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Accurate estimation of terrestrial gross primary productivity (GPP) is essential for 
quantifying the carbon exchange between the atmosphere and biosphere. Light 
use efficiency (LUE) models are widely used to estimate GPP at different spatial 
scales. However, difficulties in properly determining the maximum LUE (LUEmax) 
and downregulation of LUEmax into actual LUE result in uncertainties in the LUE-
estimated GPP. The recently developed P model, a new LUE model, captures the 
adaptability of vegetation to the environment and simplifies parameterization. 
Site-level studies have proven the superior performance of the P model over 
LUE models. As a representative karst region with significant changes in forest 
cover in Southwest China, Qiannan is useful for exploring the spatiotemporal 
variation in forest GPP and its response to climate change for formulating forest 
management policies to address climate changes, e.g., global warming. Based 
on remote sensing and meteorological data, this study estimated the forest 
ecosystem GPP in Qiannan from 2000–2020 via the P model. This study explored 
the spatiotemporal changes in GPP in the study region over the past 20  years, 
used the Hurst index to predict future development trends from a time series 
perspective, and used partial correlation analysis to analyse the spatiotemporal 
GPP changes over the past 20  years in response to three factors: temperature, 
precipitation, and vapor pressure deficit (VPD). Our results showed that (1) 
the total amount of GPP and average GPP in Qiannan over the past 21  years 
(2000–2020) were 1.9  ×  104  ±  2.0  ×  103 MgC ha−1 year−1 and 1238.9  ±  107.9 gC 
m−2 year−1, respectively. The forest GPP generally increased at a rate of 6.1 gC 
m−2 year−1 from 2000 to 2020  in Qiannan, and this increase mainly occurred 
in the nongrowing season. (2) From 2000 to 2020, the forest GPP in Qiannan 
was higher in the southeast and lower in the northwest, indicating significant 
spatial heterogeneity. In the future, more than 70% of regional forest GPP will 
experience a weak increase in nonsustainability. (3) In Qiannan, forest GPP 
was positively correlated with both temperature and precipitation, with partial 
correlation coefficients of 0.10 and 0.11, respectively. However, the positive 
response of GPP to precipitation was approximately 70.47%, while that to 
temperature was 64.05%. Precipitation had a stronger restrictive effect on GPP 
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than did temperature in this region, and GPP exhibited a negative correlation 
with VPD. The results showed that an increase in VPD inhibits GPP to some 
extent. Under rapid global change, the P model GPP provides new GPP data for 
global ecology studies, and the comparison of various stress factors allows for 
improvement of the GPP model in the future. The results of this study will aid in 
understanding the dynamic processes of terrestrial carbon. These findings are 
helpful for estimating and predicting the carbon budget of forest ecosystems in 
karst regions, clarifying the regional carbon absorption capacity, clarifying the 
main factors limiting vegetation growth in these regions, promoting sustainable 
regional forestry development and serving the “dual carbon goal.” This work 
has important guiding significance for policy formulation to mitigate climate 
change.

KEYWORDS

P model, forest ecosystem, spatiotemporal distribution pattern, climate factors, 
remote sense

1 Introduction

Forest ecosystems, as the main component of terrestrial 
ecosystems, play important roles in the terrestrial carbon cycle and 
climate change (Trumbore et al., 2015; Tang et al., 2018; Zhu et al., 
2022; Zhen et al., 2022). The gross primary productivity (GPP) of 
forest ecosystems is defined as the total gross carbon fixation by 
autotrophic carbon-fixing tissues per unit area and time (i.e., gross 
photosynthesis minus photorespiration) (Chapin et  al., 2006; 
Wohlfahrt and Gu, 2015). GPP is an important component in 
carbon exchange that represents the ability of vegetation to fix CO2 
in the carbon cycle through photosynthesis, actuates the seasonal 
and interannual changes in CO2 concentration. Moreover, GPP is 
a key parameter affecting to understand atmosphere–biosphere 
interactions and the changing climate. Research shows that the 
GPP output of forest ecosystems accounts for approximately half 
of the terrestrial ecosystem flux (Beer et al., 2010). Therefore, slight 
changes in forest GPP may affect the total anthropogenic carbon 
dioxide emissions absorbed by terrestrial ecosystems (Keenan and 
Williams, 2018; Luo et al., 2019). Inaccurate estimation of forest 
GPP may lead to compromise of deliverables. Furthermore, 
researchers have argued that forests are vulnerable to climate 
changes, extreme climatic events and human-induced disturbances 
(Gerlitz et al., 2017; Sharma et al., 2017; Kumar et al., 2019). Kumar 
et al. (2019) studied the spatial patterns of climatic variables and 
their relationships with productivity and discovered that regions 
with high productivity were mainly concentrated in areas with 
moderate ranges of temperature, while regions with very high or 
very low temperatures had low productivity. As a result, accurately 
estimating forest GPP is important for understanding the carbon 
cycle mechanism of forest ecosystems and revealing the response 
of forest ecosystems to climate change against the background of 
global change and increased CO2 concentrations (Piao et al., 2013; 
Fernández-Martínez et  al., 2014; Yao et  al., 2018). Simulation 
research on vegetation productivity has gone through multiple 
stages of development, including simple statistical models, remote 
sensing data-driven process models, and dynamic global vegetation 
models. Remote sensing data play an irreplaceable role in regional 

assessment and prediction research due to their ability to provide 
spatiotemporally continuous vegetation change characteristics, and 
they make it possible to estimate and monitor vegetation 
productivity globally (Yuan et al., 2014). Dynamic carbon models 
driven by data and remote sensing have been widely used in the 
estimation of GPP in forest ecosystems (Yuan et  al., 2014). 
However, the use of different model structures and parameterization 
schemes will result in significant differences in the estimation of 
GPP (Guanter et al., 2014). Therefore, there is still great uncertainty 
in the assessment of GPP in forest ecosystems in karst areas and 
mountainous tropical/subtropical areas that are highly important 
for regional/global-scale GPP estimation (Friedlingstein et  al., 
2006; Hu et al., 2018).

The light use efficiency (LUE) model has been widely used for 
the estimation of GPP at regional to global scales due to its basis 
in terms of mechanism and feasibility for model construction 
(Running et al., 2004; Yuan et al., 2006; Pei et al., 2022). On the 
one hand, this kind of model simplifies the physiological and 
ecological processes of vegetation, and the calculations are 
relatively simple compared with those of biogeochemical models. 
On the other hand, the spatiotemporal variation and results of 
GPP estimated by the LUE model are more reliable and accurate 
than those estimated by other methods (Wang et al., 2020). In 
recent years, researchers have developed more than 20 LUE-based 
models with that use eddy covariance (EC) data accumulation and 
remote sensing technology (Pei et  al., 2022). Although these 
models were developed based on LUE theory, they use different 
quantitative methods to describe the contribution of 
environmental factors to GPP changes, which represents the main 
reason for the differences in LUE model performance (Liu et al., 
2022). Many studies in China have been carried out using various 
LUE models, show that there are still significant differences in the 
annual variation in GPP (Li et al., 2013; Zan et al., 2018; Du et al., 
2020; Jia et  al., 2020). Simulation research on vegetation 
productivity has gone through multiple stages of development, 
including simple statistical models, remote sensing data-driven 
process models, and dynamic global vegetation models. Remote 
sensing data play an irreplaceable role in regional assessment and 
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prediction research due to their ability to provide spatiotemporally 
continuous vegetation change characteristics. Moreover, these 
methods could aid in the global estimation and monitoring of 
vegetation productivity. This is because the most important 
parameter in estimating GPP using the light utilization rate model 
is the potential light utilization rate, which directly determines the 
accuracy of vegetation productivity simulation. However, there 
are significant differences in these parameters among the models, 
and we compared several models and found that their potential 
light energy utilization efficiency varied from 0.604 to 2.760 g C/
MJ APAR (Potter et al., 1993; Xiao et al., 2004, 2005; Yuan et al., 
2007). The estimation of the potential light energy utilization rate 
needs to be  obtained through the inversion of the measured 
GPP. Differences in the observed values and environmental factors 
will cause errors in the setting of the light energy utilization rate, 
leading to a model with good simulation performance in the 
determined research area. However, when applied to areas with 
different climatic conditions, the estimation results will have great 
uncertainty. In general, most light energy utilization models 
consider temperature and moisture. The impact of phenology and 
other environmental conditions on the utilization efficiency of 
light energy has not been characterized, but the effective radiation 
that the vegetation canopy can absorb and use in the 
photosynthetic process has not been accurately characterized, 
resulting in differences in regional and global vegetation 
productivity simulations (Yuan et al., 2014).

