellison, 2004). Second, Bayesian
Statistics align entirely with mathematical logic, while classical
Statistics demonstrate logicality solely in probabilistic statements
regarding the long-term averages of repeatedly acquired sample
data, rather than relying on hypotheses (Berger and Berry, 1988;
Jaynes, 2003). Bayesian Statistics have been used in forestry to
estimate tree diameter (Green et al., 1994; Deng et al., 2023),
tree growth (Yue et al., 2022), tree mortality (Xie et al., 2022a),
and other tree species biomass (Zhang et al., 2013; Aabeyir et al.,
2020; Asrat et al., 2020), establish height-diameter models (Zhang
et al., 2014), volume models (Yoon et al., 2013), and determine the
spatial distribution of tree species (Engel et al., 2022). The goal
of this study is to compile a dataset of allometric equations and
parameters for P. koraiensis in the Northeast China region and
derive the probability distribution of its parameters. In addition,
we use data from the Lesser Khingan Mountains to evaluate the

Bayesian framework for estimating the biomass of trunks, branches,
leaves, and roots. Furthermore, we compare Bayesian methods with
and without prior information to the least squares method for
estimating the biomass of P. koraiensis.

2 Materials and methods

2.1 Study area

The study area was the Dongfanghong Forest Farm in the
Lesser Khingan Mountains in Northeast China (Figure 1). The
annual average temperature is 1.4◦C, with the lowest average
temperature occurring in early January (−40◦C) and the highest
temperature occurring in July (37◦C). The area has a temperate
continental humid monsoon climate, with an average annual
precipitation of 661 mm, most of which falls in July and August.
The predominant soil type is dark brown soil, with a few areas
of valley meadow soil and marsh soil in forested areas. The
approximate soil depth is 30 cm. The stand is a natural mixed
secondary forest composed of coniferous and broad-leaved trees.
There are six dominant tree species in this stand: P. koraiensis Sieb
et Zucc, Picea koraiensis Nakai, Abies nephrolepis Maxim, Fraxinus
mandshurica Rupr, Tilia amurensis Rupr, and Betula platyphylla
Suk.

2.2 Sampling design and biomass
estimation

In the Dongfanghong Forest, a total area of 7 hm2 were
chosen in areas with similar site conditions, altitude, aspect, and
slope. The stand density was 1,000 trees·hm−2. Trees with a DBH
greater than 5 cm were selected. The diameter range of the trees is
listed in Supplementary Table 2. Systematic random sampling was
conducted to harvest trees in this diameter range in 2022.

2.2.1 Biomass
In this study, a trunk is considered the primary supporting part

of the branches from the ground to the top of the felled trees. The
section with the largest circumference was considered part of the
trunk to avoid ambiguity between branches and the trunk at the
forks. The total fresh weight of trunks, branches, leaves, and roots
was measured in the field. The trunk was cut into 1-m-long sections
for measurement. Approximately 5 cm-thick discs were obtained
from each section and weighed using spring scales. Samples of
branches and leaves (approximately 50–100 g) were collected from
average-sized branches and brought to the laboratory for moisture
content analysis. The roots were excavated manually, weighed using
a crane, and washed with a high-pressure water pump to remove
all soil particles. The roots were classified and sampled based on
diameter size into the following categories: stump (aboveground
and underground parts), undifferentiated parts of coarse roots
(diameter greater than 2 cm), and fine roots (diameter less than
2 cm). Fine roots (diameter less than 5 mm) were intentionally
excluded from this study. One disc was obtained from the middle
of the stump to calculate the dry weight of the belowground parts.
The discs with different diameters were collected from coarse roots,
and three full-length roots with diameters less than 2 cm were
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FIGURE 1

The geographical location of Pinus koraiensis. Areas labeled with red pentagrams belong to the Dongfanghong Forest, and the blue dots indicate
where data from the literature was used.

