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Phenotypic plasticity in Pinus 
canariensis seedlings growing at 
chilling and freezing temperatures
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Global change is affecting the frequency and temporal distribution of frost events. 
We can expect damage caused by low temperatures to increase specially at the 
upper limit of a species’ elevation range. Here, we assessed how Pinus canariensis 
two-year old seedlings from different islands and elevations responded differently 
to chilling and freezing temperatures. Seedlings from six populations were grown 
either in a greenhouse (tmin  =  5 ̊C, chilling conditions) or outdoors (tmin  =  −3.3 ̊C, 
freezing conditions) for 104  days in winter. Seedlings from one of these populations 
belonged to three half-sib families. Maximum quantum yield of Photosystem II 
and evapotranspiration (ETP) were determined four times throughout the study. 
All populations suffered photoinhibition under freezing but not under chilling 
conditions. We  measured the lowest ETP in the population from the warmest 
and driest environment and lowest elevation (250  m) both under chilling and 
freezing conditions. The three populations from the higher elevations reached the 
highest ETP under chilling, a likely adaptation to the shortening of the vegetative 
period. The effect of elevation remained elusive for other parameters, which 
could be  partly attributed to high intrapopulation variability. Epicuticular wax 
concentration increased and needle water content decreased in plants growing 
outdoors. All populations except the one most affected by cold dehydration 
showed osmotic adjustment and a simultaneous decrease in tissue elasticity 
under freezing. This response was stronger in the population from the highest 
elevation (2,241  m). Our results highlight the coexistence of adaptive processes, 
genetic variation and plasticity conditioning the response to low temperatures in 
this species.
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Introduction

The Canary Island archipelago, located between 27° and 29° N and 13° and 18° W, is a 
natural laboratory for studying plant physiology and environmental plant responses and 
adaptations, due to the strong climate variability across each island. Dry, temperate, and cold 
climates can be  found in the archipelago. Moreover, all these climates coexist in transect 
distances as short as 14 km in the island of Tenerife (AEMET-IM, 2012). This is caused by the 
mixed effect of the wide altitudinal range of these volcanic islands (0–3,715 m above sea level 
[a.s.l.]) and the influence of the humid trade winds, both triggering an altitudinal-belt structured 
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flora (Aguilar et al., 2010). Northeastern trade winds influence the 
windward slopes, increasing air humidity that may condense below 
the inversion layer forming stratocumulus, locally called ‘sea of clouds’ 
(Máyer and Marzol, 2013; Ritter et al., 2019).

Among the flora species in the Canary Islands, Pinus canariensis 
Chr. Sm. ex DC. is the main tree species (10.45% of the archipelago 
surface) spreading over several flora altitudinal-belts on both 
windward and leeward slopes (200 to 2,200 m a.s.l.), with precipitation 
ranging from 300 to 3,000 mm year−1 and annual average temperatures 
from 10 to 20°C (Pérez-de-Paz et  al., 1994; Climent et  al., 1996). 
Therefore, P. canariensis represents an excellent case study species to 
broaden our understanding of tree physiological responses and 
adaptations to drought (López et  al., 2013), altitudinal climate-
gradients (Weigel et al., 2018; Miranda et al., 2021), volcanic eruptions 
(Rodríguez Martín et al., 2013; López de Heredia et al., 2014; Miranda 
et al., 2020), and wildfires (Rozas et al., 2013). Some previous studies 
highlight the plasticity of this species. For instance, López et al. (2013) 
and López de Heredia et  al. (2014) studied hydraulic traits and 
adaptation to aridity, concluding that the ability of this species to 
inhabit a wide climatic range was associated with high phenotypic 
plasticity and to some degree to local adaptations.