We attempted to estimate GPP using the P model proposed by 
Wang et al. (2017) and adjusted the model parameters based on site 
measurement data. The main feature of this model is that it does not 
directly use a fixed light energy utilization rate as an input parameter 
but estimates the light energy utilization efficiency of different 
vegetation types based on temperature and the photosynthetic effective 
radiation absorption ratio. The most significant feature of this model 
is that it combines the basic principles of traditional light efficiency 
models and the principle of vegetation optimality to calculate light 
efficiency through parameters such as temperature and the canopy-to-
photosynthetic effective radiation absorption ratio. Based on these 
results, the GPP of vegetation experiencing dynamic changes was 
calculated. After the model builder used measured data from multiple 
global flux stations for correction and parameter adjustment, the 
estimation accuracy of the model improved. Currently, the model has 
good applicability. We applied the model, made several parameter 
adjustments, and attempted to improve the accuracy of the model 
simulation by improving the resolution of photosynthetically active 
radiation. Based on the simulation results, we analysed the spatial 
distribution, trend, and response to climate change of GPP in Qiannan 
because the results are still unknown. Therefore, the P model, which 
was constructed based on the principles of photosynthetic optimality, 
was used to estimate the GPP of forests in Qiannan. Site-based GPP 
and MODIS GPP were used to estimate and verify the accuracy of the 
P-modelled GPP. Our objectives were to (1) clarify the spatiotemporal 
pattern of GPP in the Qiannan region and predict its future 
development and (2) explore the response of GPP to climate change. 
This research clarifies the regional CO2 absorption capacity against the 
background of global climate change, helps us meet the carbon peak 
and carbon neutral goals and provides data and suggestions for the 
development of carbon neutral accounting and the formulation of 
local carbon emission reduction policies.

2 Data and methods

2.1 Overview of the study area

The study area is in Qiannan, Guizhou Province, China (106° 
12′–108° 18′ E, 25° 04′–27° 29′ N, with an average elevation of 997 m 
above sea level). This area belongs to the subtropical monsoon humid 
climate zone, and has abundant rainfall with four distinct seasons. 
Mean annual temperature (MAT) is 16.6°C, annual precipitation is 
approximately 1,100–1,400 mm, and annual average sunshine 
duration is 882.5 h. Overall, the humidity is relatively high, increasing 
gradually from north to south and from west to east. The vegetation 
types are subtropical evergreen-deciduous mixed forests, including 
evergreen needle-leaf forest (ENF), evergreen broadleaf forest (EBF), 
deciduous broadleaf forest (DBF) and mixed forest (MF), respectively. 
The dominant species are Cunninghamia lanceolata, Cupressus 
funebris, Pinus massoniana, and Pinus armandii. Phenology shifts 
smoothly between the rainy and high-temperature seasons (May–
October). The region has a high vegetation coverage rate, and the 
forest coverage rate increased from 52.5% in 2012 to 66% in 2020. 
The study area contains 6 national forest parks and 5 provincial forest 
parks (Figure 1).

2.2 Data sources and processing

2.2.1 MODIS data
Considering the difference in spatiotemporal resolution, we used 

GPP data derived from the MOD17A2H product, including GPP_500 
m, PsnNet_500 m and Psn_QC_500 m, from 2000 to 2020. Datasets 
from NASA1 with a spatial resolution of 500 m and a temporal 
resolution of 8 days (hereinafter referred to as MODIS GPP) were 
used in our study. Normalized difference vegetation index (NDVI) 
data were obtained from the latest version (V6) of the MOD13Q1 
product on the NASA website, with a spatial resolution of 250 m and 
a temporal resolution of 16 days.2 The monthly-scale fPAR was 
retrieved according to the empirical formula (Eq.  1). First, the 
product quality control file was used to exclude low-quality data, and 
then the high-frequency noise was removed by the Savitzky–Golay 
filter (Singh et al., 2019). Finally, the fPAR dataset of the complete 
time series was constructed as the model input.

 
f

f
fPAR

NDVI NDVI fPAR PAR

NDVI NDVI
PAR=

-( ) -( )
-

+min max

max min
max

 
(1)

where fPARmax = 0.95 and fPARmin = 0.001.
The digital elevation model (DEM) spatial distribution data (with 

a spatial resolution of 30 m) used in this study were acquired from the 
Data Center for Resources and Environmental Sciences, Chinese 
Academy of Sciences.3

1 https://lpdaac.usgs.gov

2 https://ladsweb.modaps.eosdis.nasa.gov/

3 https://www.resdc.cn/
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2.2.2 Meteorological data
Meteorological data from 2000 to 2020, including monthly 

temperature, monthly precipitation, mean relative humidity and mean 
barometric pressure, were acquired from the China Meteorological 
Administration.4 To maintain a consistent spatial resolution between 
the meteorological data and remote sensing data, kriging interpolation 
was used to interpolate the point data into raster data with the same 
spatial resolution (250 m) as the fPAR, NDVI and other data based on 
25 meteorological stations in the Qiannan region.

2.2.3 Land use and land cover data
Land use and land cover (LUCC) data from 2000 to 2020  in 

Qiannan were obtained from the Resources and Environmental 
Science Data Center of the Chinese Academy of Sciences.5 In this 
study, we used remote sensing data with a temporal resolution of every 
5 years and a spatial resolution of 30 metres. The LUCC data were 
regrouped into four categories according to the existing vegetation 
types in Guizhou Province, resulting in (i) evergreen needle-leaf forest 
(ENF), (ii) evergreen broadleaf forest (EBF), (iii) deciduous broadleaf 
forest (DBF), and (iv) mixed forest (MF).

2.3 Methodology

2.3.1 P model
In this study, a LUE model, the global production efficiency 

model (P model), constructed based on the principle of vegetation 
optimality was used to simulate the GPP of forests in Qiannan. The 

4 http://data.cma.cn/

5 http://www.resdc.cn/

model unifies the Farquhar–Von Caemmerer–Berry (FvCB) and LUE 
models. It assumes the optimality principle of balancing the C cost 
(per unit assimilation) of maintaining transpiration and carboxylation 
(Vcmax) capacity (Wang et al., 2017). The model was used to predict 
the adaptability of leaf horizontal photosynthesis to the environment, 
simulate the LUE, and estimate the GPP under different 
environmental conditions in combination with site-level fPAR and 
meteorological data. Although the P model requires relatively few 
inputs, the R2 of the predicted GPP and the observed GPP based on 
the complete model setting was 0.75 (8-day average, 126 sites) 
(Stocker et al., 2020).

