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Introduction: Soil moisture (SM) is crucial for regulating vegetation productivity 
and sustaining plant growth. Understanding the linkage between SM and 
vegetation activity is paramount in eco-hydrology modeling and meteorological 
applications. CYGNSS, one of the most commonly spaceborne GNSS-R missions 
with publicly available data, has the advantage of retrieving SM with high accuracy 
and high temporal resolution.

Methods: This paper describes the linkage between the CYGNSS SM and 
vegetation activity. The CYGNSS SM from 2019.01 to 2022.12 with system error 
and land surface calibration is first retrieved. The linkages between the CYGNSS 
SM and two key vegetation activity indexes, i.e., NDVI and the start of the growing 
season (SOS), are then investigated.

Results: The findings and conclusions mainly include: (1) The CYGNSS SM with 
system error and land surface error calibration shows a good correlation with the 
SMAP SM, i.e., R =  0.693 vs. ubRMSE  =  0.054 m3m−3. Long time-series CYGNSS 
SM can be useful data for large-scale terrestrial ecosystems and global change 
studies. (2) The NDVI shows a negative correlation with SM in most pan-tropical 
areas, whereas a positive correlation with SM in Africa. The response of NDVI 
to SM is more significant in shrublands and grasslands. (3) The link between the 
CYGNSS SM and SOS displays strong annual variations, and the SM has generally 
experienced a significant negative effect on SOS. SM advances the vegetation 
green-up in arid and semi-arid areas.
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1 Introduction

Soil moisture (SM) affects ecosystems’ energy balance and climate change by altering the 
land surface heat capacity and the latent heat transport to the atmosphere, and vegetation growth 
largely depends on SM availability, especially in arid and semi-arid regions of the pan-tropical. 
Furthermore, previous studies have shown that spatial variations in vegetation activity and SM 
can change the oblique pressure structure of the surface atmosphere, which can indirectly lead 
to convective storms (Chang and Wetzel, 1991). Accordingly, this highlights the necessity to 
assess the linkage between SM and vegetation activity.
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Spaceborne global navigation satellite system reflectometry 
(GNSS-R) is an emerging remote sensing technique that exploits the 
capability of GNSS satellites in a bistatic radar configuration and 
collects the geophysical surface-reflected signals by specially designed 
receivers (Chew et al., 2016; Ruf et al., 2018). In recent years, several 
spaceborne GNSS-R missions/payloads have been successively 
launched, e.g., the TechDemoSat-1 (TDS-1) launched by the U.K. in 
2014, the Cyclone GNSS (CYGNSS) launched by the National 
Aeronautics and Space Administration (NASA) in 2016, the BuFeng-1 
(BF-1) A/B twin satellites launched by China in 2019, and the GNSS 
Occultation Sounder-Reflectometry (GNOS-R) onboard the 
FengYun-3E (FY-3E) satellite launched by China in 2021 (Ruf et al., 
2013; Foti et al., 2015; Jing et al., 2019; Yang et al., 2022a,b). Among 
these missions, CYGNSS is a representative mission with publicly 
available data. The CYGNSS is the first Earth Venture Class fully 
dedicated spaceborne GNSS-R mission, and it consists of a constellation 
of eight micro-satellites orbiting in the same plane at an altitude of 
approximately 510 km and at an orbit inclination of 35° in pan-tropical 
areas, which results in the specular points scattering from 38°S to 
38°N. Each micro-satellite carries a four-channel GNSS-R bistatic radar 
receiver to collect Global Positioning System (GPS) signals (Chew and 
Small, 2018; Chew and Small, 2020). Here, the CYGNSS data is chosen 
to retrieve SM due to its unique advantages of simultaneous signals, a 
cost-effective alternative, and high temporal resolution.

Currently, CYGNSS SM retrieval methods can be  mainly 
categorized into two types, i.e., empirical and multi-source auxiliary 
data-driven methods. The empirical method takes satellite SM product 
or in-situ SM as reference data, establishing the conversion relationship 
between spaceborne GNSS-R observables and the reference SM. The 
multi-source auxiliary data-driven method mainly considers the signal 
attenuation and diffuse reflection caused by land conditions (e.g., 
surface roughness, vegetation) on GNSS signals, and combines CYGNSS 
observables with multi-source remote sensing auxiliary data through 
machine learning (ML) models or radiative transfer models. In addition 
to the land conditions, system errors also result in various uncertainties 
in the CYGNSS Level 1 data observables (Gleason et al., 2018; Wan et al., 
2020). In particular, as shown in previous studies, CYGNSS has inherent 
systematic errors, such as atmospheric attenuation, GNSS transmit 
power errors, and antenna gain, due to its multi-transmitter and single-
receiver observing structure, resulting in inaccurate SM retrieval.