Low temperatures are a limiting factor for Canary Island pine 
seedlings (Climent et al., 1996). Pinus canariensis tree-line populations 
held an average of 22.6 days with frost events a year, whereas the 
minimum recorded temperature in mid-altitude areas (632 m a.s.l.) 
within the species distribution is 4.0°C (AEMET-IM, 2012). There are 
some studies assessing Canary Island pine responses to chilling and 
freezing temperatures (Peters et al., 1999; Luis et al., 2007; González-
Rodríguez et al., 2019; Fernández-Marín et al., 2021). However, none 
of those studies has taken advantage of the genetic variability across 
populations. Inter-population genetic variation could lead to 
phenotypic plasticity also in terms of chilling and frost endurance.

Chilling (0–15°C) and freezing (<0°C) temperatures can cause 
several dysfunctions in tree organs (Lambers and Oliveira, 2019). 
Compared to deciduous species, in evergreen plants such as Canary 
Island pine the photosynthetic tissues are exposed to low winter 
temperatures. Suboptimal chilling temperatures slow down 
enzymatic processes causing a winter depression of photosynthetic 
function (Larcher, 2000). Consequently, an excess of absorbed energy 
needs to be dissipated to avoid damages to photosystem II (PSII; 
Takahashi and Badger, 2011) during winter sunny days. Leaf 
chlorophyll fluorescence is widely accepted as a sensitive indicator of 
several kinds of plant stress, such as flooding (Pita et al., 2023), heat 
(Sharma et al., 2015), stem girdling (López et al., 2015) or pathogens 
(Castillo-Argaez et al., 2020), and has proven particularly worthy to 
analyze the effect of low-temperature stress (Fracheboud et al., 1999; 
Ogaya et  al., 2011). Among the photo-protective mechanisms of 
leaves, epicuticular waxes have been proposed to modulate the 
absorption of photosynthetically active radiation, thus protecting 
against photoinhibition (Robinson et  al., 1993; Shepherd and 
Griffiths, 2006; Mohammadian et  al., 2007). Epicuticular wax 
deposition and its photo-protective function vary seasonally in pines 
(Olascoaga et  al., 2014) and may also present variation between 
populations. In this regard, differences in epicuticular wax 
topography have been described for P. canariensis needles, with 
ω-hydroxy-n-alkanoic acids being the most abundant wax kind 
followed by 10-nonacosanol and n-alkanoic acids (Stabentheiner 
et al., 2004). Leaf epicuticular wax topography may influence the 

process of ice formation and prevent the direct contact of ice crystals 
with the underlying cuticle (Gorb and Gorb, 2022).

Under freezing temperatures, sharp ice crystals can cause 
mechanical damage to cells and tissues. In addition, extracellular ice 
formation promotes symplast dehydration, which may cause cell death 
(Larcher, 2005). Beside anatomical and phenological adaptations, 
plant freezing resistance depends on minimizing dehydration damages 
derived from ice formation in the apoplast by means of increasing the 
concentration of protective compounds, such as proteins and sugars 
(Gusta and Wisniewski, 2013; Körner, 2016) and therefore decreasing 
tissue osmotic potential. On the other hand, cell wall stiffening 
increases cells’ resistance to collapse (Scholz et al., 2012) and could 
therefore improve tolerance to dehydration during extracellular 
freezing (Zhang et  al., 2016). Moreover, the extent of freeze-
dehydration in the mesophyll can be reduced by cell wall rigidity, as 
reported in three conifer species adapted to low temperatures (Stegner 
et al., 2022).

The aim of this study was to analyze the response to freezing and 
chilling temperatures in P. canariensis seedlings from different 
populations, including one at the species’ upper elevation range. 
We  hypothesized that: (1) seedlings will show both inter and 
intrapopulation variability in terms of their physiological responses to 
low temperatures (2) populations from higher elevations would be less 
affected by low temperatures; and (3) tissue osmotic potential and 
elasticity would decrease under freezing conditions while needle wax 
concentration would increase.