obtained to represent the biomass of small roots. The sum of the
biomass of the root sections represented the total belowground dry
biomass, and the fresh-to-dry weight ratios were obtained for each
section. Thirty-one trees were sampled, with diameters at breast
height (DBH) ranging from 5 to 35 cm, and heights ranging from 4
to 22.6 m. The samples (roots, trunks, branches, and leaves) were
dried in the laboratory using a high-temperature oven at 105◦C
until a stable weight was reached. The dry biomass was calculated
by multiplying the wet weight of the component by the dry/fresh
weight ratio. The total dry weight of trunks, branches, leaves, and
roots are summarized in Table 1.

2.3 Parameter value collection

We collected existing literature (journals, books, and reports)
from 1978 to 2022 on biomass equations for P. koraiensis
in Northeast China. We used keywords with logical operators
(P. koraiensis, biomass, allometry, relationships, equations, models,
and functions) to search the National Library of China (National
Digital Library of China and China Forestry Digital Library),
online literature databases (Web of Science, China National
Knowledge Infrastructure, and China Science and Technology
Journal Database), ecological data papers (Luo et al., 2020), as
shown in “Supplementary Table 1.” We conducted an in-depth
analysis of the literature to obtain reliable biomass equations and
used the following criteria:

1. The search scope was only for equations applicable to forest-
grown trees and open-grown trees.

2. The data for establishing biomass equations were based on
at least three sample trees that were harvested and weighed
to determine the tree biomass and its components (such as

trunk, branches, leaves, and roots), although the number of
tree components depended on the research objectives.

3. The biomass equations considered in the study were
examined. Biomass equations meeting the above criteria
were compiled and organized into the P. koraiensis Biomass
Equation Dataset “Supplementary Table 1.” It consisted of a
general table and an equation table. The former contained
background information on the equations, including
geographical location (e.g., latitude, longitude, and altitude),
climate [mean annual temperature (MAT) and mean annual
precipitation (MAP)], and stand description (e.g., forest
type, dominant tree species, stand origin, stand age, and tree
spacing). The latter included details, such as tree components
for developing the biomass equations, predictor variables,
equation form, coefficients, goodness-of-fit statistics (e.g.,
correlation coefficient and determination coefficient), and
applicability range (i.e., methods and ranges of predictor
variable values).

2.4 Methods

Bayesian methods are statistical frameworks that use prior
information on parameter values to derive probabilities. By
modeling observed data and unobserved variables, the Bayesian
approaches provide a cohesive framework for combining data
models and external knowledge.

2.4.1 Biomass model
We modeled the dry weight (W, kg) of different tree

components (trunks, branches, leaves, and roots) as a function of
height (H, m) and DBH (D, cm). Furthermore, we used logarithmic
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transformations to address heteroscedasticity (Refer to Equations
1, 2).

lnW = α+blnD+e (1)

lnW = α+bln(D2H)+e (2)

Where α = lna and b represent the parameters of the model, and
e denotes the error term, which follows a normal distribution with
a mean of zero and a variance of σ2. Classical methods to estimate
the parameters include maximum likelihood estimation (MLE) and
minimum least squares (MLS). The latter was used in this study
to compare with the proposed Bayesian approach. The optimal
intercept and slope are obtained by minimizing the sum of squared
residuals between the observed and predicted values.

2.4.2 Bayesian rule
The Bayesian framework uses probability distributions to

account for the uncertainty of the estimated parameters (Koricheva
et al., 2013; LeBauer et al., 2013). Based on the observed data, θ has
the following probability distribution (See Equation 3):

p(θ|y) = p(y|θ)p(θ) /p(y) (3)