Previous studies have shown a strong sensitivity between SM and 
vegetation, and the sensitivity varies with vegetation type and climate. 
Luo et al. (2021) demonstrated that in the Mongolian Plateau, vegetation 
phenology showed a strong seasonal variation in response to SM. Zhao 
et al. (2023) utilized the long-term normalized difference vegetation 
index (NDVI) and the Global Land Evaporation Amsterdam Version 3a 
(GLEAM v3a) SM, to investigate the variation of vegetation dependence 
on SM in China. However, the SM used in the above studies was derived 
from reanalysis data or land surface models, which may have some 
limitations in terms of accuracy (Dong et al., 2020). In addition, the link 
between SM and vegetation activity needs to be further quantified in the 
pan-tropical region, especially in water-scarce areas.

This study aims to investigate the link between the CYGNSS SM 
and vegetation activity in the pan-tropical region. To achieve this 
objective, four years of CYGNSS SM (i.e., from January 2019 to 
December 2022) are matched up with two key indexes of vegetation 
activity, i.e., NDVI and growing season start time (SOS). First, the 
CYGNSS SM with system error and land surface error calibration is 

validated by SMAP SM. Then, CYGNSS SM is matched up with 
15-day NDVI data to investigate the sensitivity of SM to vegetation in 
the pan-tropical region. Finally, the correlation of the CYGNSS SM 
and the NDVI resulting SOS from 10o N to 38o N is evaluated. The 
results of this study are expected to provide data for understanding the 
link between SM and vegetation activity.

2 Data

2.1 CYGNSS L1 data

The CYGNSS, with the primary objective of ocean wind speed 
monitoring, consists of eight low-orbit micro-satellites, with high 
revisit times of 2.8 ~ 7 h per day. It has a global coverage of 
approximately from 38°N to 38°S. The minimum spatial footprint is 
~3.5 km × 0.5 km for coherent scattering from smooth surfaces (Chew 
and Small, 2018; Chew and Small, 2020). The science community has 
further explored its sensitivity to SM. The CYGNSS measurements of 
SM are attributed to the sensitivity of its working band to the soil 
permittivity. Level 1 data of CYGNSS is used in this study. Only the 
land data are retained. The incidence angle is set to less than 65o 
during the data preprocessing process. Here, data from August to 
December 2018 is used for model training, and data from January 
2019 to December 2022 is used for applications.

2.2 SMAP data

The Level 3 36-km SMAP gridded data produced from the 
radiometer is used to require global SM distribution at high accuracy. 
Similar to the CYGNSS data, the SMAP instrument works with an 
L-band radar. The SMAP turns the natural thermal emission from the 
soil surface into SM, with the format of Equal-Area Scalable Earth 
Grid 2, providing global mapping of SM every 2–3 days. Here, the SM 
derived from SMAP is used to convert CYGNSS observables to SM, 
and validation. The variable of “retrieval_qual_flag” in the SMAP 
product is used to identify retrievals to be of recommended quality, 
with either 0 or 8 indicating high-quality SM retrievals (Chan 
et al., 2016).

2.3 NDVI data

The NDVI used here is developed from the NASA Goddard 
Space Flight Center (NDVI3g dataset), generated based on the 
publicly available NDVI dataset from the Advanced Very High 
Resolution Radiometer (AVHRR). The spatial resolution of the 
NDVI dataset is 10 km, and the temporal resolution is 15 days. The 
NDVI data is resampled to 36 km based on the nearest neighbor 
interpolation method.

3 Method

Figure 1 shows the flowchart of this study. The main steps are 
summarized as follows: (1) The CYGNSS SM from January 2019 to 
December 2022 with land surface and system errors calibration is first 
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retrieved; (2) The CYGNSS SM is matched to NDVI with the temporal 
resolution of 15 days, aiming to investigate the impact of SM on 
vegetation; (3) the resulting SOS from NDVI is matched up with 
CYGNSS SM, to analyze the spring phenology response to SM.

