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Knowledge of the processes and impacts associated with the canopy’s 
partitioning of rainfall into stemflow (water that drains to the base of tree stems) 
and throughfall (water that drips through gaps and from canopy surfaces) has 
expanded in recent years. However, the effect of canopy interactions on the 
fundamental physical properties of rainwater as it travels through the canopy to 
the soil, particularly surface tension, remains understudied. To discuss specific 
hypotheses within this context and their relevance to ecohydrological theory, 
the surface tension of rainwater samples was examined directly. Over a period 
of 9  months, open rainwater, throughfall and stemflow samples were collected 
during 20 storms from 12 study trees located in Secrest Arboretum (about 2.5  km 
outside Wooster, Ohio). Study trees were selected to highlight a range of canopy 
characteristics, with each tree being from a unique deciduous species. Surface 
tension was measured using pendant drop goniometry, and measurements were 
analyzed for variation across study trees and correlation with event air temperature 
and rain intensity. In general, surface tension was reduced in throughfall and 
stemflow compared to measurements made for event rainwater, with median 
surface tension changes of −0.446  mN  m−1 and −0.595  mN  m−1 for throughfall 
and stemflow, respectively. The extent of this reduction varied among study trees 
(with changes as great as −6.5 to −5.5  mN  m−1), and storm event characteristics 
were directly and indirectly correlated with surface tension changes in select 
cases. Hypothetically, a number of mechanisms may account for the observed 
reduction (and variation in this reduction) in surface tension, including differences 
in tree surface properties, canopy microenvironments, and microbiomes, and 
each warrant further research. Testing these hypotheses may advance broader 
ecohydrological theory as surface tension changes will influence wetting, 
absorption, and solute exchange processes within the canopy which, in turn, may 
affect related surface processes.
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1 Introduction

Rainfall over forested landscapes must pass through tree canopies 
before reaching the ground. With a combined leaf and bark surface 
area estimated to exceed one billion km2 globally (Vorholt, 2012; Van 
Stan et  al., 2020), these surfaces and their deposited materials 
significantly alter rainwater, thereby influencing related hydrological 
(Savenije, 2004, 2018), ecological (Aubrey, 2020; Mendieta-Leiva et al., 
2020), and biogeochemical processes (Ponette-González et al., 2020; 
Qualls, 2020; Stubbins et al., 2020). Canopy-rainfall interactions also 
provide ecosystem services, such as runoff reduction in urban areas 
due to the evaporation of rainfall, resulting in financial benefits at both 
city and watershed scales (Nowak et al., 2020). As rain passes through 
plant canopies, it is partitioned into three pathways. Some is 
evaporated by the canopy through a process called interception, which 
influences regional precipitation patterns (van der Ent et al., 2014) and 
regional-to-global energy balances (Davies-Barnard et al., 2014). The 
remaining rainfall either falls through gaps and drips from the canopy 
(as throughfall) or drains down stems (as stemflow), creating 
heterogenous spatiotemporal patterns of net precipitation (Van Stan 
et al., 2021). As rainwater drains through the canopy, it will exchange 
nutrients or become enriched in pollutants (Parker, 1983; Klučiarová 
et al., 2008) and abiotic particles (Le Mellec et al., 2010), or supply the 
canopy floor with biota such as bacteria (Bittar et al., 2018), fungi 
(Magyar et al., 2021), and metazoans (Ptatscheck et al., 2018; Guidone 
et al., 2021).

Interest in and knowledge of about throughfall and stemflow have 
grown in recent years, particularly concerning their magnitudes and 
patterns (Magliano et al., 2019; Sadeghi et al., 2020; Van Stan and 
Friesen, 2020), their ecosystem manifestations at various scales 
(Whitworth-Hulse et al., 2021; Yue et al., 2021), and their contents 
(Ponette-González et al., 2020). Despite these advances, knowledge of 
the underlying physical properties of these flows remains elusive. 
Examining these physical properties is important, as current theory 
suggests that they can govern how throughfall and stemflow interact 
with tree surfaces and the litter and soils they eventually permeate 
(Zhang et al., 2022 and references therein). Hypothetically, this may 
affect associated ecological functions, like nutrient leaching from the 
canopy to rainwater (Levia and Herwitz, 2000), or soil and litter 
biogeochemical functions reliant on moisture retention (Bachmann 
and van der Ploeg, 2002; Kim et al., 2023).

Though some research has cast light on the optical properties of 
throughfall and stemflow (Stubbins et  al., 2020), other physical 
characteristics are usually discussed as side notes or in an otherwise 
qualitative manner. Instances include Singh’s et al. (2014) mention of 
“sticky, resin-like, material” in springtime throughfall, and Levia and 
Herwitz’s (2000) hypothesis that “kinematic viscosity and surface 
tension of (winter) intercepted precipitation” affects stemflow 
chemistry by “increasing the contact time of meltwater with the bark 
tissue.” In other instances, physical properties of intercepted rainwater 
were indirectly investigated, such as studies that report influences of 
temperature on rainwater retention for leaves (Klamerus-Iwan and 
Błońska, 2018). This study revealed that increases in rainfall 
temperature decreased droplet contact angle on leaves, increasing 
their canopy storage capacity by 0.3–0.5 g-water per g-leaf dry weight 
for every 1°C increase. In each of these examples, the discussed 
alterations are related to a key physical property of water: 
surface tension.