We focus on the posterior probability distribution (abbreviated as
posterior) of θ given the observed data y(p(θ|y)). The likelihood
function p(y|θ) describes the distribution of y given the value
of θ (Edwards, 1996). The prior probability distribution of the
parameters, p(θ), is commonly referred to as the prior. It reflects
the assumptions of the model. A distinguishing characteristic
of Bayesian method is the treatment of parameters as random
variables (Ellison, 2004; Li et al., 2012) in contrast to classical
methods that assume the parameters to be true and fixed quantities
(if unknown) (De Valpine and Hastings, 2002). In this study, the
statistical model describes the relationship between the biomass
of the different components (trunks, branches, leaves, and roots),
denoted as W, and the variables D and H (See Equations 4, 5):

lnW ∼ N1(g1(D :α, b)σ2) (4)

lnW ∼ N1
(
g2
(
D2H :α, b

)
,σ2) (5)

2.4.3 Prior distribution
The choice of prior distributions is critical in Bayesian

methods (De Valpine and Hastings, 2002). However, many
researchers have chosen uninformative normal (Gaussian) priors
with large or infinite variances disregarding any prior information
that could potentially influence the parameters. Alternatively,
if prior knowledge is available from external sources (e.g.,
parameters reported in the literature), this information can
be utilized to construct informative prior distributions. In
this study, we compared the predictions between models fit
with an uninformative prior distribution versus an informative
prior distribution. The prior Gaussian (normal) distributions
of the uninformative priors for parameters α and b are
αN (0, 1, 000) and bN(0, 1, 000).

For the models employing informative priors, we assume that α

and b follow a bivariate normal distribution N(µ, 6). The mean
vector µ represents the central tendency of the data for each
variable. It is typically calculated as the average of the observed

values. For a bivariate normal distribution involving two variables
α and b (See Equation 6):

µ =

(
µα

µb

)
,

{
µα =

1
n
∑n

i = 1 αi

µb =
1
n
∑n

i = 1 bi
(6)

Where µα and µb are the sample means of α and b, respectively.
The covariance matrix 6 captures the variance within each

variable and the covariance between them. It is calculated based on
the deviations of each variable from their respective means. For two
variables α and b, the covariance matrix is Equation 7:

6 =

(
σ2

α σαb

σαb σ2
b

)
,


σ2

α =
1

n−1
∑n

i = 1 (αi − µα)
2

σ2
b =

1
n−1

∑n
i = 1

(
bi − µb

)2

σαb =
1

n−1
∑n

i = 1 (αi − µα)
(
bi − µb

)
(7)

Where σ2
α and σ2

b are the variances of α and b, and σαb is the
covariance between α and b. In this study, we chose not to employ
a formal meta-analysis approach to construct the priors for our
model. Many of the studies we synthesized did not report all
necessary statistics comprehensively. This lack of complete data
can lead to biases if not appropriately handled. While hierarchical
meta-analysis models that incorporate missing data models can
address these concerns (Koricheva et al., 2013; LeBauer et al., 2013),
they require making conservative assumptions about the missing
information. These assumptions, although helpful, may introduce
uncertainty. Additionally, a hierarchical meta-analysis model is
computationally intensive and requires substantial expertise and
resources. Given our project’s scope and the availability of
resources, we opted for a more direct approach using well-
established empirical data from a foundational study (Gelman
et al., 1995). A total of 298 biomass models were synthesized
using data from the literature for the trunks, branches, leaves, and
roots of P. koraiensis. The data are summarized in the document
“Supplementary Table 1.” We performed correlation coefficient
calculation, Shapiro–Wilk test, and bivariate normality test on the
collected parameters using the cor, Shapiro test, and mvn functions
in R, respectively.

Additionally, we assumed that the errors followed a normal
distribution e ∼ N (0,σ2). Following Hadfield (2010), we used the
scalar parameter for the prior of the errors, which follows an inverse
Gamma distribution. The scalar and shape were equal to 0.0005.