The principle of optimality indicates that plants can adjust their 
physical and chemical properties to adapt to the growth environment 
and realize the optimal utilization of energy, water, and nutrient 
resources. According to the physiological and biochemical models of 
photosynthesis, the instantaneous photosynthetic rate is affected by 
the intercellular carbon dioxide concentration (Ci, μmol/mol), which 
is regulated by stomatal opening and closing. It is believed that plants 
can balance photosynthetic gain and transpiration loss caused by 
adjusting stomatal opening to maximize carbon assimilation 
efficiency (Stocker et al., 2020). For stomatal behaviour, a minimum 
consumption hypothesis is proposed: plant stomatal regulation tends 
to minimize carbon consumption to maintain carboxylation and 
transpiration rates and is integrated with the classical LUE to obtain 
the theoretical model of Ci expressed in Eqs. 2, 3:

 ( ) ( )a / VPDx x* *= G + -G +iC C
 

(2)

 
( )Ã /1.6x b h* *é ù= +ë ûK

 
(3)

FIGURE 1

Study area and geographic information.
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where Ca represents the ambient carbon dioxide concentration 
(μmol/mol); Γ* represents the carbon dioxide compensation point 
(Pa), expressed as a function of temperature Ta: Γ* = 4.08*exp 
[(27055.67/8.3145) (1/298.15-1/Ta)]; η* represents the viscous 
resistance of water, expressed as a function of temperature: η* = exp 
[580.1/(Ta − 138) − 1/160]; and K is the Mie coefficient (Pa) of the 
Rubisco enzyme, expressed as follows: K = Kc (1 + 209,460/Ko), where 
Kc and Ko are the Michael coefficients of the carboxylation and 
oxygenation reactions at the Ta temperature, respectively. Wang et al. 
(2017) determined the value of β in Eq. 3 to be 146 using the observed 
stable carbon isotopes of leaves at the global scale and verified the 
theoretical model. Finally, the collaborative restriction hypothesis 
was integrated with the Ci model and photosynthetic physiological 
and biochemical models to construct the C3 plant universal 
photosynthetic model P model (Eqs. 4, 5), which was verified on a 
global scale. The effect of soil moisture on the photosynthetic process 
was further considered in the latest version of the P model (Stocker 
et al., 2020), and the open source code can be accessed at GitHub:6

 
GPP obs= - ( )é

ëê
ù
ûú

´ ( )*j b q0

2 3

1I m C m/
/

 
(4)

 
m C Ci i= -( ) -( )* *

“ “/ 2
 

(5)

where GPP is the gross primary productivity, which is reflected at 
the canopy scale. Iobs represents the canopy intercepted 
photosynthetically active radiation [mol photon/(m2 s)], expressed as 
photosynthetically active radiation (PAR) and fraction of 
photosynthetically active radiation (fPAR); that is, Iobs = fPAR × PAR, 
C* is fixed at 0.41, and β(θ) is a water stress term driven by the soil 
water content (SWC) (m3/m3). φ0 is the intrinsic light quantum 
efficiency in mol CO2/mol, again calculated as a function of Ta. In 
addition, m reflects the limitation of photosynthesis by CO2. For the 
detailed derivation process of the P model, please refer to the model 
construction studies (Wang et al., 2017; Stocker et al., 2020).

2.3.2 Trend analysis of GPP
Univariate linear regression was applied to analyse the interannual 

variation in GPP (Zhao et al., 2018). The formula for trend analysis is 
as follows (Eq. 6):
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(6)

where Slope is the interannual rate of GPP change, n is the 21-year 
period from 2000 to 2020, and GPPi is the amount of GPP in year i.

2.3.3 Sen–Mann–Kendall trend
To quantitatively study the variation trend of forest GPP, 

we  adopted Sen–Mann–Kendall trend analysis in this study to 

6 https://github.com/stineb/rpmodel

reflect the evolutionary of the regional pattern of GPP during the 
period from 2000 to 2020 by exploring the spatial variation and 
variation slope of each pixel. The calculation formula was as follows 
(Eq. 7):
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(7)

where 1 < j < i < n, n is the total time sequence length, and GPPi 
and GPPj are the sample time series datasets. If β > 0, GPP shows an 
increasing trend; if β < 0, GPP shows a decreasing trend.

2.3.4 Partial correlation analysis
Correlation coefficients were used to describe the relationships 

between GPP and temperature, precipitation, and vapor pressure 
deficit (VPD) is the difference between the saturated vapour 
pressure. The correlation coefficient was calculated as expressed in 
Eqs. 8–10:
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where Rxy, Rxz, and Rxw are the single correlation coefficients 
between GPP and temperature, VPD, and precipitation, respectively, 
and n is the length of the time series data. Many factors affect GPP. To 
analyse the correlation between one of these variables and GPP, other 
variables need to be  excluded. Hence, we  adopted a third-order 
partial correlation analysis and used a T test to inspect the results of 
the partial correlation analysis (Tian Z. et al., 2019). The formula is 
as follows (Eq. 11):

 

R
R R R

R R
ij mnh

ij mn ih mn jh m

ih mn jh mn
·

· · ·

· ·

=
-

-( ) -( )
n

1 1
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(11)

where Rij·mn, Rij·mn and Rjh·mn are the partial correlation coefficients 
of variables (i, j), (i, h) and (j, h), respectively. The formula for the T 
test is shown in Eq. 12:
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where t is the t-statistic magnitude of the T test, R is the partial 
correlation coefficient between the GPP and the corresponding 
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variable, n is the sample number, and k is the number of 
controllable variables.

2.3.5 Hurst index
The Hurst index can not only be used to describe the sustainability 

of the GPP in Qiannan but also predict future development trends 
from time series. Therefore, this study attempts to explore future 
changes in the ecological environment of forests in Qiannan by using 
the Hurst index to provide a reference for the sustainable management 
of forests in the future. The Hurst index (H), which is based on rescale 
range (R/S) analysis, is an effective method for quantitatively 
describing the long-term dependence of time series information 
(Wang et al., 2008; Ma and Li, 2010). The following sequences are 
established at any moment (i = 1, 2, …, n) after a given time series 
variable of GPP. For any positive integer m, the above time series are 
defined. Here, this study mainly predicts the changes in GPP from 
2000 to 2020, so n is equal to 21. The Hurst was calculated as 
expressed in Eqs. 13–17.

Difference sequence:

 D = - -GPP GPP GPPi i i 1  (13)

Mean sequence:
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The formula R/S = R(m)/S(m) is defined based on computing 
R(m) and S(m).

When R/S ∝ TH, the Hurst phenomenon occurs in the considered 
time series, and the representational significance of the Hurst index is 
evident. When 0.5 < H < 1, the time series is persistent, meaning that 
the future trend is consistent with the past trend. The closer the value 
is to 1, the stronger the continuity will be. However, when 0 < H < 0.5, 
the time series has an anti-continuous nature, indicating that the 
future change trend is opposite to the past change trend. The closer 
the value is to 0, the stronger the degree of anti-continuity. When 

H = 0.5, the event sequence is random, and the future change trend is 
unpredictable (Wang et al., 2018).