Surface tension is the underlying force that binds water droplets 
together, working at the air-water boundary to limit the liquid’s 
surface area. Internally, molecules within a droplet experience equal 
intermolecular forces from all surrounding directions. However, those 
at the droplet’s periphery must interface with the air and, as a result, 
only experience intermolecular forces from their neighbors (and those 
deeper inside the droplet). The “absence” of these forces on the 
air-exposed side creates a consistent inward tug on surface molecules, 
manifesting as surface tension (Riba and Esteban, 2014). Ultimately, 
a droplet’s form is governed by an interplay of forces, inclusive of 
surface tension, but also considering factors like inertia, viscosity, 
viscoelasticity, and electrical forces (Zhang et al., 1994). The presence 
of resin-like materials in springtime throughfall (Singh et al., 2014) 
could alter the chemical composition and consequently the surface 
tension of the water. A modified surface tension can lead to the noted 
“stickiness.” In winter, decreasing temperatures can reduce the kinetic 
energy of water molecules in stemflow rivulets, leading to stronger 
hydrogen bonds and increased cohesion (i.e., greater surface tension), 
which may slow droplet movement, amplifying contact time and 
influencing stemflow chemistry (per Levia and Herwitz, 2000). 
Conversely, increasing the temperature of intercepted waters may 
decrease surface tension, altering the shape of droplets such that 
contact angle diminishes, increasing a leaf ’s ability to retain water 
(Klamerus-Iwan and Błońska, 2018). In each of these cases, subtle 
alterations in surface tension, influenced by environmental factors or 
the droplet’s constituents, have profound implications for how water 
interacts with forest canopies.

Here, we present a discussion of theory and hypotheses regarding 
the possible mechanisms that may alter the surface tension of rainfall 
as it travels through the canopy to become throughfall and stemflow. 
Although investigations of the physical interactions of purified water 
droplets with the surfaces of leaves and bark have been made (Konrad 
et al., 2012; Holder, 2020; Tonello et al., 2021), no observations known 
to the authors have been reported on the surface tension of throughfall 
and stemflow water itself. Thus, to inform this discussion, we report 
observations of rainfall, throughfall, and stemflow surface tension 
using the pendant drop method for 12 trees of different canopy traits 
from a site in Northeastern Ohio (United States).

2 Methods and materials

The study was conducted using isolated urban tree canopies at the 
Secrest Arboretum in Wooster, OH (United States) in their “shade 
plot” (40°46′41.9″N 81°55′06.2″W, 311 m a.s.l.). The shade plot is 
~2.5 km southeast of downtown Wooster and the surrounding area 
consists of developed landscapes. A four-lane state highway is ~1 km 
to the north of the shade plot, and a two-lane state highway is 
~0.25 km to the east. Apart from the city, most surrounding land is 
agricultural, with croplands, orchards, and dairy farms accounting for 
approximately 70% of the land area in the county for which Wooster 
is the central, county seat (USGS GAP/LANDFIRE). The climate is 
considered hot-summer humid continental (Köppen Dfa) and the 
area has a mean annual temperature and precipitation of 10.6°C and 
1,750 mm y−1, respectively (The Ohio State University, 2023). 
Precipitation is relatively evenly distributed throughout the year, with 
990 mm y−1 being rainfall and 760 mm y−1 being snowfall (primarily 
occurring December through April). The highest and lowest mean 
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monthly temperatures are 22.9°C in July and − 3°C in January, 
respectively. Shade trees of species commonly used in urban forests 
were planted on a grassy field with moderately well-drained soils 
classified as Wooster-Riddles silt loams: WuB with 2%–6% slope and 
WuC with 6%–12% slope (The Natural Resources Conservation 
Service, 2023). Study trees were selected to represent 12 deciduous 
species commonly found in urban forests with visually contrasting 
bark and branching structures (summarized in Table 1).

Three rainfall samplers were deployed in a nearby clearing, 
immediately adjacent to the Secrest Aboretum shade plot. Each tree 
was outfitted with three throughfall samplers and a single stemflow 
sampler. Rainfall and throughfall samplers were constructed similarly, 
using a trough method. Troughs consisted of two white schedule 40 
PVC pipes with outer and inner diameters of 60.3 mm and 52.0 mm, 
respectively, that were angled toward a central drainage point. For 
throughfall troughs, the pipe lengths were cut to exactly the canopy 
radius dimensions of each study tree. For rain troughs, each pipe 
length was 3.048 m. Pipes were supported above the ground by 
electrical conduits and metal hardware.

To capture rain or throughfall, slits were made in the pipe using 
an oscillating tool (M18 FUEL Multi-Tool, Milwaukee, WI, 
United States) and the troughs were positioned at a 15-degree angle to 
facilitate drainage. At the low point, where the troughs came together, 
a PVC fitting was placed over the pipe end which had a hose barb, 
allowing the connection of a flexible vinyl tube that transferred rainfall 
or throughfall to an HDPE reservoir for sampling.

For each study tree, the throughfall trough system included three 
of these troughs deployed in an orientation to collect throughfall from 
a similar fraction of the total projected canopy area. The troughs and 
slits were arranged so that every meter along the canopy radii was 
sampled by three consecutive slits. Slit width varied with distance from 
the trunk to ensure proportional canopy area sampling. For example, 
slits between 4 and 5 meters from the trunk captured 432.7 cm2, which 
is 35.9% of the total collection area (1,202 cm2) for one trough system. 
This proportion was maintained regardless of tree size or canopy area. 
Thus, collection areas for each trough system (per direction) were as 

follows: 432.7 cm2 from 4–5 m, 336.6 cm2 from 3–4 m, 240.4 cm2 from 
2–3 m, 144.2 cm2 from 1–2 m, and 48.1 cm2 from 0–1 m away from the 
stem. For instance, a tree with three 5 m long collection systems had a 
total throughfall collection area of 3,606 cm2 beneath a canopy area of 
~78.5 m2 (i.e., the trough system is sampling from 0.46% of the 
projected canopy area), while a tree with three 4 m long collection 
systems had a total throughfall collection area of 2,308 cm2 beneath a 
canopy area of ~50.3 m2 (which is also equal to 0.46% of that tree’s 
canopy area). Photograph of trough provided (inset, Figure 1C).