Materials and methods

Plant material and growing conditions

The experiment was carried out at the facilities of the School of 
Forest Engineering and Natural Resources, Universidad Politécnica de 
Madrid, Spain. Two-year old Pinus canariensis seedlings were grown 
in five-liter pots filled with a mixture of weakly fertilized fine peat 
moss and perlite (3:2 v:v). Seedlings were obtained from seed collected 
from six different populations in the Canary Islands: Arguineguín, 
Colada, Fayal, Hierro, Taburiente and Teide, differing in altitude, 
rainfall and thermal conditions (Table 1; Supplementary Figure 1). In 
the case of Arguineguín, seed was collected separately from three 
different trees, therefore constituting three half-sib families: A54, A79 
and A80. For simplicity, the rest of populations will be named by their 
initials in some figures, except Taburiente (Tab). The plants never 
experienced chilling temperatures before the study.

Plants were kept in a greenhouse under natural sunlight and 
watered once/twice a week from September 20th to November 16th. 
On October 11th all plants were fertilized with 0.37 g of Peters® 
20:20:20. On November 16th (d1) four plants per group except 
Taburiente with three were moved outdoors (outdoor plants – freezing 
temperatures) and placed under the same light conditions as the 3–6 
plants per group kept inside the greenhouse (greenhouse plants – 
chilling temperatures) until the end of the experiment on February 
27th (d104). The pots of the outdoor plants were placed in containers 
filled with paper balls to minimize the effect of low temperatures on 
their root systems. Top-soil temperature (~3 cm depth) was measured 
in outdoor plants eight times throughout the experiment, being always 
above 1°C. Air temperature was continuously recorded by means of 
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Lambrecht thermo-hygrographs (Lambrecht Meteo GmbH, 
Göttingen, Germany). Maximum and minimum air temperatures 
were also measured with max min thermometers. Minimum 
temperatures remained above 5°C inside the greenhouse and fell 
below 0°C several times outdoors (Figure 1). Light snow fell on d82. 
Plants were watered once/twice a week, and soil water content 
remained between 10 and 40% both for inside and outdoor plants, as 
determined by time domain reflectometry (TRIME TDR IMKO 
Gmbh, Ettlingen, Germany).

Evapotranspiration, chlorophyll 
fluorescence and epicuticular waxes

We calculated daily evapotranspiration (ETP) by weighing the 
potted plants at 24-h time intervals on four occasions throughout the 
experiment (d12, d35, d64, d85). These measurements were carried 
out along two or three consecutive rain-free days.

Maximum quantum yield of Photosystem II (Fv/Fm) was 
measured with a Hansatech FMS2 fluorometer (Hansatech 
Instruments Ltd., Norfolk, England) in a portion of needles that was 

previously kept in the dark for a minimum of 20 min. Plants were 
measured in batches, with one plant from each seed source in each 
batch and alternating batches of greenhouse and outdoor plants, 
between 9:00 and 11:00 (GMT + 1). Measurements were carried out 
on d18, d36, d65 and d86. All outdoor plants and a sample of 2–4 
greenhouse plants per seed source were measured on every occasion 
except on d18, when greenhouse plants were not measured.

On d77 juvenile needles were sampled from 12 plants 
belonging to the populations Teide, Fayal and Arguineguín (A54) 
to analyze the amount of epicuticular waxes (soluble cuticular 
lipids). For this purpose, 130–170 needles were collected per 
population, measuring the corresponding fresh weight (FW) of 
the samples which varied between 2.5 and 4 g. Needle soluble 
cuticular lipids (waxes) were extracted by immersing them in 
100 mL of chloroform for 1 min, using two replicates per sample. 
Extracts were first evaporated in a glass beaker and then in a 
watch glass until dryness in a laboratory fume cupboard. The 
amount of soluble cuticular lipids was expressed gravimetrically 
on a leaf dry weight (DW) basis, after having determined the FW 
to DW ratio for each provenance. For analyzing surface 
topography, healthy leaves were selected and approximately 1 cm 

TABLE 1 Climatic variables at the native sites of the evaluated Canary Island pine seedlings.