3 Model validation

MODIS GPP and EC-based GPP were applied to validate the P 
model-based GPP in this study (see Figure 1).

3.1 P model-based GPP vs. MODIS GPP

To assess the accuracy of the P model, this study performed a 
comparative analysis of the estimated GPP based on the P model and 
MODIS GPP products in 2010, 2015 and 2019 (Figure  2). The 
coefficients of determination at the pixel scale in 2010, 2015 and 2019 
were 0.34, 0.42 and 0.41, respectively. Although MODIS GPP and 
P-model GPP were similar at low values of GPP, the slope of the 
regression line was less than one, indicating that MODIS GPP 
underestimated P-model GPP at more productive sites based. The 
results of this study support the view that the MODIS GPP product 
underestimates GPP across many sites, most significantly in areas 
with drought (Sjöström et  al., 2013). The GPP was markedly 
underestimated by MODIS at highly productive sites. In contrast, the 
GPP was close to the estimated GPP based on EC observations 
(EC-observed GPP) at sites with low productivity (Zhao et al., 2006; 
Wang et al., 2013). The MODIS GPP and EC-observed GPP were 
compared at an alpine meadow site on the Qinghai–Tibet Plateau and 
a crop site on the North China Plain, and the MODIS GPP was 
significantly lower than the EC-observed GPP (Zhang et al., 2008). 
Research has shown that at hardwood forest sites, the MODIS GPP 
phenology started earlier than that indicated by the scaled GPP, and 
the summertime GPP from MODIS was generally lower than the 
scaled GPP. The overall trend for GPP involved underestimation 
(Turner et al., 2003). The EC-observed GPP at 10 sites in northern 
China was used to validate the MODIS GPP, and the results indicated 
that the model explained 85% of the EC-observed GPP at the sites 
with the inputs observed in situ and improved parameters in the 
MODIS GPP algorithm, whereas the MODIS GPP algorithm without 
in situ inputs and parameters explained only 26% of the EC-observed 
GPP (Wang et al., 2013). Another study also revealed that the MODIS 
GPP product clearly underestimated the GPP in temperate grassland 
ecosystems in Inner Mongolia, China (Wu et al., 2008). Tang et al. 
(2015) evaluated the interannual trend captured by the annual mean 
GPP estimates inferred from EC data and by the MODIS GPP 
product for the typical flux site of each forest type. The results showed 
that the MODIS GPP product in the ENF was moderate, accompanied 
by an apparent underestimation and a weaker performance in the 
encompassing EBF and DBF. In terms of simulation accuracy, the 
current MODIS GPP estimates still need to improve the quality of 
different upstream inputs. Based on these studies, the estimation 
results of standard MODIS GPP products showed significant 
differences in different study areas. This is because the model 
parameterization scheme of the MODIS GPP algorithm is relatively 
invariable and simplistic. We believe that due to the uncertainty of 
MODIS GPP data, it is more reasonable and reliable to evaluate the 
spatiotemporal distribution of GPP in Qiannan using the P model.
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3.2 P model-based GPP vs. EC-based GPP

The main vegetation types at Ailao station and Dinghu station are 
evergreen broadleaf forest and mixed forest, respectively. Both sites 
have a humid subtropical monsoon climate, which is very similar to 

the climatic conditions and vegetation composition in Qiannan. To 
further evaluate the accuracy of the model simulation, the in situ 
monthly EC-based GPP at Ailao station from 2009 to 2013 and that 
at Dinghu station from 2003 to 2010 were compared and verified with 
the P model-based GPP (Figure 3) to verify the estimation accuracy 

FIGURE 2

Comparison between P model-based GPP and MODIS GPP based on different raster pixels in 2010, 2015 and 2019.

FIGURE 3

Comparison between P model-based GPP and EC-observed GPP at Ailao station (A) and Dinghu station (B).
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of the P model-based GPP under similar environmental conditions. 
The results showed that the in situ measured monthly GPP values at 
the Ailao and Dinghu stations were basically consistent with the P 
model-based GPP, and the coefficients of determination were 0.87 
(Figure 3A) and 0.82 (Figure 3B). The simulation results that are in 
good agreement with the EC-based GPP data indicate that the 
adjusted P model has good simulation performance under these 
ecosystem and climate conditions, and these simulation results are 
superior to those of the MODIS GPP. This difference may also be due 
to our improved resolution of the input parameters. We believe that 
using the P model GPP to determine spatiotemporal changes in the 
Qiannan region and respond to climate factors is more accurate.

4 Results

4.1 Spatiotemporal variation in GPP in 
Qiannan

4.1.1 The photosynthetic capacity of the forest in 
Qiannan

The total amount of GPP and average GPP in the study area over 
the past 21 years (2000–2020) were 1.9 × 104 ± 2.0 × 103 MgC ha−1 
year−1 and 1238.8 ± 107.8gC m−2 year−1, respectively. In general, the 
total amount of GPP and average GPP in the southern regions of 
Qiannan, such as Sandu, Dushan, Libo and Luodian Counties, were 
greater than those in the northern regions, especially Changshun, 
Fuquan and Weng’an Counties, and the maximum and minimum 
values appeared in Sandu County and Changshun County, 
respectively. The total amount of GPP and average GPP distribution 
of each county/city are shown in Figure 4, and the specific values are 
shown in Table 1.

4.1.2 Spatial evolution of forest GPP from 2000 to 
2020

The forest GPP in Qiannan from 2000 to 2020 was estimated by 
the P model to reveal the spatial distribution of forest GPP in the study 
area, and then, the spatiotemporal information was analysed in 
different stages, namely, 2000, 2005, 2010, 2015, and 2020 (Figure 5). 
The spatial evolution of GPP in the study area exhibited notable spatial 
heterogeneity, with an increasing trend from west to east and from 
north to south. Overall, the change in GPP in the high-value areas 
ranged from 1,400 to 2,100 gC m−2 year−1, with small fluctuations 
every 5 years. Lower-value areas (2–800 gC m−2 year−1) gradually 
transitioned to intermediate-value areas (1,200–1,400 gC m−2 year−1) 
from 2000 to 2014 and reached the maximum value of 20,045 gC m−2 
year−1 in 2013. The main reason may be that with the development of 
natural forest protection measures and afforestation in large areas, the 
forest distribution in the study area was relatively uniform, except for 
the slightly lower values in the north. There was a fluctuating increase 
from 2015–2020 (Figures 5D,E).

4.1.3 Interannual variation in GPP
The average GPP from 2000 to 2020 was chosen as an indicator 

of environmental quality. Overall, the results showed increasing 
forest ecosystems, with an average increase of 6.1 gC m−2 year−1 
(Figure  6A) between 2000 and 2020. GPP fluctuated with an 
increase of 17.6% and a subsequent decrease of 21.9% between 

2001 and 2006. GPP increased rapidly from 2006 to 2009, reaching 
1339.7 gC m−2 year−1 in 2009. Thereafter, it did not show a trend of 
continuous increase. There was relatively stable fluctuation except 
for the low GPP in 2012, which may have been related to large-
scale drought events. GPP gradually increased again from 2010 to 
2019, reaching a maximum of 1496.8 gC m−2 year−1 in 2013. 
During the period from 2016 to 2020, the forest GPP decreased 
slightly, likely affected by climate changes, such as decreased 
temperature and reduced precipitation.