Each study tree was outfitted with a stemflow collector per the 
design of Mabrouk et al. (2022) consisting of three components: (1) a 
collar to act as a gutter that captures the stemflow water draining 
down the outside of the stem bark; (2) tubing to direct captured 
stemflow from the collar to the third component; (3) a collection bin 
from which stemflow may be sampled. The base of each stemflow 
collar was constructed from adhesive-backed expandable 
waterproofed foam insulation tape: 3.8 cm × 3.8 cm Platinum 
Expandable Foam Weatherseal (M-D Building Products, Inc., 
Oklahoma City, OK, United States). Before installation, the foam tape 
was unpackaged and allowed to expand to its full width and height. 
Sections of the foam tape were cut to lengths slightly smaller than each 
study tree’s circumference, permitting the collar base to be installed at 
a moderate slope around the stem and leaving a small opening at the 
lowest point for a 2.54 cm (internal diameter, 3.18 cm outer diameter) 
flexible silicone tube. To guide the collar placement, the silicone 
tubing was zip-tied to the tree stem at a location convenient for 
placing a collection bin. To prevent stemflow water from flowing off 
the side edges of the foam tape, it was wrapped with flexible 8 mm 
thick plastic sheets (Arrow Home Products Co., Elk Grove Village, IL, 
United States). Silicon sealant was applied to all connection points 
(bark-to-foam tape and foam tape-to-plastic sheeting) and the top of 
the foam tape. The entire process was noninvasive. The tubing was 
connected to a 220 L HDPE storage bin with a screw-on lid 
(mirainbarrel, Taylor, MI, United States). Collar photo included in 
Figure 1C reproduced from Mabrouk et al. (2022). The collars, tubing, 
and collection bins were inspected weekly and repaired if needed.

TABLE 1 Study tree species, the code used in other plots, their stem diameter at breast height (DBH), tree height, projected crown area (PCA), and a 
brief qualitative description of their stem bark.

Study tree Code DBH 
(cm)

Height (m) PCA 
(m2)

Bark (type)

Acer platanoides L. ACPL 44.6 13.9 30.2 Shallow intersecting ridges

Acer rubrum L. ACRU 65 18.7 46.7 Smooth to fine scaly plates

Betula papyrifera Marshall BEPA 58.7 16.5 21.4 Paper-like, exfoliating

Cercidiphyllum japonicum Siebold & Zucc… CEJA 58.2 13 22.5 Shaggy plates, exfoliating

Celtis occidentalis L. CEOC 54.8 12.3 42.8 Smooth with warty ridges

Gymnocladus dioicus (L.) K. Koch GYDI 40.8 12.1 33.6 Scaly and fissured

Liquidambar styraciflua L. LIST 54.2 17.5 41 Rounded ridges

Nyssa sylvatica Marshall NYSY 63.1 17.4 24.4 Plated ridges

Tilia cordata Mill. TICO 34.6 13.2 23.9 Ridged, lightly furrowed

Ulmus americana L. ULAM 62.3 12.2 21.4 Flat ridges, diamond fissures

Ulmus × “Regal” L. ULRE 80.2 18.2 38.9 Broad ridges, deep fissures

Zelkova serrata (Thunb.) Makino ZESE 44.7 15.3 65.5 Smooth with lenticels

All traits were derived from terrestrial lidar scanning methods (using a Leica BLK360 scanner and SimpleForest in Computree: Hackenberg et al., 2021). Tree locations are plotted in Figure 1.
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All rainfall, throughfall, and stemflow water samples were 
collected 24–48 h after the end of a discrete storm event. A discrete 
storm event was defined as any rainfall exceeding 2 mm after an 
antecedent dry period longer than 12 h. In the field, 50 mL of each 
sample were immediately filtered through a 0.45 μm syringe filter 
(25 mm PES filters, Biomed Scientific, China) into sterile 50 mL 
capacity HDPE centrifuge tubes (Thermo Fisher Scientific, Waltham, 
MA, United States). Filtered samples were immediately put in a cooler 
and transported to the Wet Plant Lab in nearby Cleveland (OH), and 
stored in the dark in a refrigerator until analysis for surface tension.

Twenty storms of varying intensity and air temperature were 
sampled from March until November 2022. The median storm 
duration was 13.5 h and ranged from 2.1 to 41.0 h. Total rainfall 
values across all discrete storms had a median of 11.6 m and ranged 
from 2.0 to 52.4 mm. Storm intensity values ranged from 0.2 to 
5.8 mm h−1 and exhibited a median of 1.2 mm h−1. All rainfall event 
characteristics (duration, total rainfall, and intensity) were positively 
skewed (skewness = 0.91, 1.12, and 1.13, respectively), indicating 
storms tended to be shorter and less intense than would be indicated 
by the average.