Population UTM X UTM Y Elevation P Pwet Pdry T Twet Tdry Tmin

Arguineguín 434,941 3,077,536 250 183.1 169.8 13.2 20.7 19.35 22.08 11.6

Fayal 210,305 3,186,846 782 572.9 507.6 65.3 16.5 14.32 18.58 5.9

Taburiente 218,606 3,180,918 845 705.3 631.4 73.7 15.4 13.18 17.58 3.3

Hierro 199,963 3,069,239 965 417.4 375 42.3 16.4 14.22 18.57 6

Colada 220,535 3,163,050 1,180 831.1 731.4 99.7 13.4 11.18 15.58 1.3

Teide 340,084 3,121,202 2,241 392 323 43 10.2 6.57 13.88 1.1

UTM coordinates from zone 28 N. P precipitation (in mm), T mean temperatures (°C) during annual (no subscript), wet (October–March) and dry (April–September) seasons. Tmin are the 
mean minimum temperatures of the coldest month. Data obtained from the Spanish network of meteorological stations AEMET and from the Canarian GIS database GRAFCAN (del Arco 
et al., 2006).

FIGURE 1

Maximum (solid symbols) and minimum (empty symbols) temperatures measured inside (triangles) and outside (circles) the greenhouse throughout 
the experiment. Vertical dashed lines signal the days when chlorophyll fluorescence was measured. The thick vertical line signals needle collection for 
determining wax concentration. Dotted lines show the start and end of pressure-volume curves construction.
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long sections were cut from the central needle part with a scalpel. 
Needle sections were then placed in the stands for gold-sputtering 
(Q150T-S, Quorum Technologies, West Sussex, United Kingdom) 
prior to observation with a variable-pressure scanning electron 
microscope (SEM, Hitachi S-3400 N, Tokyo, Japan; acceleration 
potential, 20 kV; working distance, 15–17 mm).

Pressure-volume curves

From d90 to d98 pressure-volume (P-V) curves were established 
using the free transpiration method (Hinckley et al., 1980; Dreyer 
et  al., 1990). We used one basal shoot per plant to construct the 
curves (n = 3–4 plants per population or family and growing 
location). Once excised from the plant, the shoots were placed with 
the base immersed in water and kept in the dark for 3–4 h. This was 
enough to fully rehydrate the tissue with no significant sign of 
infiltration. Shoot water potential (Ψ) was measured with a 
Scholander-type pressure chamber (PMS Instrument Co., Albany, 
OR, United States). Relative water deficit (RWD) was calculated as 
RWD = (SW-FW) (SW-DW)−1, where SW, FW and DW stand for 
saturated, fresh and dry weight of each shoot. Relative water content 
was calculated as RWC = 1-RWD. On average, 7 ± 0.2 pair of data 
(RWD, Ψ) were used to draw each curve.

We fitted the linear portion of each curve by linear regression 
and used the equations to calculate osmotic potential at full turgor 
(Ψs100) for each plant. The average osmotic adjustment was 
calculated afterwards as the difference between the average value of 
Ψs100 measured in plants growing inside the greenhouse and 
outdoors. Then, we  pooled together the values of RWD and Ψ 
measured in all plants from each seed source × growing location 
and fitted these data to logarithmic equations to obtain the average 
P-V curve for each seed source × growing location: 
− = +−ϕ 1 a RWD bln . Similarly, we  fitted data measured beyond 
turgor loss to linear functions: − = ( ) +−ϕs c RWD d1 . We  also 
included the pair of values (0, −Ψav

−1) to adjust the linear regression, 
where Ψav

−1 was calculated as the average value of Ψs100
−1 measured 

in greenhouse and outdoor plants for each population. We used 
these equations to calculate the average values of Ψ and Ψs and 
RWC at Ψ = -1 MPa. We  chose Ψ = -1 MPa as a reference value 
because it was slightly higher than the average water potential at 
turgor loss. We calculated pressure potential (Ψp) as ϕ ϕ ϕp s= −  for 
all the values of RWD measured before reaching turgor loss and 
then plotted Ψp against RWD. We fitted the pair of values (RWD, 
Ψp) to second grade polynomials and calculated the maximum 
modulus of elasticity (εmax) as the initial slope of the curve (Stegner 
et al., 2022).