2.4.4 Model fit and convergence assessment
The parameters in the linear Gaussian models were estimated

using a Bayesian framework implemented in the R package
MCMCglmm. Gibbs sampling (Chib and Greenberg, 1995) was
employed to update the parameters iteratively. We performed
25,000 iterations for each model to ensure convergence and
accurate estimation of the posterior distribution. The initial 5,000
iterations were discarded as burn-in to eliminate potential bias
from the initial state of the chains. Additionally, we retained every
second value in the posterior chains to reduce autocorrelation
between consecutive iterations. For each model, we generated
one MCMC chain and performed 25,000 iterations to ensure
convergence and accurate estimation of the posterior distribution.

To evaluate convergence, we visualized the posterior
samples using trace plots and employed Geweke (1991)
convergence diagnostic on the model outputs. The results
are shown in the Supplementary information. All z-scores
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FIGURE 2

Distribution of parameters α (x-axis) and b (y-axis) for component models. The black dots represent the estimated values in literature, while the
dashed lines represent the prior bivariate normal distributions we used for inference in the models.

FIGURE 3

Posterior probability density of two parameters for the component biomass models lnW = α+blnD+e. The black and blue solid lines respectively
represent the outputs for the model employing a non-informative and informative prior, while the orange dashed line corresponds to the
informative prior.

obtained from Geweke’s diagnostic were smaller than 1.96,
indicating satisfactory convergence. Supplementary Table 2 and
Supplementary Images 1–4 indicate the convergence of the MCMC
chains.

2.4.5 Model evaluation
The evaluation metrics included the mean absolute deviation

(MAD), mean deviation (MD), root mean square error (RMSE),

model efficiency (MEF), and model bias (E). MEF represents
the proportion of total variance explained by the model,
considering the number of parameters and observations (Soares
and Tomé, 2007; Hevia Cabal et al., 2013). A value of 1.0
indicates a perfect fit, while a value of 0.0 suggests that
the model performs no better than average. Negative values
indicate poor model performance (Soares and Tomé, 2007).
Model bias measures the systemic deviation between the model
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FIGURE 4

Posterior probability density of two parameters for the component biomass models lnW = α+bln(D2H)+e. The black and blue solid lines
respectively represent the outputs for the model employing a non-informative and informative prior, while the orange dashed line corresponds to
the informative prior.

TABLE 1 Summary statistics of the destructively sampled trees in the Lesser Khingan Mountains.

DBH/cm Height/m Trunk/kg Branch/kg Foliage/kg Root/kg

Range 5∼35 4∼22.6 2.38∼543.38 0.42∼14.99 0.50∼16.21 0.78∼36.85

Mean (SD) 17.91 (9.18) 12.57 (5.25) 162.61 (154.6) 5.37 (4.48) 5.34 (3.63) 14.49 (10.23)

Range (log) 1.61∼3.56 1.39∼3.12 0.87∼6.30 −0.87∼2.71 −0.69∼2.79 −0.25∼3.61

Mean (SD) (log) 2.75 (0.60) 2.44 (0.51) 4.08 (1.84) 1.23 (1.06) 1.34 (0.96) 2.26 (1.13)

SD represents standard deviation.

predictions and observed data. Smaller values indicate better model
performance for the remaining criteria (See Equations 8–12).

MD =
∑n

i1
(
yi−ŷi

)
n

(8)

MAD =
n∑

i = 1

∣∣yi−ŷi
∣∣/n (9)

RMSE = ±

√∑n
i = 1

(
yi−ŷi

)2

n−2
(10)

MEF = 1−
(n−1)

∑n
i = 1

(
yi−ŷi

)2(
n−k

)∑n
i = 1

(
yi−y

)2 (11)

E% =
∑n

i = 1 (yi−ŷi)∑n
i = 1 ŷi

, 100 (12)

Where yi represents the observed value of the
biomass of the ith tree, ŷi represents the predicted
value, y is the mean value of the observed values, n
represents the number of observed values, and k is the
number of parameters.