The GPPs of different kinds of forests were estimated to 
reveal the variation characteristics of these forests. The results 
showed that the average GPPs of the four forests from 2000 to 
2020 ranked from high to low were DBF > EBF > MF > 
ENF. Compared with that in the other three forests, the GPP in 
DBF showed an increasing trend, with a rate of 8.7 gC m−2 year−1, 
possibly because global warming resulted in longer growing 
seasons, leading to a significant increase in GPP. Similarly, the 
GPPs of the other forest types all exhibited increasing trends, and 
the rates of increase in EBF, MF, and ENF were 7.6, 6.7 and 1.3 
gC m−2 year−1, respectively.

From the pattern of the GPP of the different forest types during 
the different periods (Figure 6B), it was evident that the GPP of the 
various forests exhibited a decreasing trend from 2001 to 2006, 
after which it increased gradually and reached its highest point in 
2013. GPP declined significantly in 2014. In the following years 
(2015–2020), the GPP of these forests declined substantially. 
During the period from 2000 to 2020, there were two peaks for 
these forest types, at 1042 gC m−2 year−1 in 2005 and 1,554 gC m−2 
year−1 in 2013. For EBF and DBF, the changes in GPP were 
consistent with those for MF overall. The GPP of these three forest 
types decreased significantly during 2003–2006 and 2013–2014. In 
the first stage, they varied from 1,282 gC m−2 year−1 to 1,106 gC 
m−2 year−1 and from 1,489 gC m−2 year−1 to 1,247 gC m−2 year−1, 
respectively. In the second stage, the GPP decreased more severely, 
with rates of 13.7 and 16.3%, respectively. The highest GPP values 
reached 1,459 gC m−2 year−1, 1,485 gC m−2 year−1, and 1,489 gC m−2 
year−1 in 2013. However, the interannual GPP changes in the ENF 
were relatively unstable compared with those in the other forest 
types. The increasing trend rate remained low and fluctuated 
greatly; maximum mean GPP appeared in this vegetation type at 
1,554 gC m−2 year−1 in 2013. The lowest annual average GPP value 
among the four vegetation types occurred in this vegetation type, 
with a value of 1,042 gC m−2 year−1.

4.1.4 Intra-annual variation in GPP
The multiyear monthly averaged GPP of the forest ecosystem 

exhibited low–high–low intra-annual variation trends (Figure  7). 
Multiyear monthly average GPP value increased beginning in January 
(6.8 ± 0.8 gC m−2 month−1), peaked in September (204.3 ± 23.9 gC m−2 
month−1) and gradually decreased until December (18.5 ± 4.5 gC m−2 
month−1). The highest monthly GPP value in the forest ecosystem 
occurred in September 2012 (259.3 gC m−2), and the lowest monthly 
GPP value occurred in January 2000 (1.6 gC m−2). In general, the 
regularity of the intra-annual variation in GPP was significant, with a 
regular trend of first increasing and then decreasing, with the monthly 
maximum appearing in summer.

The monthly maximum, minimum and monthly mean values for 
the different vegetation types are shown in Figure 8. The GPP peaks 
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of evergreen needle-leaf forest, deciduous broadleaf forest and mixed 
forest all occurred in September, with values of 258.1, 2,636 and 261.6 
gC m−2 month−1, respectively. However, the peak GPP in evergreen 
broadleaf forest was 238.9 gC m−2 month−1 in August. The average 
monthly GPP values of the four vegetation types were ranked as 
follows: evergreen needle-leaf forest > evergreen broadleaf forest > 
mixed forest > deciduous broadleaf forest. This pattern was not 
consistent with the ranking of the annual mean GPP values of the four 
vegetation types.

The spatiotemporal distribution of the forest ecosystem in this 
area was obtained by superimposing the four main vegetation types 
pixel by pixel. The annual average GPP change in the growing season 

(April–September) from 2000 to 2020 showed a slight downwards 
trend (−1.9 gC m−2 year−1) (Figure 9). The multiyear average GPP 
values in the growing season and nongrowing season were 887.0 ± 26.7 
gC m−2 and 351.8 ± 17.0 gC m−2, respectively. The lowest growing/
nongrowing season GPPs were 710.4 gC m−2 (2020) and 266.2 gC m−2 
(2006), respectively. The increasing trend in GPP in forest ecosystems 
over the past 21 years was mainly due to the increase in GPP in the 
nongrowing season (October–March), because global warming, lead 
to an extension of the growing season. GPP in March and October 
each year exhibited a small increasing trend, indicating that the 
beginning of the growing season started earlier and that the end of the 
growing season was later.

FIGURE 4

Distribution pattern of the total amount of GPP and average GPP in Qiannan from 2000 to 2020.
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4.2 Future trend of forest GPP in Qiannan

4.2.1 Analysis of the spatial trend of GPP from 
2000 to 2020

The Sen-Trend of GPP from 2000 to 2020 was estimated to explore 
the change of GPP in Qiannan. The overall GPP showed significant 
increases from 2000 to 2020 (p < 0.05); the areas with increasing and 
decreasing trends accounted for 51.3 and 48.7%, respectively 

(Figure 10A). There was a large proportion of the area with a change 
rate between 0 and 17.7 gC m−2 year−1, and these areas were mainly in 
the middle part of Pingtang County, Huishui County and northwest 
Libo County. The regions with a GPP change greater than 17.7 gC m−2 
year−1 accounted for 13.2% of the whole area, and these areas were 
mainly distributed around the edges in a belt-shaped spatial pattern. 
The regions with a rate less than −9.3 gC m−2 year−1 were almost 
negligible, and they were mainly distributed in the northwestern part 

TABLE 1 The total amount of GPP and average GPP values for counties/cities in Qiannan.

Name Counts Area (km2) Average GPP (gC m−2 
year−1)

Total amount of GPP 
(Tg C)

Duyun 23,482 1467.63 1231.3 1.8

Fuquan 13,311 831.94 1204.3 1.0

Libo 27,850 1740.63 1238.3 2.2

Guiding 15,806 987.88 1261.7 1.3

Weng’an 16,019 1001.19 1213.9 1.2

Dushan 19,503 1218.94 1203.5 1.5

Pingtang 25,195 1574.69 1267.2 2.0

Luodian 27,011 1688.19 1259.6 2.1

Changshun 9,764 610.25 1166.2 0.7

Longli 14,994 937.13 1237.9 1.2

Huishui 20,090 1255.63 1212.9 1.5

Sandu 28,262 1766.38 1286.5 2.3

FIGURE 5

The spatial distribution of forest ecosystem GPP in Qiannan from 2000 to 2020. (A) 2000, (B) 2005, (C) 2010, (D) 2015, and (E) 2020.
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of Duyun city, where only a small area showed serious ecological 
environmental degradation. In general, although there was little 
difference between the areas with increasing and decreasing GPP, the 
proportion of areas with increasing GPP was greater than that of areas 
with decreasing GPP, and the whole area showed an overall increasing 
GPP trend.

To further determine whether there was a significant trend in the 
above regions, we first conducted the Mann–Kendall (M-K) test and 
divided the results of the significance test into strong changes 
(p < 0.01), significant changes (0.01 ≤ p ≤ 0.05) and nonsignificant 
changes (p > 0.05). The change in GPP at the grid scale was calculated 
by overlaying the results of the Sen median with the significance 
results of the M–K test and further dividing the results into six levels 
(Figure 10B). The results demonstrated that the trend in GPP in most 
of Qiannan increased significantly biased from 2000 to 2020, and the 
areas with significant changes accounted for 52.3% of the whole study 
area. On the other hand, 47.8% of the areas exhibited an insignificant 
change, including 40.9% that exhibited an insignificant improvement 
and only 0.4% (northwest of Duyun city) that significant degradation. 