3.1 Derivation of the CYGNSS SM

Here, the reflected signal is assumed to be  dominated by the 
coherent component. The coherent method uses the CYGNSS 
observable to retrieve SM based on the bistatic radar equation (Chew 
et al., 2016; Eroglu et al., 2019; Yan et al., 2020), as follows:
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where Pt is the transmitted right-handed circularly polarized 
(RHCP) power of GNSS satellites; Gt and Gr are the gain of the 
transmitter antenna and the gain of the receiver antenna, respectively; 
Rts and Rsr are the distance from the transmitter to the specular reflection 
point and the distance from the specular reflection point to the receiver, 
respectively; λ (m) is the wavelength of the GPS L band; Γ is the surface 
reflectivity (SR) without accurate calibration, hereafter named SRraw.

As mentioned above, the CYGNSS mission has system errors. 
System errors play a role when constraining the output observables. 
Therefore, the SRraw needs to be  calibrated from system bias. 
Moreover, the land surface properties, i.e., vegetation and surface 
roughness, can also cause signal attenuation and diffuse reflections, 
resulting in random errors in GNSS signals. Thus, the land surface 
properties also need to be calibrated to get accurate soil reflectively 
from SR. In summary, two calibration steps are then carried out on 
the SRraw, to get accurate soil reflectively. For the system error 
calibration, Wan et  al. (2020) proposed a calibration method to 
eliminate the system errors of the CYGNSS level 1 data. The core 

concept of the method is using the theoretical Fresnel reflectivity of 
the calm and clean inland water bodies to calibrate the SRraw of the 
land surface.

The theoretical Fresnel reflectivity of water is calculated using the 
following equation:
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where Γw represents the theoretical Fresnel reflectivity of water, εw 
is the water permittivity (εw = 80), and θ is the incidence angle.

The SRraw after system errors calibration, hereafter named SRcali, is 
obtained by:
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For the second calibration step, we have made initial attempts to 
calibrate the attenuation due to vegetation and surface roughness on 
the CYGNSS SR by proposing a physics-based algorithm using SMAP 
brightness temperature (TBp) (Yang et al., 2022a,b).

The SRcali can be  calibrated to soil reflectivity using the 
following expression:

 
� �soil cali sec h� � � �� �exp cos2

2� � �
 

(4)

where Γsoil  is the final soil reflectivity; τ is the vegetation optical 
depth (VOD); θ is the incidence angle; h is the surface 
roughness parameter.

As expressed by Yang et al., 2022a,b, the combined parameter, i.e., 
exp cos� �� �2

2� � �sec h  can be derived by the zeroth-order radiative 
transfer model. The algorithm relies on SMAP brightness temperature 
(TBP) as the only parameter. The combined parameter 
exp cos� �� �2

2� � �sec h  can be expressed as:
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where TBV and TBH represent V and H polarized TBP, respectively; 
RH_s and RV_s refer to the Fresnel reflection coefficient at a smooth 
dielectric boundary of V and H polarization, respectively, which can 
be expressed as the soil permittivity and the incidence angle using 
Fresnel equations (Choudhury et al., 1979). The readers are referred 
to Yang et al., 2022a,b for detailed information. Box 1 illustrates the 
equations and ancillary variables required by the model.

The GNOS-R and CYGNSS soil reflectivity are correlated with 
SMAP SM using linear regression for each grid calculated from the 
number of points. The final CYGNSS SM can be expressed as:

 SMCYGNSS � � �� ��soil  (6)

where β and α are the slope and the intercept of the linear 
regression. The CYGNSS SM is finally resampled to 36 km.

FIGURE 1

The flowchart of this study.
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3.2 Derivation of the SOS

The lie outside the three standard deviations to be the conservative 
interval of the NDVI is removed. Then, noise reduction is performed, 
and SOS values are calculated using a polyfit method (Piao et al., 2006; 
Cong et  al., 2012; Chen et  al., 2022). The function of the polyfit 
method is:

 NDVI i a b i c i d i e in� � � � � � � � � �� �2 3

 (7)

where i is the date of the ith day of the year; j refers to the running 
index; a, b, c, d, e are the fitting parameter required for the polyfit 
method. The SOS is then obtained by the threshold determination 
method. For more details, please refer to Cong et al. (2012).