Needle water content

On d104 all plants were harvested, all needles were pulled out 
from the stem and weighed (FW). Needle dry weight (DW) was 
determined after oven-drying at 60°C for 48 h and re-weighing. 
Needle water content (NWC) was calculated on a dry weight basis as 
NWC = (FW-DW) DW−1.

Statistical analyses

Factorial ANOVA was used to analyze the effect of the population 
and growing location (inside the greenhouse/outdoors) together with 
their interaction on needle wax concentration, needle water content 
and Ψs100. We could not analyze the effect of the growing location 
together with the date and population on Fv/Fm because the 
assumption of homogeneity of variances failed, so we analyzed the 
effect of date and population in each growing location separately, by 
means of factorial ANOVA.

Differences in ETP were analyzed using analysis of covariance 
(ANCOVA), taking population, growing location and date as 
categorical variables and needle biomass as continuous predictor. 
We further analyzed differences between populations separately for 
each growing location by means of one-way ANOVA (needle water 
content) or factorial ANCOVA (ETP).

We used one-way ANOVA to analyze the effect of the growing 
location on the average values of εmax and shoot RWC calculated for 
each population. Post-hoc comparisons were carried out by means of 
unequal N HSD test and the Tukey’s HSD Test. A linear regression was 
performed confronting the average osmotic adjustment and the 
percentage of increase in εmax. We  used the 6.0 software version 
STATISTICA (Stat Soft Inc.) to carry on all analyses. All statistical 
comparisons were considered significantly different at p < 0.05.

Results

Evapotranspiration

Evapotranspiration was 45–85% lower in outdoor compared to 
greenhouse plants, differences being highly significant (F1,195 = 963.8, 
p < 0.001; Figure 2). The effect of the day of measurement (F1,195 = 86.8, 
p < 0.0001) and population (F7,195 = 2.19, p = 0.037) were also 
significant, as the interactions between population and growing 
location (F7,195 = 6.7, p < 0.001) and growing location and date 
(F7,195 = 28.0, p < 0.001). When analyzed separately, we  found a 
significant effect of the population both in plants growing outdoors 
(F7,91 = 2.76, p = 0.012) and inside the greenhouse (F7,103 = 4.0, p < 0.001). 
Inside the greenhouse, ETP was highest in the population from the 
highest elevation (Teide). Differences between Teide and the rest of 
populations were significant (Unequal N HSD test) except for those 
populations from the second and third higher elevations (Hierro and 
Colada). Plants from Fayal reached the highest ETP outdoors. The 
lowest values were always measured in Arguineguín families 
(Figure 2).

Chlorophyll fluorescence

Values of Fv/Fm measured in outdoor plants were lower than 
0.8 in all measurements, except for A80 on d65, while values measured 
in greenhouse plants were always higher than 0.8 (Figure 3). The 
lowest Fv/Fm values were measured on d86 (Figure 3), 4 days after the 
snowfall and after three consecutive days of minimum temperatures 
falling below −1.5°C (Figure 1). We found a highly significant effect 
of the day of measurement on Fv/Fm values measured outdoors 
(F3,109 = 29.5, p < 0.0001). On the other hand, neither the effect of the 
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population nor the interaction between population and day of 
measurement were significant.