To compare posterior estimates derived from our proposed
Bayesian models, we computed the absolute difference and absolute

percentage difference in the means and standard deviations using
the following Equations 13–16:

ADu =
∣∣ûn−ûi

∣∣ (13)

APDu =

∣∣ûn−ûi
∣∣

ûn
(14)

ADσ = |̂σn−σ̂i| (15)

APDσ =

∣∣ûσ−ûi
∣∣

ûσ

(16)

Where ûn and ûi are the posterior means for the models employing
a non-informative and an informative prior, respectively, while
σ̂n and σ̂i are the standard deviations of the posterior distributions.

3 Results

3.1 Prior distribution of the parameters

A total of 298 biomass models for each component were
compiled from the literature. Multiple models were available
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TABLE 2 The prior distribution of parameters in the component biomass models that were derived from the dataset.

Model Component µα µb 6

lnW = α+ blnD+ e Trunk −2.7086 2.3129 0.433898 −0.13833

−0.13833 0.054306

Branch −3.5346 2.2421 2.623986 −0.8318

−0.83176 0.28712

Leaf −3.0433 1.8615 1.141279 −0.40141

−0.40141 0.175754

Root −3.7461 2.3875 1.898916 −0.54156

−0.54156 0.167093

lnW = α+ bln(D2H)+ e Trunk −3.3961 0.8782 0.654306 −0.08708

−0.08708 0.013183

Branch −4.2745 0.9360 5.056349 −0.55199

−0.55199 0.076381

Leaf −3.3452 0.6987 2.024253 −0.24716

−0.24716 0.034496

Root −5.5274 1.0286 3.739704 −0.3867

−0.38669 0.04271

6 represents covariance matrix; µα and µb represent the means of α and b, respectively.

TABLE 3 The absolute difference and absolute percentage difference (%) in the means and standard deviations for models with different priors.

Component Model Para. ADµ APDµ (%) ADσ APDσ (%)

Trunk M1 a 0.088 1.98 0.019 6.67

b 0.013 1.17 0.002 5.85

M2 a 0.35 8.34 0.023 6.95

b 0.14 4.47 0.007 5.23

Branch M1 a 0.015 0.43 <0.001 0.20

b 0.002 0.41 <0.001 0.76

M2 a 0.029 0.81 0.001 0.34

b 0.015 0.88 <0.001 0.10

Leaf M1 a 0.005 0.16 0.003 1.06

b 0.002 0.29 <0.001 1.05

M2 a 0.011 0.38 0.008 3.00

b 0.007 0.43 0.003 3.13

Root M1 a 0.13 4.61 0.008 2.50

b 0.018 2.84 0.001 2.52

M2 a 0.20 7.61 0.009 2.67

b 0.083 4.65 0.003 2.96

Para. denotes parameters.

for some sites, and most models were derived from areas
in northeastern China (Figure 1). The data indicates that the
average ranges of the collected model parameters α and b
are as follows: −5.5274 to −2.7086 and 0.6987 to −2.3875,
respectively (Table 2). Within the same model, the average
values of parameter α for both the tree trunk and tree
leaf exceed those of the tree branch and root. However,
in terms of parameter b, the maximum value is associated
with the root, while the minimum value is observed for

the leaf. The estimates for parameters α and b in collected
biomass models sharing the same predictor and response
variables were normally distributed and negatively correlated
(Figure 2 and Supplementary Table 2). Bivariate normality
tests further confirmed that they followed a bivariate normal
distribution (Supplementary Table 2). The posterior probability
distributions of the information and non-information priors
based on Bayesian methods were very similar (Table 3 and
Figures 3, 4).

Frontiers in Forests and Global Change 07 frontiersin.org

https://doi.org/10.3389/ffgc.2024.1350888
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-07-1350888 June 15, 2024 Time: 12:17 # 8

Liu et al. 10.3389/ffgc.2024.1350888

TABLE 4 Estimates and 95% confidence interval (CI) of model parameters.