The surface tension of all water samples was measured via the 
pendant drop method using a goniometer (Ramé-Hart, Model 100-00, 
Succasunna, NJ, United States). The goniometer is outfitted with a 
three-axis leveling stage, fiber optic illuminator backlight, an 
automated imaging kit using a U4 Series SuperSpeed digital camera, 
and a central tower with a chamber to contain the drop and syringe, 
temperature controlled using thermocouples (model 100-50-01) with 
a 0.1°C resolution. The camera and light are placed on either side of 
the central tower to create a backlit image of the syringe and droplet. 
Drops suspended from the 22-gauge flat-tipped needle (attached to a 
3 mL syringe) were observed on a computer monitor via Ramé-Hart’s 
DROPimage Pro software. Observations of surface tension were made 
using the surface tension tool where the external phase was set to air 
and the internal phase was set to water. This tool requires crosshairs 
to be set to the center of the triple interface between the syringe tip, 
the liquid, and air at the top of the pendant drop for measurement.

The following procedure was followed for the analysis of each 
storm event. Before any stormwater sample was measured, the syringe 
and needle were triple rinsed using deionized water, whereafter, a 
blank surface tension measurement was obtained, and the syringe was 
then emptied of any remaining deionized water. Prior to making 
measurements of rain, throughfall, or stemflow, the syringe was triple 
rinsed with sample water and filled with ~0.5 mL of the sample. 
Between each sample, the syringe was triple rinsed with deionized 
water, then the measurement procedure was repeated. While 
observing the live image of the drop on DROPImage Pro, pressure was 
applied to the syringe plunger until the drop was near maximum 
volume, indicated by a change in the interaction of light with the top 
of the pendant near the tip of the syringe. Five replicate measurements 
were taken for each sample and deionized water blank. As this 
procedure was repeated for each storm event, a set deionized blank 
measurements was generated for each storm. Across all samples, 
droplet volume was consistently maintained around 
(average ± standard deviation) 11.3 ± 1.1 μL, and droplet area was 
consistently maintained around 24.2 ± 1.7 mm2.

The pendant drop surface tension, area, and volume measurements 
for all replicates were exported for each rain event and organized into 
comma-delimited (csv) files according to tree species ID and sample 
type (i.e., open rainwater, throughfall, stemflow). Data within each 
group (species and sample type) were normally distributed. Because 
relevant changes in surface tension may be small relative to the overall 
surface tension of water in the standard units (mN m−1) (this is further 
contextualized in section 3.1), results are presented as units of change 
between the rainfall and the canopy-derived waters from each storm 
event. Thus, for each storm event, surface tension observations for 
rainwater (γR), throughfall (γT), stemflow (γS), and deionized water 
(γDI) were reduced by the mean γR of that storm. Changes in the 
surface tension of rainwater (ΔγR), throughfall (ΔγT), stemflow (ΔγS), 
and deionized water (ΔγDI) were plotted in box and whisker plots. 
Note that ΔγR and ΔγDI values are computed by comparing individual 
surface tension measurements from a single storm event to the mean 
surface tension of rainwater measurements for the storm event in 

FIGURE 1

(a) Location of Wooster (OH, United States) where the (b) Secrest Arboretum’s shade tree plot is located. The location of the rainfall sampling plot and 
the 12 study trees (abbreviations related to Latin species names in Table 1). (c) An example of the throughfall and stemflow water sampling collection 
devices with insets (c1) of stemflow collar and (c2) of throughfall trough (photos: John T. Van Stan).
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which they were measured. Thus, a set of deionized measurements 
were retrieved for each storm, as described in the previous paragraph, 
however these ΔγDI measures were simply blanks generated for 
procedural/method-check purposes.

Since species were not replicated, interspecific statistical 
comparisons were not performed. Statistical examination of variability 
in response to storm characteristics was done. Each storm event 
consists of different amounts (mm) and duration (h), thus the 
relationship between storm intensity (mm h−1) and the change in 
surface tension with canopy interaction was examined using 
correlation analysis. Additionally, the relationship between average 
temperature (°C) and the change in surface tension was examined. 
Rainfall measurements and temperature readings at 300 cm above 
ground were retrieved in five-minute increments from the Wooster 
Station of the Ohio State University’s CFAES weather system (The 
Ohio State University, 2023). All data analysis was performed using 
the following Python packages: Pandas, Matplotlib, Scipy, Statsmodel, 
and Seaborn.

3 Results and discussion: flux 
comparison

In general, surface tension of throughfall and stemflow samples 
was reduced in comparison to rainwater samples from the same 
storm, suggesting that rainwater-canopy interactions lower rainwater 
surface tension (Figure 2). Median surface tension of rainwater was 
70.93 mN m−1, similar to deionized water (median = 71.12 mN m−1). 
Differences in surface tension (Δγ) between rainfall and both 
throughfall and stemflow samples were apparent (Figure 2). Median 
(interquartile range: IQR) ΔγR for all storms was near zero: −0.046 
(−0.222 to 0.223) mN m−1 (Figure 2). Throughfall surface tension 
across all trees and storms clearly decreased compared to rainwater, 
with a median (IQR) ΔγT of −0.446 (−0.806 to −0.195) mN m−1 
(Figure 2). A greater reduction was observed for stemflow, showing a 
median (IQR) ΔγS of −0.595 (−0.971 to −0.333) mN m−1 (Figure 2).

Some stemflow and throughfall samples had very low surface 
tension relative to most other samples. For instance, during a 
moderately intense storm (5.8 mm h−1) on August 23, 2022, multiple 

study trees (C. occidentalis, Ulmus × Regal, G. dioicus, T. cordata, and 
A. rubrum) produced outlier ΔγT observations between −2.5 and 
−1.5 mN m−1. During a low intensity (0.4 mm h−1) storm on July 7, 
2022, ΔγS observations from C. japonicum were extremely low 
compared to other observations in the dataset, with values ranging 
from −6.5 to −5.5 mN m−1 (hence the long tail in Figure 2). In the 
presentation of surface tension data for each study tree (Figure 3), 
outliers were not plotted (to enhance figure interpretability); however, 
these outliers are provided in the Supplementary Table S1.