4 Results and discussions

4.1 Comparison CYGNSS SM with SMAP SM

The statistical indices, i.e., R and ubRMSE at each grid in 2022, are 
shown in Figure 2. Generally, the R-values between CYGNSS SM and 
SMAP SM show a good spatial distribution globally (i.e., R = 0.693). 
Over 60% of the CYGNSS SM of the grid cells in the domain closely 
matches the SMAP SM (r > 0.5); approximately 12% of cells have 
moderate to strong positive correlation (r > 0.7), while approximately 
13% of cells show a weak correlation (r < 0.4). The lower R values in 

these areas may reflect one or more contributing factors, including the 
effects of incoherent signals and associated SMAP SM uncertainty. In 
terms of the ubRMSE results, as illustrated in Figure 2B, the value of 
ubRMSE is smaller at 0.07 m3m−3 in most regions. Specifically, the 
values of ubRMSE are smaller in regions with lower SM values, such 
as the Sahara Desert, usually less than 0.02  m3m−3, with 
correspondingly higher R-values. On the contrary, in regions with 
high SM values, such as India, the ubRMSE values become larger, and 
the R-values are lower.

SM is a critical component in climate change, and the working 
band of CYGNSS is capable of estimating SM under forest land types. 
The SM accuracy over forest regions and different climate types is 
assessed here. Table 1 shows the variation values of R and ubRMSE 
due to climate type. The climate types data is obtained from Köppen-
Geiger Climate Classification dataset (Kottek et  al., 2006). As 
illustrated in Table 1, the SM of the equatorial climate has the highest 
R values, and the ubRMSE of the arid climate outperforms other 
climate types. The number of valid CYGNSS SM is much less, which 

BOX 1 SR calibration steps

TABLE 1 The statistical indices for different climate types.

R ubRMSE(m3m−3)

Equatorial 0.774 0.084

Arid 0.536 0.047

Warm temperate 0.624 0.079

Snow 0.599 0.089

Polar 0.450 0.083
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may lead to a relatively large statistical error. The forest cover types are 
obtained from International Geosphere Biosphere Programme (IGBP) 
data (Loveland et al., 2000). When the forest types are considered 
(Table 2), the R-value is larger than 0.5, but the correlation is lower 
than the global average R-value.

4.2 Correlations of CYGNSS SM and the 
NDVI

To investigate the linkage between the SM and vegetation, the 
15-day average of the CYGNSS SM is used as the final value of SM, to 
match up with the NDVI data. A comparison of CYGNSS SM with 
NDVI from 2019.01 to 2022.12 is shown in Figure 3. The SMAP SM 
and NDVI comparison is also provided for comparison purposes 
(Figure 3B). As illustrated in Figure 3, the R-values vary considerably 
with different time grids, with R-values ranging from −1 to 1. The area 
ratio of positive correlation is about 58%. A significant negative 
correlation occurs in the north of Africa, and Northwestern Asia. The 
positive correlation is distributed in the center of Arica with soil 
drying; this may be because changes in SM precede changes in NDVI, 
meaning that SM leads the behavior of vegetation in this region. These 
results reflect a double-sided linkage between vegetation and SM. As 
for SMAP SM, the distribution of correlation is similar to the case of 

CYGNSS SM against NDVI. The results show that the driving effect 
of SM on vegetation activity is more obvious in arid regions, and 
CYGNSS SM can capture the above key information in correlation 
with NDVI. Although the R-values of CYGNSS SM and SMAP SM are 
numerically different, the two spatial characteristics show similarity, 
indicating that CYGNSS SM is reliable.

Boxplots of the R for thirteen IGBP land types of the CYGNSS 
SM and SMAP SM versus NDVI globally from January 2019 to 
December 2022 are shown in Figures 4A,B, respectively. Overall, 
the R-vales of all land types range from −1 to 1. The mean R-values 
of evergreen needleleaf forest, evergreen broadleaf forest, 
permanent wetlands, croplands/natural vegetation mosaic, and 
barren are smaller than 0. The results of SMAP SM versus NDVI 
show similarity with CYGNSS across different vegetation types, 
except for the barren type. NDVI mainly reflects the vegetation 
dynamics, while the NDVI of the areas is not representative, and 
the driving role of SM is difficult to explain. Therefore, it is not 
explored further in this study. Regarding vegetation types, forests 
have a greater capacity for water absorption by roots and are not 
sensitive to the response of SM, so even increases in SM in forested 
areas act as a slight inhibitor to vegetation growth. In contrast, the 
NDVI of the shrublands and grassland in relatively arid areas 
respond more significantly to SM. It is evident that SM also strongly 
controls vegetation growth here.