Component Model Method Para. Est. 95%CI

Trunk (kg) M1 Info α −3.88 (−4.459,−3.249)

b 2.89 (2.665, 3.100)

No info α −4.23 (−4.888,−3.586)

b 3.03 (2.796, 3.259)

MLS α −4.23 (−4.875,−3.588)

b 3.03 (2.797, 3.255)

M2 Info α −4.37 (−4.895,−3.835)

b 1.06 (0.996, 1.129)

No info α −4.46 (−5.038,−3.888)

b 1.08 (1.005, 1.147)

MLS α −4.46 (−5.033,−3.89)

b 1.08 (1.006, 1.147)

Branch (kg) M1 Info α −3.56 (−3.972,−3.149)

b 1.75 (1.605, 1.899)

No info α −3.52 (−3.938,−3.109)

b 1.73 (1.586, 1.879)

MLS α −3.53 (−3.939,−3.113)

b 1.73 (1.586, 1.88)

M2 Info α −3.62 (−4.081,−3.158)

b 0.61 (0.555, 0.669)

No info α −3.61 (−4.064,−3.148)

b 0.61 (0.552, 0.665)

MLS α −3.61 (−4.071,−3.152)

b 0.61 (0.554, 0.667)

Leaf (kg) M1 Info α −2.87 (−3.403,−2.341)

b 1.54 (1.349, 1.728)

No info α −2.87 (−3.413,−2.306)

b 1.53 (1.336, 1.724)

MLS α −2.86 (−3.408,−2.317)

b 1.53 (1.337, 1.725)

M2 Info α −3.01 (−3.493,−2.524)

b 0.55 (0.489, 0.609)

No info α −3.00 (−3.506,−2.506)

b 0.55 (0.487, 0.610)

MLS α −3.01 (−3.504,−2.508)

b 0.55 (0.487, 0.609)

Root (kg) M1 Info α −2.69 (−3.306,−2.104)*

b 1.82 (1.611, 2.038)

No info α −2.51 (−3.111,−1.888)*

b 1.74 (1.524, 1.963)

MLS α −2.51 (−3.115,−1.900)*

b 1.74 (1.528, 1.961)

M2 Info α −2.77 (−3.326,−2.226)

(Continued)
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TABLE 4 (Continued)

Component Model Method Para. Est. 95%CI

b 0.64 (0.572, 0.707)

No info α −2.66 (−3.229,−2.102)*

b 0.62 (0.555, 0.693)

MLS α −2.66 (−3.226,−2.096)*

b 0.62 (0.554, 0.693)

Para. denotes parameters and est. denotes estimates; M1 represents lnW = α+blnD+e; M2 represents lnW = α+bln(D2H)+e. *95% Confidence interval is the recommended
confidence interval.

FIGURE 5

Evaluation indicators for three approaches and the two models for the tree components. The x-axis label uses the acronym for the components,
equations and methods. For example, T1I represents the information prior method for the trunk and the M1 equation (lnW = α+ blnD+ e).

3.2 Model parameters

A comparison of the parameters from the same model using the
same method showed that the α value of the trunk was the smallest,
but the b value was the largest. However, the α and b values of
the roots were higher than those of the branches and leaves. For
models of the same component, the values of parameters α and
b were similar and had similar ranges for the non-information-
rich prior and MLS methods. The ranges of parameters α and b
were larger for these two methods than for the informative prior
method (see Table 4). The analysis of variance revealed significant
differences between the parameters and zero for each model at
the 95% confidence level. The estimated allometric coefficient was
higher for M1 than for M2 for the same component model and the
same method. Furthermore, comparing the allometric exponents of
the same method, it was found that in each component model, the
estimated allometric exponent of M1 was higher than that of M2.
This result suggests that in the biomass models of each component,
the allometric exponent of the model without tree height as a

predictor variable (M1) is higher than that of the model with tree
height as a predictor variable (M2).