The areas with extremely significant increases were mainly in Luodian, 
Pingtang and Huishui Counties. The areas with significant increases 
in GPP were mainly distributed in the eastern part of the whole area. 
In general, the whole region showed a trend towards continuously 
increasing GPP improvement, and the trend in the west was greater 
than that in the east.

4.2.2 Trend of future changes in GPP in Qiannan
We estimated the Hurst index of GPP in Qiannan from 2000 to 

2020 to estimate the future trend of environmental change. The 
Hurst index in Qiannan was between 0.12 and 0.85, and the mean 
Hurst index was 0.44 (Figure 11). The Hurst index was less than 
0.50 in 72.3% of pixels in study area, indicating that the region 
where GPP switched frequently from high values to low values was 
larger than the area GPP values stayed high or low for longer 
periods of time. Pixels with Hurst index values between 0.43 and 
0.48 accounted for 50.4% of the total, those with Hurst index 
values less than 0.48 accounted for 86.6%, and those with Hurst 
index values greater than 0.51 accounted for 7.1%. The regions 

FIGURE 6

Interannual variation in forest GPP in Qiannan during the period 2000–2020 [A forest ecosystems, B four types of vegetation evergreen needle-leaf 
forest (ENF), evergreen broadleaf forest (EBF), deciduous broadleaf forest (DBF), and mixed forest (MF)].

FIGURE 7

The intra-annual variation in the multiyear monthly averaged GPP of forest ecosystems between 2000 and 2020.
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with a low Hurst index (0.43–0.48) were mainly distributed in 
Luodian County, Huishui County, Changshun County and eastern 
Sandu County, whereas the regions with a high index values (0.51–
0.85) were mainly distributed in central Pingtang County, 
northwestern Libo County and northwestern Luodian County. To 
better reveal the future trend and sustainability of GPP in Qiannan, 
this study overlaid the current GPP change trend and the Hurst 
index results. Approximately 5.3% of the study area is predicted to 
transition from degradation to improvement, especially in 

southern Libo County and on the edge of Guiding County and 
Duyun city. The areas with continuous improvement accounts for 
18.7% of the total area, be distributed mainly in central Pingtang 
County, northwestern Libo County and northwestern Luodian 
County. Moreover, approximately 1.9% of the region exhibits a 
continuous decline of GPP. These phenomena illustrates that the 
trend will reverse in the future. Most show a trend of switching 
from improvement to degradation, which is basically in line with 
the fluctuation trend from 2016 to 2020.

FIGURE 8

The variation patterns of multiyear monthly averaged GPP in four types of forest ecosystems in Qiannan from 2000 to 2020.

FIGURE 9

GPP variation trends in the growing and nongrowing seasons.
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4.3 Spatiotemporal variability in GPP in 
response to climate factors

4.3.1 Spatial variations in GPP in response to 
temperature

The spatiotemporal variations in GPP in response to changing 
temperature were investigated, and the results showed that the 

partial correlation coefficient between GPP and temperature was 
between −0.578 and 0.863 (Figure 12A). A total of 64.1% of the 
study area was positively correlated with temperature. Further 
analysis revealed that the regions with a positive correlation with 
temperature were mainly distributed in high-elevation areas where 
the temperature was relatively low. Higher temperatures can 
promote photosynthesis, accelerate the growth of plants, and thus 

FIGURE 10

Spatial change trend of GPP (A) and its significance (B) in Qiannan during 2000–2020.

FIGURE 11

Hurst index and future trend of GPP in Qiannan during 2000–2020.
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fix more CO2. The region with positive correlations were mainly in 
Changshun, Huishui, Sandu, and Libo Counties, while the areas 
with negative correlations were mainly concentrated in Guiding, 
Fuquan, and the northern part of Pingtang County. The region with 
the highest partial correlation coefficients (0.20–0.50) accounted for 
53.8%, and these areas were mainly distributed in Longli, Pingtang, 
Huishui, Libo, northeastern Sandu County, and Duyun city. The 
region with the lowest partial correlation coefficients (−0.58 to 
−0.30) accounted for 33.8%, and these areas were mainly distributed 
in Fuquan, Changshun, and Dushan Counties. To determine 
whether there was a significant trend in the above areas, we first 
calculated the partial correlation coefficients for the whole region, 
the results of the significance test were divided into significant 
values and nonsignificant values; with a confidence level was 0.05 
(Figure 12B). Specifically, the percentage of pixels with of strong 
positive correlation was 4.3%, and the correlation was mainly 
distributed in Luodian County, which was related to the rapid 
increase in forests in Luodian County. However, the percentage of 
pixels with strong negative correlation was only 0.9%. In summary, 
forest GPP in the study area was positively correlated with 
temperature. This was also consistent with the results of Yang 
(2009), who studied the response of primary productivity to climate 
change in Guizhou Province, and of Gao et al. (2022), who studied 
the response of GPP to climate change in China.

4.3.2 Spatial variations in GPP in response to 
precipitation

The partial correlation coefficients between GPP and 
precipitation ranged from −0.6 to 0.8 (Figure 13A), and the area 
with a positive correlations accounted for 70.5% of pixels; these 
areas were distributed mostly in Pingtang, Guiding, Longli and 
Sandu Counties. The regions with negative correlations accounted 
for 29.6% of the total area and were mainly distributed in the 

southern part of Dushan County, the southwestern part of Libo 
County and a small part of Luodian County. Only 6.8% of pixels in 
the area passed the significance test, yielding 5.8% of the study area 
with significant positive values, and these areas were mainly 
distributed in Fuquan city and Weng’an County (Figure  13B). 
Overall, there was no significant positive correlation between 
change in GPP and temperature or precipitation. The partial 
correlation coefficients were 0.10 (p < 0.05) and 0.11 (p < 0.05), 
respectively. These findings indicate that the impact of temperature 
on GPP change was slightly weaker than that of precipitation, which 
was similar to the results of other studies (Wang et  al., 2021; 
Yang, 2022).

4.3.3 Spatial variations in GPP in response to VPD
We further examined the partial correlation coefficient between 

the GPP and VPD. The results showed that the partial correlation 
coefficient between GPP and VPD was between −0.9 and 0.8 
(Figure 14A). A total of 48.6% of pixels in the areas exhibited a positive 
correlations, 85.6% were not significant (mainly distributed in 
Guiding, Longli and Huishui Counties). A total of 51.4% of pixels in 
the areas exhibited a negative correlation of which 91.1% were not 
significant and were mainly distributed in Luodian, Pingtang, Dushan 
and Libo Counties. In these areas, the vegetation GPP decreased with 
increasing VPD, indicating that water shortage had an inhibitory 
effect on GPP. In addition, 3.9% of the area exhibited a significant 
negative correlation (p < 0.05), and 3.2% exhibited a strong negative 
correlation (p < 0.01) (Figure  14B). In general, the correlations 
between the GPP and VPD were mainly distributed in the north, 
which was almost consistent with the conclusions of other scholars 
studying the relationship between GPP and VPD. The influence of the 
VPD on the spatiotemporal distribution of GPP was different from 
that of temperature and precipitation because the exhibited more 
regular differences in spatial distribution, with a negative correlation 

FIGURE 12

The partial correlation coefficients between GPP and temperature (A) and the degree of significance (B) in Qiannan.
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in the southern region. The spatial pattern of a positive correlation in 
the northern region was mainly caused by the difference in vegetation 
distribution and the application strategy of water and temperature 
(Hou et al., 2022). Overall, the correlation between the GPP and VPD 
changes was not significantly negative (p > 0.05), and the significance 
decreased from the northern to central areas and from the southern 
to central areas.