Epicuticular waxes and needle water 
content

Values of needle epicuticular wax concentration were significantly 
higher in plants growing outdoors (F1,6 = 110.5, p < 0.001). The effect 
of the population (F2.6 = 17.97, p = 0.0029) and the interaction between 
population and growing location (F2,6 = 49.68, p < 0.001) were also 
significant. The concentration of waxes increased by 26 and 54% in 
outdoor plants for A54 and Teide respectively; but did not change in 
Fayal (Figure 4). Pine needles of the three populations sampled had 
rows of stomata surrounded by tubular wax crystals which may appear 
as bands of variable thickness (Supplementary Figures 2A,B,C) Most 
of the needle surfaces in areas lacking stomata were covered with 
amorphous waxes (Supplementary Figures 3A,B,C).

At the end of the experiment needle water content was 
significantly lower in plants growing outdoors (F1,51 = 176.5, 
p = 0.0000). The effect of the population was not significant and there 
was a significant population x growing location interaction (F7,51 = 4.8, 
p = 0.003). When analyzed separately, we found a significant effect of 
the population both in plants growing outdoors (F7,23 = 3.7, p = 0.008) 

and inside the greenhouse (F7,28 = 3.1, p = 0.016). Differences in needle 
water content between outdoors and greenhouse plants were highest 
in Fayal (37.8%) and lowest in Teide (15.7%; Figure 5).

Parameters derived from the P-V curves

We found a significant effect of both the population (F7,45 = 3.76, 
p = 0.003) and growing location (F1,45 = 15.55, p = 0.0003) on Ψs100, with 
no significant interaction. The average degree of osmotic adjustment 
was highest in Teide and lowest in A79 (Table 2, Figure 6). Plants from 
Fayal showed an atypical response, by reaching higher values of Ψs100 
outdoors than inside the greenhouse (Table 2, Figure 6). Therefore, 
plants from Fayal showed no osmotic adjustment at all in response to 
decreasing temperatures.

There was a significant effect of the growing location on εmax values 
averaged across populations (F1,14 = 13.4, p = 0.003). Differences were 
highest in Teide, in which the average εmax was 285% higher for plants 
growing outdoors compared to those inside the greenhouse. Fayal was 
the only population in which εmax did not increase outdoors. The three 
Arguineguín families showed quite different responses, ranging from 
the 16% increase in εmax measured in A79 to the 127% increase 
measured in A54 (Table 2). We found a positive, linear relationship 
(F1,6 = 8.59, p = 0.026) between the average degree of osmotic 

FIGURE 2

Mean  ±  SE evapotranspiration measured on different days in Pinus canariensis seedlings from different seed sources growing outdoors and inside the 
greenhouse. The average percentage of decrease in outdoors plants compared to plants growing inside the greenhouse is given in a box (n  =  3–6 
plants per population or family and growing location).

https://doi.org/10.3389/ffgc.2023.1303886
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Miranda et al. 10.3389/ffgc.2023.1303886

Frontiers in Forests and Global Change 06 frontiersin.org

adjustment and the percentage increase in εmax across populations 
(Figure 7).

Average values of RWC calculated for a shoot water potential of 
−1 MPa were higher (F1,14 = 6.6, p = 0.022) in plants growing outdoors. 
Once more, Fayal showed an atypical response, being the only 
population in which RWC was higher inside the greenhouse (Table 2).

Discussion

Photoinhibition under freezing and chilling 
temperatures

Both chilling and freezing temperatures may decrease the activity 
of enzymes participating in the Calvin-Benson cycle and cause 
damage to the chloroplast (Liu et al., 2018), therefore hampering the 
ability of plants to use light energy in photosynthesis and leading to 
photoinhibition (Close and Beadle, 2003; Martínez-Ferri et al., 2004; 
Corcuera et al., 2011). These effects would be particularly relevant 
under the high-irradiance conditions typical of low latitudes and/or 
high altitudes, like those found in P. canariensis native habitat. 
According to our results, Canary Island pine seedlings were only 
affected by photoinhibition when submitted to freezing temperatures, 
but not under chilling conditions. Interestingly, we  found no 
significant differences between populations in Fv/Fm values, despite 
the striking differences in altitude and thermal conditions between 
Teide and the rest of seed sources. This may be partly a consequence 
of the higher Fv/Fm intrapopulation variability compared to the 
interpopulation variability. We must recall that the largest difference 
in Fv/Fm between Arguineguín families was higher than the largest 
difference between populations measured throughout the 
experiment. Corcuera et al. (2011) reported similar results in three 

FIGURE 3

Mean  ±  SE maximum quantum yield of PSII (Fv/Fm) measured on different days in P. canariensis seedlings from several seed sources growing outdoors 
and inside the greenhouse (n  =  3–4 plants per population or family and growing location).