3.1 Different factors for different fluxes?

The reduction in median surface tension among these fluxes may 
seem subtle, but a decrease of 0.2 to 1.0 mN m−1 from rainfall to 
throughfall or stemflow is worth contextualizing. For example, each 
1°C increase in the temperature of pure water can decrease its surface 
tension by ~0.15 mN m−1 (Pallas and Harrison, 1990), indicating that 
the observed reduction between these fluxes is equivalent to a 
temperature increase of approximately 1.3°C to 6.6°C in pure water. 
Changes like those observed for C. japonicum stemflow, as high as 
−6.5 mN m−1, are analogous to a >40°C change in the temperature of 
pure water. Importantly, these analogies rely on a general value in pure 
water, and these relationships can vary based on the specific conditions 
and measurements used.

Stemflow’s lower surface tension compared to throughfall may 
hypothetically be due to their interactions with distinct tree surfaces. 
While throughfall originates from a mixture of gap rainfall and 
rainwater influenced by a blend of leaf and branch-bark surfaces, 
stemflow is predominantly derived from flow over the bark of 
branches and the trunk. These surfaces, being components of different 
organs with different functions, differ in physicochemical composition. 
Bark, with its rough texture and sorptive properties, can better retain 
water and selectively exchange solutes (Ponette-González, 2021). In 
contrast, the leave’s cuticle, composed of long chain aliphatic 
compounds, resists wettability (Fernández et  al., 2014). These 
contrasting surface attributes likely influence the chemical 
enrichment—and consequently the surface tension—of canopy 
rainwater (Parker, 1983). It’s worth noting that Rai et al. (2023) found 
that stembark-derived saponins reduced surface tension in water 
more compared to those from leaves, though the extent to which this 
would affect rainwater is not yet known. (Chemical relationships to 
surface tension in throughfall and stemflow will be discussed in the 
proceeding section.) Notably, stemflow has often been reported to 
form bubbles from a diversity of tree types and settings (Figure 4)—
likely a result of lowered surface tension.

Leaf and bark surfaces also foster unique microhabitats, leading 
to distinct aerosol depositional dynamics and microbiomes. Few 
studies have compared the capture of aerosol particulates on bark and 
leaves; yet, Xu et al. (2019) found stembark, branchbark, and leaves 
accumulated different amounts and types of particulate matter. Larger, 
less water-soluble particles accumulated in stembark compared to 
other surfaces, while greater finer particle fractions accumulated on 
leaves and branch bark. The surface structure and relative temporal 
stability (i.e., it does not shed seasonally) of bark, allows substantial 
organic matter accumulation compared to leaves (Catinon et  al., 
2009). In addition, the microbial and epiphytic communities on leaves 
can differ substantially from those on bark (Lambais et  al., 2014; 

FIGURE 2

Violin plots illustrating the differences in surface tension (Δγ) 
between rainfall, throughfall, and stemflow samples across all 20 
storms for all 12 trees, next to reference values from deionized (DI) 
water. Dots are medians, boxes are interquartile ranges, lines are 
non-outlier ranges, and violins represent the kernel density plot.
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Mendieta-Leiva et  al., 2020), especially regarding fungi (Magyar, 
2008). Variances in microbiomes could hypothetically lead to 
differences in microbial contributions, potentially impacting the 
chemical profile and surface tension of draining precipitation.

These different surface structures, microenvironments, and 
microbiomes can also influence rainwater drainage times on trees. 
This may alter surface tension due to prolonged contact and 
heightened exchange time with these surfaces. Two studies in the 
Pacific Northwest found mean throughfall residence times ranged 
from 4 to 52 min under relatively low rain intensities (Keim and 
Skaugset, 2004; Keim and Link, 2018). Given the higher rainfall 
intensities at our study site, it is conceivable that throughfall residence 
times might be shorter. While exact stemflow residence times remain 
elusive in current literature, it is theorized that drainage durations for 
stemflow exceed throughfall under equivalent rainfall scenarios due 
to the extended pathlength and reported average stemflow velocities 
being ~0.1–0.6 m s−1 (Zhang et al., 2022). Given that the nature of 
contact with a canopy surface likely influences the chemical 
enrichment of rainwater, differences in residence times between 
throughfall and stemflow could play a role in the observed disparity 
in surface tension measurements.

3.2 Influence of throughfall and stemflow 
chemistry

The observed surface tension reductions could be explained by 
variability in chemical composition caused by canopy-rainfall 
interactions. For instance, throughfall and stemflow typically have 
higher electrical conductivity, ionic concentrations, and acidity than 
rainwater (Parker, 1983; Ponette-González et  al., 2020). These 

properties could affect surface tension through the interplay of ions 
with water molecules at the air-water interface. According to the Gibbs 
adsorption isotherm equation, which describes how a component’s 
concentration affects surface tension, when the surface tension of an 
electrolyte solution is lower than pure water, ions should remain 
hydrated and distant from the air-water interface. Yet, this rule 
considers the entire ion profile perpendicular to the interface, 
meaning ions may still locally concentrate near the interface despite 
overall depletion. This behavior could paradoxically increase surface 
tension, consistent with thermodynamic principles [see discussion in 
Kunz (2006)]. Notably, ion polarizability largely affects ion-water 
interactions and the orientation of water molecules at the interface, 
rather than ion-air or ion-ion interactions. Consequently, further 
work may employ a primitive model approach, incorporating 
parameters from simulations that focus on the water molecule 
arrangement and water profile near the interface. Note that, to the 
knowledge of the authors, properties specific to the water profile of 
stemflow rivulets—and for the branch flows that generate throughfall 
drip points—has not yet been reported.