3.3 Model evaluation

The model evaluation metrics are listed in Figure 5. Bayesian
methods with only prior information (M1 and M2) yielded trunk
biomass higher than the predicted values. The differences between
the predicted and observed values of trunk biomass were larger
than the differences between other biomass components for all
methods. However, the deviations were within the 95% interval
suggested by Huang and Wang (2003). The MEF was used to
assess the degree of model fit. The variance explained by the trunk,
branch, and leaf biomass models ranged from 71.40% to 96.75%.
The values of all evaluation metrics were similar for the non-
information-rich prior and MLS methods. Bayesian methods with
an information-rich prior had the largest MEF and the smallest
RMSE and MAD for the trunk, branch, and leaf biomass models
without tree height. The same results were obtained from the
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FIGURE 6

Plot of the data and predictions for each component biomass model lnW = α+ blnD+ e. Black dots represent the observed data points. Blue, red,
and orange shaded areas denote the 95% credible or confidence intervals of the expected biomass using the three different parameter estimation
approaches, while the lines correspond to the (posterior) predictive means. Note that both x and y axes are on a logarithmic scale. Note that both x
and y axes are on a logarithmic scale, and that the blue and orange lines and shades mostly overlap with the red ones.

FIGURE 7

Plot of the data and predictions for each component biomass model lnW = α+ bln(D2H)+ e. Black dots represent the observed data points. Blue,
red, and orange shaded areas denote the 95% credible or confidence intervals of the expected biomass using the three different parameter
estimation approaches, while the lines correspond to the (posterior) predictive means. Note that both x and y axes are on a logarithmic scale. Note
that both x and y axes are on a logarithmic scale, and that the blue and orange lines and shades mostly overlap with the red ones.

trunk, branch, and leaf biomass models containing tree heights.
The Bayesian approach with an informative prior and the tree
height predictor had the largest MEF among all trunk biomass
models. Conversely, Bayesian methods with an informative prior
but without tree height predictors obtained the maximum MEF
values among all branch and leaf biomass models, respectively. The
MEFs for the tree root biomass models were 4.36%–11.26% higher
for models with than without tree height predictors.The MADs and

RMSEs were also smaller than those of the tree root biomass models
with tree height predictors.

4 Discussion

Parameter estimation is an important error source in biomass
models and determines model applicability. The predicted trunk
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biomass was larger than the actual values when the DBH was
less than 13 cm or greater than 25 cm (Figures 6, 7). The
predicted branch biomass was lower than the actual values when
the DBH was less than 10 cm or greater than 30 cm. Leaf biomass
was underestimated when the DBH was greater than 10 cm
and less than 25 cm. Similarly, root biomass predictions were
underestimated when the DBH was greater than 10 cm and less
than 16 cm. These trends indicate an overestimation of biomass
for trunk, leaves, and roots at smaller and larger diameters and
the opposite trend for branches. However, if the Bayesian prior
does not contain information, the Bayesian confidence interval
is usually numerically consistent with the classical confidence
interval (McCarthy, 2007; Zhang et al., 2013), which was confirmed
in this study (see Table 3). A non-informative prior indicates
that the data arecrucial in the Bayesian theorem, and the prior
probabilities of all plausible parameter values are similar. As a
result, the posterior distribution has a similar form to the likelihood
function. However, using a noninformative prior leads to a less
precise posterior distribution, wider confidence intervals, and
worse predictive performance (see Table 3). In this study, allometric
growth models for P. koraiensis were established using data from
the published literature. It was found that the bivariate normal
distribution accurately described the parameter distributions of
the allometric growth model. The bivariate normal distribution is
typically the prior distribution for estimating tree biomass using
a Bayesian model. One of the advantages of Bayesian methods
is its capability to incorporate prior information when updating
the model. Thus, the samples and the parameters being estimated
are considered random variables. Consequently, Bayesian methods
generally outperform MLS (see Figure 5).