5 Discussion

Qiannan is a typical forest ecosystem. In recent years, the 
continuous increase in forest coverage has had many beneficial effects 
on carbon absorption in this region. Considering the important 
ecological status, we estimated the GPP in the region from 2000 to 
2020 and analysed the spatiotemporal distribution of GPP in this 

FIGURE 13

Spatial variability in the partial correlation coefficient between GPP and precipitation (A) and their correlation significance (B) in Qiannan.

FIGURE 14

Spatial variability in the partial correlation coefficient between GPP and VPD (A) and their significance (B) in Qiannan.
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region and its response to climate change. These results provide 
support for carbon absorption assessment and forestry resource 
management under global climate change in the future. Also can helps 
us meet the goal of “carbon peak, carbon neutral” and provide data 
and suggestions for the development of carbon neutral accounting and 
the formulation of local carbon emission reduction policies.

5.1 Spatiotemporal distribution of GPP in 
Qiannan

The GPP in Qiannan has increased over time, reflecting the 
effect of returning farmland to forest for ecological restoration 
(Zhang et al., 2021). Forest GPP in the growing season was greater 
than that in the nongrowing season. The increase in GPP was 
mainly due to the increase in GPP in the nongrowing season 
(Figure 8), possibly because climate change caused the growing 
season to start earlier or end later, leading to an increase in GPP 
during the nongrowing season. The GPP in October was still at a 
medium-high level (Figure 7), which supports the view that the 
growing season was prolonged. In 2001, China launched two 
Eastern Ecological Protection Projects and the Western Natural 
Forest Protection Project to return farmland to forests. At first, the 
area of arable land increased, and the area of forest decreased until 
2006. After 2006, the ecological projects began to pay off, as the area 
of arable land decreased and the area of forest increased, which is 
consistent with the results of previous studies (Xu et al., 2019). After 
the drought in 2010, there was a certain drought legacy effect that 
was similar to the results of Frank et al. (2015).

This may be because precipitation was not a limiting factor at the 
beginning of the drought, and plants were able to utilize water 
retained in the soil or groundwater, even though precipitation greatly 
decreased. DBF had the fastest growth rate among the four vegetation 
types, with an increase of 8.7 gC m−2 year−1. The growth rate of GPP 
in the four forest types was consistent with the results of a study in 
Southwest China (Shao, 2021). The main reason for this result is that 
DBF can increase its GPP during a longer growing season caused by 
climate change, while leaf loss in the nongrowing season can reduce 
forest respiration. Furthermore, the growth of young leaves can 
maintain a higher LUE. These findings are consistent with the view 
that the photosynthetic use efficiency of DBF is higher at the 
beginning of the growing season (Wu et al., 2016; Wei et al., 2017). 

Compared with those in other forest types, ENF had the greatest 
interannual fluctuations in GPP. Although it is the vegetation type 
with the lowest average annual growth rate among the four plant 
cover types, the maximum average annual growth rate of this 
vegetation type in the past 21 years was 1,554 gC m−2 year−1 in 2013. 
The main reason for this result was that during the 2011 drought 
event, the ENF effectively reduced water consumption and 
maintained relatively stable photosynthetic rates by adjusting plant 
water distribution. After the improvement of water and heat 
conditions, plants quickly resumed normal photosynthetic rates. It is 
likely the undecomposed layer of evergreen coniferous forest litter 
has a higher water retention rate than the litter layers of other forest 
types (Yang et al., 2014). In arid or semiarid regions, the response to 
reduced precipitation is less pronounced (Zhang, 2011). The specific 
changes are shown in Table 2.

5.2 Changes and future trends in GPP

GPP in Qiannan was higher in the southeast and lower in the 
northwest. These areas are covered by EBF, DBF and MF. The humid 
monsoon climate and good hydrothermal conditions of the study area 
in the subtropical humid zone favours the growth of vegetation. 
However, the ecological environment in many areas exhibited a weak 
downward trend. Most of the decline in GPP was due to declines in 
vegetative cover. For example, the area of green vegetation in Qiannan 
showed a downward trend from 2000 to 2006, and the fluctuation in 
the area of green vegetation coverage was more noticeable after 2006. 
Afforestation in most locations has increased the area of needle-leaf 
forest, but the area of some broadleaf forests has decreased, resulting 
in a relative decrease in forest GPP. The areas where GPP increased 
significantly over the past 21 years were mainly distributed in western 
Qiannan, where the forest cove increased significantly after 2010. 
From 2000 to 2020, the GPP exhibited an increasing trend. However, 
based on our use of the Hurst index to predict the change trend in 
GPP, we found that in the future, most areas will no longer maintain 
a high rate of increase in GPP. We speculate that (1) the capacity of 
water and availability to support GPP in this area will gradually reach 
saturation (Xu et al., 2020). (2) The dividend of GPP growth resulting 
from the rapid of forest area in Qiannan over the past 21 years will 
be weakened, indicating that GPP production will reach a threshold 
and will not increase indefinitely with increasing forest area.

TABLE 2 Changes in GPP at different time scales over the past 21  years.

Multiyear mean (gC 
m−2 year−1)

Maximum of past 
21  years

Minimum of past 
21  years

Slope (gC m−2 
year−1)

Interannual GPP 1238.8 ± 107.8 1496.8 in 2013 gC m−2 1087.5 in 2005 gC m−2 6.1

Intra-annual GPP ~
259.3 in September gC m−2 

month−1
6.6 in January gC m−2 month−1 ~

Growing season GPP 887.0 ± 26.7 994.1 in 2013 gC m−2 710.4 in 2020 gC m−2 −1.9

Nongrowing season GPP 351.8 ± 17.0 502.8 in 2013 gC m−2 266.2 in 2006 gC m−2 7.7

DBF GPP 1279.3 ± 121.7 1485.2 in 2013 gC m−2 1081.1 in 2006 gC m−2 8.7

EBF GPP 1309.2 ± 125.8 1458.8 in 2013 gC m−2 1111.8 in 2006 gC m−2 7.6

MF GPP 1308.5 ± 119.9 1488.9 in 2013 gC m−2 1106.4 in 2006 gC m−2 6.7

ENF GPP 1247.0 ± 108.2 1554.0 in 2013 gC m−2 1041.8 in 2005 gC m−2 1.3
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5.3 GPP response to climate change

To investigate the influence of meteorological factors on GPP, 
we analysed the spatial and temporal characteristics of three climate 
factors considered to affect vegetative growth in the natural 
environments (Ma et al., 2019; Ren et al., 2020; Tripathi et al., 2020). 
At present, the main climate factors affecting GPP are controversial 
but often include temperature and precipitation. Most studies show a 
stronger correlation between precipitation and primary productivity 
than between precipitation and temperature (Nemani et al., 2003; Tian 
Y. et al., 2019; Wang et al., 2021), but other studies have shown a 
stronger correlation between temperature and GPP (Wen and Fu, 
2001; Li et al., 2006; He et al., 2007). There are two main reasons for 
this difference. On the one hand, the duration of study differs; on the 
other hand, the methods used to obtain the data also differ. However, 
studies on the correlation between water vapour pressure and GPP in 
Qiannan are rare. The VPD is an important input parameter of the P 
model. In this study, temperature, precipitation and VPD were 
selected as the main climate factors for studying the response of spatial 
and temporal changes in GPP to each climate factor.