Tree-derived dissolved organic matter (tree-DOM) can reach high 
concentrations in canopy-exposed rainwater, >100 mg C L−1 (Van Stan 
and Stubbins, 2018). The few studies that delve into the composition 
of tree-DOM indicate it mainly consists of carbohydrates, aromatics, 
and aliphatic compounds (Stubbins et al., 2017, 2020). Some of these 
tree-derived compounds may be  easily soluble, affecting surface 
tension in a Gibbs-type manner; however, other compounds may 
be larger and less soluble while having surfactant qualities, like bark-
derived saponins (Böttcher and Drusch, 2017; Penfold et al., 2018; Rai 
et  al., 2021). Surfactants, due to their molecular structure, have a 
propensity to align at liquid-air interfaces which can change the 
surface tension of the liquid. The Langmuir adsorption isotherm may 

FIGURE 3

Box plots showcasing surface tension differences (Δγ) for throughfall and stemflow for each species studied, with rainfall and deionized (DI) water for 
reference. Lines are medians, boxes are interquartile ranges, and lines are non-outlier ranges. Outliers are provided in the Supplementary Table S1. Full 
tree species names are provided beside the species codes in Table 1.
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be  applied to begin characterizing this behavior for insoluble 
compounds or surfactants that do not dissolve completely in 
throughfall and stemflow but tend to adsorb onto interfaces. The 
Szyszkowski equation, an evolution of the Langmuir isotherm (Chang 
and Franses, 1995; Eastoe and Dalton, 2000), may offer a refined lens 
to study tree-DOM’s impact on the surface tension of throughfall and 
stemflow. It provides a quantitative linkage between solute 
concentration and changes in surface tension, capturing the nuances 
of saturation behavior at the air-water interface. Tailored for electrolyte 
solutions, the equation can represent tree-DOM behavior alongside 
its varied ionic and polar compounds. This framework also facilitates 
the estimation of parameters, such as adsorption constants, to decode 

the behavior of tree-DOM components. Moreover, its foundation can 
pave the way for advanced models that accommodate the multifaceted 
nature of tree-DOM. Lastly, adopting the Szyszkowski equation aligns 
the study of tree-DOM with other systems—which includes 
precipitation (Mazurek et al., 2006) and, due to recent interests in 
per-and-polyfluoroalkyl substances (PFAS), groundwater (Brusseau 
and Guo, 2021) and soil water (Sima and Jaffé, 2021). This should 
enable meaningful comparisons and a richer understanding within a 
broader context.

Given this, surfactant-like compounds present in tree-DOM may 
have a substantial influence on the reduced surface tension observed 
in throughfall and stemflow. Beyond affecting surface tension, these 

FIGURE 4

Bark “bubble baths” in stemflow rivulets, occurring on multiple bark types and in various geographic locations: (a) Celtis occidentalis (OH, 
United States, J. T. Van Stan); (b) Quercus virginiana (SC, United States, C. L. Cooper); (c) Quercus nigra (GA, United States, J. T. Van Stan); (d) Juniperus 
ashei (TX, United States, R. Schumann); (e) Eucalyptus piperita (Sydney, Australia, V. S. A. Mella); (f) Fagus crenata (Fukushima, Japan, Yuzuru Yoshida); 
(g) Unknown sp. (Gibraltar, Ornithological and Natural History Society); (h) Quercus macrocarpa (England, I. Garland); (i) Acer pseudoplatanus (Irvine, 
Scotland, Ranger Jo).
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surfactants might also tweak the wettability and adhesion of water on 
leaf surfaces, thereby steering the path and volume of water that 
funnels into stemflow [as hypothesized by Levia and Herwitz (2000)]. 
It’s also worth mentioning that the specific composition of tree-DOM 
could be influenced by myriad factors, including the tree’s functional 
traits, age, and health as well as the surrounding environmental 
conditions (Stubbins et al., 2020). This variability might manifest as a 
spectrum of surface tension values across different tree species or even 
within a single species under distinct conditions. Hence, the next 
section will examine tree-to-tree variability in our dataset.

4 Results and discussion: tree-to-tree 
variability

Variability in ΔγT and ΔγS was evident across the study trees 
(Figure  3). The median ΔγT across all storms was lowest for 
A. platanoides (−0.615 mN m−1) and highest for L. styraciflua 
(−0.320 mN m−1), although G. dioicus was similarly high 
(−0.328 mN m−1). Most trees’ median ΔγT values fell between −0.4 
and − 0.5 mN m−1 (in order of increasing magnitude): Ulmus × Regal, 
N. sylvatica, A. rubrum, Z. serrata, C. occidentalis, C. japonicum 
(Figure 3). For B. papyrifera and T. cordata, median ΔγT was between 
−0.5 and −0.6 mN m−1 (Figure 3). Throughfall variability (IQR) was 
consistent across study trees, generally spanning 0.5 to 0.7 mN m−1. 
The narrowest ΔγT IQR was observed for L. stryraciflua (−0.599 to 
−0.134 mN m−1)—though T. cordata and Ulmus × Regal also achieved 
ΔγT IQR <0.5—and largest for A. platanoides (−1.008 to 
−0.117 mN m−1).