Different model types affect the efficiency, bias, and other
numerical values of models. Various allometric biomass models
have been employed to estimate forest biomass (Chen, 1981; Wang,
2006; Ma and Li, 2008; Dai et al., 2013; Dong et al., 2014; Widagdo
et al., 2021; Xie et al., 2022b), particularly the models W ∼ aDb

and W ∼ a(D2H)b. For example, the MEF of a model (M1) with
only the DBH as an explanatory variable explained 96.8% and
95.0% of the variation of branch and leaf biomass, respectively.
Therefore, the DBH is widely used to estimate biomass (Baker
et al., 2004; Chave et al., 2005; Henry et al., 2011). This variation
can be attributed to the influence of ecological conditions and
the tree age, which affect biomass (Picard et al., 2012). Therefore,
the DBH is a critical parameter in allometric growth models of
trees and is a primary indicator of above-ground biomass. The
addition of tree height to the model slightly increased the MEF
of trunk biomass from 79.8% to 83.8%. In contrast, Feldpausch
et al. (2012) found that tree height was a significant parameter in
estimating tree biomass. The slight increase in the MEF may be
partly attributed to difficulties in accurately measuring tree height
using Haga hypsometers in the field, especially when the treetop is
obscured by other crowns.

The results of different methods for the same model showed
that the method affected the estimation of model parameters and
MEF. Previous studies have estimated P. koraiensis biomass using
two models and the classical method (Wang, 2006; Xu et al.,
2022). Although these two models yielded satisfactory performance
with high R2 values, their accuracy in estimating forest biomass
beyond the specified data range and site conditions is limited (Case
and Hall, 2008; Sileshi, 2014). Incorporating parameter factors

from different geographical locations into tree biomass models
increases variability, suggesting that probability distributions are
better suited for parameterizing allometric growth models than the
fixed values typically used in MLS (Figure 3). Hence, the widespread
application of P. koraiensis biomass models at the stand level
may overlook significant variations among different stands. This
study proposed a Bayesian approach for modeling the biomass of
P. koraiensis components. Zapata-Cuartas et al. (2012) found that
the Bayesian and MLS methods provided almost identical RMSE
values for estimating parameters using large sample sizes. However,
Bayesian methods had a smaller RMSE for small sample sizes,
indicating that it has higher efficiency in parameter estimation. In
this study, the sample size for the trunk, branch, and leaf biomass
models was 31, and Bayesian methods outperformed the MLS in
terms of MEF, RMSE, and MAD.

5 Conclusion

This study utilized the Bayesian approach to develop and
compare two commonly used models for estimating the biomass of
P. koraiensis components. Information priors from the published
literature were used to establish 298 P. koraiensis biomass models.
The prior distribution was used in the Bayesian model to estimate
tree biomass. The Bayesian approach outperformed the MLS,
offering a more reasonable and effective approach for estimating
the biomass of P. koraiensis components. Several metrics (MEF,
E, MD, MAD, and RMSE) indicated differences in the biomass
models for different components when the tree height was included
or excluded. The DBH and the tree height were the main
predictor variables significantly affecting the variation in trunk
and root biomass, whereas only the DBH affected the variation in
branch and leaf biomass. The model parameters provided accurate
estimation results. However, Bayesian methods have room for
improvement. Additional variables can be incorporated, and a
hierarchical Bayesian model can be established to provide more
accurate prior information. There may exist potential confounders
affecting both the observed biomass and the predictors (i.e., D and
H). Incorporating these variables into the regression models would
facilitate better estimation of the predictors’ effects. In addition,
considering a hierarchical Bayesian model would help pool
information from trees of different subspecies or from different
geological areas, while enabling a better characterization of the
differences among them (Dietze et al., 2008). By incorporating
hyper-parameters, the hierarchical model also prevents the model
estimates from being overly affected by the prior information
provided. This is particularly important due to the possible
inconsistency between the biomass data utilized to derive the priors
and those collected in our study, reducing the validity of direct
extrapolation (Vieilledent et al., 2010).
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