4.3 Correlations of CYGNSS SM with the 
SOS

The R-values of annual CYGNSS SM and SOS for thirteen land 
cover types is obtained, as shown in Figure 5. Here, data from 10o N 
to 38o N are selected. CYGNSS SM from March to MAY is averaged 
to match up with the SOS data. Among the forest types, evergreen 

FIGURE 2

Correlation and ubRMSE of CYGNSS SM and SMAP SM in 2022 at 36-km grid, respectively.

TABLE 2 The statistical indices for different forest types.

R ubRMSE(m3m−3)

Evergreen needle-leaved forest 0.516 0.083

Evergreen broad-leaved forest 0.593 0.060

Deciduous broad-leaved forests 0.564 0.058

Mixed forest 0.569 0.068
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broadleleaf forests have the largest SM, corresponding to the earliest 
onset of spring phenology. Open shrublands, grasslands, croplands, 
and barren land have lower SM, and most of these vegetation types 
grow in relatively arid areas, corresponding to relatively low SM. These 
types correspond to larger SOS values. Accordingly, permanent 
wetlands and woody savannas show the maximum SM values, with 
the late emergence of spring phenology.

Figure 6 shows the heatmap of R-values of all the land cover types 
between the average SM and SOS values. Except for closed shrublands, 
all land cover types negatively correlated in 2019. For the evergreen 
needleleaf forest, the R-value gets larger each year, changing from a 
negative to a positive value. It illustrates that under the influence of 
SM, the SOS in evergreen needleleaf forests is increasingly later than 
the timing of SM changes. A stable negative correlation between SM 
and SOS in open shrublands and grasslands suggests that, 

correspondingly, SM contributes to vegetation green-up in arid 
regions under continued global warming.

Although temperature has been the main driver of spring 
phenology under warming in recent decades (Shen et al., 2014), SM 
in arid regions becomes a critical limit for vegetation green-up. In 
addition, SOS and SM in deciduous broadleaf forests show a 
continuous negative correlation; thus, SM advances the SOS here. 
This may be related to the leaf structure of broadleaf forests. When 
spring begins, the temperature gradually rises. Evapotranspiration is 
the strongest in deciduous broadleaf forests, and the evaporated water 
is urgently needed for the cyclic process of continuous absorption of 
water by roots to recharge the trees. Thus, compared to the needleleaf 
forests and evergreen broadleaf forests in relatively humid 
environments, SOS in deciduous broadleaf forests and mixed forests 
are more significantly and consistently affected by SM.

FIGURE 3

Correlations of CYGNSS SM and SMAP SM with NDVI from 2019.01 to 2022.12. (A) CYGNSS SM vs. NDVI, (B) SMAP SM vs. NDVI,

FIGURE 4

Boxplots of R for 13 land types in the period from August from 2019.01 to 2022.12. (A) CYGNSS SM vs. NDVI, (B) SMAP SM vs. NDVI.
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FIGURE 5

Distribution and mean CYGNSS SM and spring phenology each year. (A) mean CYGNSS SM, (B) start of spring phenology.

FIGURE 6

Correlation heatmap of all the land cover types between the average SM and SOS values from 2019 to 2022. Positive R-values are shown in red, and 
negative R-values are shown in yellow.
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5 Conclusion

In this study, the performance of CYGNSS SM is conducted with 
vegetation activity. The results of the study indicate that CYGNSS SM 
is important in the long term for large-scale terrestrial ecosystems 
and global change studies. There are obvious linkages between the 
CYGNSS and two key vegetation activity indexes (i.e., NDVI and the 
SOS). It indicates that the CYGSS SM can provide helpful information 
in response to changes in vegetation activity.

The results show that the CYGNSS SM with land surface and 
system error calibration correlates well with the SMAP SM (i.e., 
R = 0.693 vs. ubRMSE = 0.054  m3m−3). As for vegetation activity 
indexes, the correlation between the CYGNSS SM and NDVI varies 
considerably with different time grids, and the area ratio of positive 
correlation is about 58%. However, it shows a significant positive 
correlation in central Africa. The NDVI of the shrublands and 
grassland in relatively arid areas respond more significantly to SM. In 
terms of SOS, the correlations of SM and SOS display strong annual 
variations, and generally, the SM has experienced a significant 
negative effect on SOS, and SM advances the vegetation green-up in 
arid and semi-arid areas.

Foreseeably, the findings of this study can help understand the 
link between SM and vegetation activity in the pan-tropical region, 
and to better understand the impacts of climate change.
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