For the same study tree, median ΔγT was typically less negative 
than median ΔγS; with most ΔγS medians being 0.1 to 0.3 mN m−1 
lower (Figure 3). However, a few study trees had marginal differences 
between median ΔγT and ΔγS values (i.e., <0.1 mN m−1): T. cordata, 
U. americana, C. occidentalis, B. papyrifera (Figure 3). Lowest median 
ΔγS was for C. japonicum (−0.752 mN m−1), with G. dioicus producing 
a comparable reduction in surface tension (−0.716 mN m−1). T. cordata 
exhibited the highest median ΔγS (−0.469 mN m−1), though this was 
similar to U. americana (−0.482 mN m−1). Three of the study trees 
(A. rubrum, C. occidentalis, and A. platanoides) displayed median ΔγS 
values between −0.5 and −0.6 mN m−1. Median ΔγS values for the five 
remaining study trees were between −0.6 and −0.7 mN m−1. Generally, 
ΔγS IQRs were similar to those reported for ΔγT (Figure 3). Trees like 
T. cordata produced a ΔγS IQR of −0.760 to −0.244 mN m−1, similar 
to its ΔγT IQR (−0.798 to −0.308 mN m−1). However, trees like 
A. platanoides, which had the greatest variability in ΔγT measurements, 
exhibited the smallest ΔγS IQR (−0.696 to −0.309 mN m−1). Similarly, 
despite producing the narrowest ΔγT IQR, L. styraciflua had the 
greatest ΔγS IQR (−0.376 to −1.049 mN m−1). Most of the remaining 
sample trees produced ΔγS IQRs between 0.5 and 0.7 mN m−1.

4.1 Why may different trees release more 
tension in rainwater?

This study selected tree species with visibly distinct canopy 
architectures, highlighting potential differences in key traits like bark 
structure and roughness, branch geometry, and crown density and 
shape. Past studies have established that such morphological 

characteristics can play a role in throughfall and stemflow volumes 
(Ford and Deans, 1978; Schooling and Carlyle-Moses, 2015; Sadeghi 
et al., 2020) and the solute concentrations of these fluxes (Parker, 1983; 
Staelens et  al., 2006; Pypker et  al., 2011; Oka et  al., 2021a,b). As 
previously discussed, the chemistry of throughfall and stemflow can 
influence surface tension. The impact of these traits on throughfall 
and stemflow chemistry has been previously understood through 
indirect, direct, and community interactions. Some canopy traits may 
passively and indirectly influence solute concentrations, through the 
deposition of materials during dry periods (Sæbø et al., 2012; Xu et al., 
2019, 2020; Oka et  al., 2021a) and their subsequent wash-off and 
dilution during storms (Kazda, 1990; Van Stan et al., 2017; Xu et al., 
2017). Other traits may directly modify the chemistry of throughfall 
and stemflow through physiological processes that uptake, leach, or 
transform soluble materials transported over plant organs during 
rainfall (Long et  al., 1956; Tukey, 1966; Oka et  al., 2021b). A less 
discussed but significant mechanism involves the exchange of solutes 
with resident animal and plant communities on the leaf and bark 
surfaces (Mabrouk et al., 2022). These community traits also offer an 
additional layer for trait-based investigations of canopy 
biogeochemistry (sensu Powell et al., 2013; Malik et al., 2020) and its 
related variability in surface tension of throughfall and stemflow.

Traits that increase aerosol capture—like canopy architectures 
with large roughness (and micro-roughness) parameters (Petroff 
et  al., 2008)—can also increase the water storage capacity 
(Klamerus-Iwan et  al., 2020), thereby, reducing the volumes of 
water available to drain as throughfall and stemflow (Sadeghi et al., 
2020), ultimately limiting dilution effects and increasing solute 
concentrations. Alternatively, traits which tend to reduce water 
storage capacity (smoother bark, steeper-inclined branches and 
hydrophobic leaves) tend to both reduce aerosol capture efficiency 
and capacity per unit surface area and increase the potential for 
dilution (Sadeghi et al., 2020). These variations in water storage and 
dilution may influence surface tension, depending on the type of 
solutes present. Solutes can be categorized as kosmotropes, which 
reinforce the hydrogen-bonding network of water, or chaotropes, 
which disrupt this structure (dos Santos et al., 2010). For instance, 
when considering sea salt aerosol, NaCl, dissolved in throughfall or 
stemflow: Na+ typically acts as a kosmotrope while Cl− acts as a 
chaotrope. Canopies, like soils, may retain Na+ while leaching Cl−, 
causing throughfall and stemflow to have higher Cl− concentrations 
compared to Na+ (Eaton et al., 1973; Heartsill-Scalley et al., 2007; 
Thimonier et  al., 2008). Consequently, waters enriched with 
chaotropic Cl− ions would likely exhibit reduced surface tension (if 
they accumulated in the water-air interface), if not balanced by an 
equivalent rise in kosmotropic ions. In this way, tree traits (and 
settings) that capture greater sea salt aerosols, retain Na+, and leach 
Cl− may contribute to reduced surface tension.

If one considers commonly reported physiological influences on 
ion concentrations of throughfall and stemflow, they point to an 
increase in chaotropic ions, like K+ (in fact, this is the generally the 
most concentrated ion reported in throughfall and stemflow studies 
per literature reviews) (Levia and Frost, 2006; Levia and Germer, 
2015). Moreover, weakly kosmotropic ions (like Mg2+) are reported at 
high concentrations (Levia and Frost, 2006; Levia and Germer, 2015) 
and strongly kosmotropic ions, like NH4+ and Ca2+, have been reported 
to decrease due to uptake by plants (Macinnis-Ng et al., 2012; Van 
Stan et al., 2012). The exact physiological traits that may explain these 
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uptake and leaching observations are currently unknown. A recent 
study examining various bark anatomical features and their 
relationship with lab-derived leachate chemical composition shed 
some insight, suggesting that K+ concentration may be linked to the 
abundance of cellular structures associated with nutrient storage, like 
parenchyma (Oka et al., 2021b). The selective uptake of kosmotropic 
ions and leaching of chaotropic ions by canopies might affect the 
overall “structuring” of water and thereby its surface tension, which 
could in turn influence processes like water flow, absorption, and even 
evaporation rates.