The results showed that temperature was positively correlated 
with GPP change in 2000–2002 and 2010–2017, precipitation was 
positively correlated with GPP change in 2001–2009 and 2014–2019, 
and VPD was significantly negatively correlated with GPP change in 
2004–2009 and 2016–2020. These results may demonstrate the 
sensitivity of GPP to precipitation and temperature. The GPP generally 
increased under wet conditions and declined under dry conditions, 
which is consistent with the results of previous studies at regional and 
global scales (Kwon and Larsen, 2013; Zhang et al., 2014; He et al., 
2018). Previous research has indicated that variation in GPP will 
depend on water availability in the future, especially in tropical and 
temperate (humid and semihumid) climates (Kayiranga et al., 2020, 
2021a,b). Generally, variation in global temperature affect both 
photosynthesis and autotrophic respiration (Giardina et al., 2003). 
Previous research has suggested that autotrophic respiration of 
vegetation increases exponentially with absorbed water (precipitation) 
and temperature (Gifford, 2003; Jeong et al., 2017). Hence, autotrophic 
respiration can be  considered to increase proportionally with 
increasing GPP. Precipitation in Qiannan was the main climatic factor 
affecting GPP change because the range of temperatures in Qiannan 
was small, only approximately 4°C, while the precipitation change was 
more remarkable, reaching 260.19 mm. When temperature 
fluctuations are not large, precipitation naturally becomes the 
dominant influence on GPP change in this region. Generally, high 
temperatures indirectly cause damage to plants by increasing the VPD, 
making the air drier and decreasing the vegetation photosynthetic 
capacity, thereby reducing the GPP output. However, as a typical karst 
geological and geomorphological area, the unique geological structure 
of the Qiannan region in Guizhou leads to severe soil moisture loss. 
Other studies have also shown that under a low soil moisture supply 
(Meng et al., 2020), there is a significant negative correlation between 
the VPD and GPP. Our research revealed that there was no significant 
negative correlation between GPP and VPD, which may be due to the 
gradual increase in VPD caused by the simultaneous increase in 
summer rain and high temperatures. However, at this time, a high 
VPD also promoted vegetation’s ability to absorb carbon dioxide, as 
the GPP increased with increasing VPD, which was a positive 
correlation. However, in the other three seasons, it inhibited the 

absorption of carbon dioxide, especially in winter, when there was a 
negative correlation. Both within and between years, in karst 
landforms with a low soil moisture supply, there was almost no 
significant negative correlation between GPP and VPD. Vegetation 
growth is also constrained by the length of the growing season. Higher 
precipitation rates and increasing temperatures could extend the 
growing season length and significantly increase GPP (Figures 8, 15) 
(Kang et  al., 2016). In the rainy season, the sensitivity of GPP to 
temperature increases, while the respiration decreases (Wang, 2015). 
This argument was clearly supported by our results, in which the 
highest GPP values from the modelled GPP were obtained during the 
rainy season, indicating that the vegetation productivity could reach 
its maximum only when the hydrothermal conditions were optimal.

6 Conclusions and prospects

6.1 Conclusion

Based on remote sensing, meteorological and phenological data, 
the verified P model was applied to estimate the GPP of terrestrial 
ecosystems in Qiannan from 2000 to 2020. The LUCC data used to 
determine the composition of the vegetation, the data included four 
vegetation types. The results showed that the total amount of GPP in 
Qiannan was 1.9 × 104 ± 2.1 × 103 MgC ha−1 year−1, and the annual 
average GPP was 1238.8 ± 107.8 gC m−2 year−1 over the last 21 years; 
the highest value was 1496.8 gC m−2 year−1, which occurred in 2013, 
with an average rate of 6.1 gC m−2 year−1 (especially during the periods 
2005 to 2008 and 2011 to 2013). GPP showed a slow positive trend, 
although there were several fluctuations, such as sharp declines in 
2003–2005 and 2008–2013, due to the impact of drought. 
Furthermore, GPP in Qiannan showed a gradual decreasing trend 
from south to north and from east to west.

The Sen–Mann–Kendall trend and Hurst index demonstrated that 
the overall GPP presented a nonsignificant increasing trend from 2000 
to 2020. Only 19.46% of the area still exhibited a significant increasing 
trend (mainly in southern Huishui County, Sandu County and the 
middle and eastern parts of Libo County). In the future, the area of 
Qiannan with a decline in GPP will be  larger than those with an 
increase in GPP regions undergoing continuous declines and 
continuous increases in GPP will account for 2.9 and 18.7%, 
respectively, of the total area, and these areas are distributed in 
Luodian County and southwestern Libo County. Finally, the 
temperature and precipitation in the study areas had similar positive 
impacts on GPP, while the influence of VPD on the trend in GPP 
showed a large area with a negative correlation, which indicated that 
a changing climate (i.e., warming, drought) may weaken forest GPP 
and carbon sequestration.

6.2 Prospects

 (1) Currently, remote sensing data are uncertain, which may 
be  due to the ageing of sensors or interference from 
influential factors such as cloud cover, which may affect 
the accuracy of the upstream input data of the model. As a 
result, the model simulation results differ. Moreover, the 
model parameterization scheme needs to be  optimized 
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according to the actual situation of in different research 
areas. This study lacked actual monitoring data in the 
study area. Instead, MODIS GPP products and flux GPP 
data from stations in the same climate region were used to 
verify the accuracy of the model. In future research, it is 
necessary to continuously improve/optimize the model 
parameters and perform inversion estimations based on 
the development of multidata fusion, multimodal coupling 
and machine learning combined with measured data, 
which are popular research hotspots to topics for further 
improving the ability of model inversion to estimate 
vegetation GPP. As a result, uncertainties associated with 
the inputs to the LUE model may create sub-optimal 
performance or mismatch problems in the model 
parameter tuning and may slightly affect the GPP results 
of the simulation in some ways. These uncertainties might 
be  avoided when better cloud screening, composite 
techniques, full spectral coverage, higher resolution and 
field-based datasets are available to the public in future 
studies (Kayiranga et al., 2020, 201b).

 (2) In this paper, the partial correlation coefficient was used 
to reveal the response of GPP to changes in climate factors. 
In fact, GPP was not affected by a single climate factor but 
by the interaction of multiple factors, including not only 
temperature, precipitation and VPD but also common 
effects such as radiation and soil nutrients. In subsequent 
work, as many drivers as possible should be considered, as 
well as data relevant to national policies (Xu et al., 2021).

 (3) There are limitations to any research, and in future research, 
we hope that scholars can delve deeper into the mechanism of 
GPP spatiotemporal changes in GPP in response to climate 

factors. In the process of photosynthesis, understanding how 
various factors promote/restrict chloroplast activity for 
photosynthesis can be  further expanded from individual 
mechanism research to ecosystem research. Based on these 
findings, effective estimates of light energy utilization efficiency 
and the vegetation canopy photosynthetic radiation absorption 
ratio can be  determined, further to further improve the 
accuracy of the model simulation and involve all vegetation 
types as much as possible to achieve accurate estimations of 
regional/global GPP.
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FIGURE 15

Comparison of temporal variations in GPP and climate factors. (A) The annual mean temperature, (B) the annual mean precipitation, (C) the annual 
mean VPD and (D) the annual mean GPP.
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