5 Results and discussion: variability 
with storm conditions

Throughfall and stemflow data across all study trees were analyzed 
for correlations between changes in surface tension (Δγ) and storm 
parameters, specifically rain intensity and mean air temperature. Notable 
relationships were observed. Both C. occidentalis and U. americana 
exhibited correlations between Δγ in stemflow (ΔγS) and event rainfall 
intensity (Figures  5A,B). This correlation was notably stronger for 
U. americana. Additionally, five correlations were identified between 

FIGURE 5

Scatterplots and regression results for any significant result relating (A,B) rainfall intensity and (C–F) mean event air temperature to changes in surface 
tension (Δγ) for throughfall (triangles) and stemflow (dots). Each panel is labelled with its species identifier (linked to Table 1). Leverage points are in red 
and not included in the regression statistics.
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canopy-derived waters and mean air temperature. ΔγS was indirectly 
correlated with air temperature for three species—N. sylvatica, 
U. americana, and T. cordata—with the strength of correlation 
increasing in that order (Figures 5C–E). For changes in surface tension 
in throughfall (ΔγT), two indirect correlations with air temperature were 
observed, namely for L. styriciflua and U. americana (Figures 5D,F).

5.1 How might storm conditions affect 
throughfall and stemflow surface tension?

Few significant statistical correlations were observed between storm 
conditions and changes in surface tension, particularly for throughfall. 
This suggests that various fluxes may have unique influencing factors that 
alter surface tension. We examined storm variables that are theoretically 
connected to hydraulic residence time (rain intensity) and surface-area 
interactions (mean event air temperature). Intuitively, more intense 
rainfall could decrease residence time in the canopy (Keim and Skaugset, 
2004; Keim and Link, 2018), thereby reducing the opportunity for 
canopies to passively enrich throughfall and stemflow with chaotropes 
while absorbing kosmotropes. If this were the case, one would expect a 
direct relationship between Δγ and rain intensity—meaning that Δγ 
would approach the mean rainwater surface tension (or zero) with 
increasing intensity. However, this was only weakly observed for the 
stemflow from one tree species (Figure  5A). Surprisingly, the most 
significant correlations between surface tension changes and rain intensity 
were negative (Figure 5B), for which we currently have no hypothesized 
mechanism to explain why increased rain intensity would reduce surface 
tension. Regarding the influence of mean event air temperature on Δγ, 
the indirect relationships observed for all statistically significant fluxes 
across all tree species could be linked to greater surface area interaction 
with rainfall. Generally, as dilute water (such as rainwater) warms, its 
surface tension decreases, making the water more prone to spreading. 
This could impact various processes, including wetting, absorption, and 
solute exchange (Adriaenssens et al., 2011; Wang et al., 2015; Berry and 
Goldsmith, 2020). (It is important to note that the mean air temperature 
during a storm event could not have directly influenced our surface 
tension measurements, as all samples were analyzed at a constant, 
controlled temperature in the lab.)

6 Conclusions and relevance to forest 
ecohydrology

Changes in surface tension between open rainfall and the net 
rainfall fluxes beneath urban tree canopies were of large enough 
magnitude to potentially influence related ecohydrological processes. 
This is because surface tension affects wetting, absorption, and solute 
exchange processes for leaf, bark and epiphyte surfaces. Assuming that 
rainwater entrained on these surfaces maintains the generally higher 
surface tension of open rainfall could lead to biases in estimating 
related states, like water storage capacity, and fluxes, such as leaching 
and washoff. This might also affect laboratory methodologies, which 
often use purified water to study leaf or bark hydrophobicity and 
wettability. These concerns could similarly impact surface processes, 
with the typically lower surface tension of throughfall and stemflow 
affecting interactions with litter layers and subsequent soil infiltration 
(Fletcher, 1949; Nimmo and Shillito, 2023). Despite all study trees 

showcasing lower surface tension values in throughfall and, more 
markedly, in stemflow compared to open rainfall, the extent of these 
reductions varied by species and, at times, weather conditions. Thus, 
our results highlight a diversity in surface tension modifications across 
tree species, shaped by their unique canopy traits and interactions 
with weather conditions. Hypothetically, variations in tree surface 
properties, canopy microenvironments, and microbiomes contribute 
to these differences, and merit future research attentions. Correlations 
were found between surface tension and storm conditions 
(temperature and rain intensity) in a small selection of cases. Although 
this supports the hypothesis that distinct, likely canopy-related, factors 
are more consequential in regulating the mechanisms that alter 
rainfall surface tension, it also hints at the possible varied impacts of 
climate change-induced modifications to rainfall for different tree 
species. The potential for stemflow to exhibit lower surface tension 
than throughfall due to differences in surface characteristics opens 
new avenues for research into the chemical enrichment and 
hydrological consequences of these fluxes. In conclusion, our findings 
emphasize the imperative for an in-depth understanding of the myriad 
physical and ecological factors governing canopy-rainwater 
interactions. The diverse alterations in surface tension amongst 
different tree species, especially in the face of changing weather 
conditions, necessitate focused attention and research for 
comprehensive insight into ecological and hydrological processes.
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