FIGURE 4

Soluble cuticular lipid (wax) concentrations (mg  g−1 D.W.) of P. 
canariensis needles collected from seedlings grown outdoors or in a 
greenhouse during winter. Different letters indicate significant 
differences between means according to Tukey’s HSD test. Mean 
values ± SE (n  =  2).
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Pinus pinaster provenances. In addition, values of Fv/Fm may vary 
considerably under photoinhibitory stress (see for example Aranda 
et al., 2005), making it more difficult to find differences between 
closely related genotypes.

Photoinhibition affects the capacity to sustain photosynthesis but 
may also provide photo-protection in winter (Robakowski, 2005), 
acting as a mechanism in the chloroplast to reduce ROS production 
under low temperatures (Liu et al., 2018). The onset of photoinhibition 
may therefore be not so much important as the ability to recover from 
photoinhibitory stress. In a recent study, Döweler et  al. (2021) 
concluded that factors other than the observed photoinhibition may 
be  the cause of establishment failure in the tree-line-forming 
Fuscospora cliffortioides. Similar results were reported by Oliveira and 
Peñuelas (2004), who measured lower Fv/Fm values but greater leaf 
and plant survival in Quercus ilex than in Cistus albidus under 
cold stress.

Changes in evapotranspiration and 
epicuticular waxes

Evapotranspiration was drastically reduced in plants growing 
outdoors. This could be expected by means of the effect of temperature 
on vapor pressure deficit. In addition, the range of evapotranspiration 
values across populations strongly support a relevant role of stomata 
in controlling water loss under chilling and freezing temperatures in 
this species. In this regard, keeping comparatively high stomatal 
conductances during acclimation to low temperatures was suggested 
to improve freezing avoidance by supercooling in Olea europaea 
(Arias et al., 2017). Similarly, maintaining high transpiration rates at 
the end of the growing season would provide the pioneer Larix 
decidua with carbon resources for maintenance respiration and 
protection against freezing damage (Peters et al., 2019). In 50-yr old 
P. canariensis trees growing 1,650 m a.s.l. maximum daily net 
photosynthesis, transpiration and stomatal conductance were 
generally higher during the cold season as compared to the dry and 
hot summer (Peters et al., 2008). On the other hand, a strategy of 
stomatal closure would reduce the risk of runaway embolism when 

water absorption from the soil is hampered by low temperatures 
(Peguero-Pina et al., 2011).

Decreasing cuticular conductance would be particularly relevant 
for controlling water loss when stomatal conductance is low. However, 
minimum transpiration, a proxy for cuticular transpiration, was found 
to increase with altitude in P. uncinata (Bueno et al., 2022). Such an 
increase has been reported in other species and can be addressed to 
an inadequate development of the cuticle before freezing temperatures 
are reached, resulting in decreased cuticle thickness; or the extreme 
abrasion of the cuticle under freezing (Bueno et al., 2022). The second 
factor would be more relevant under temperatures lower than those 
reached in the present study. As for an inadequate ‘ripening’ of the 
cuticle caused by the shortening of the vegetative period at high 
altitudes, it would have a lesser effect on species that store large 
amounts of starch in the stem like is the case of P. canariensis, a likely 
consequence of evolving in a volcanic environment (Miranda 
et al., 2020).

Our results show a plastic response of epicuticular wax 
concentration to low temperatures in P canariensis needles, 
highlighting the dynamic nature of the leaf surface. Indeed, the surface 
topography of P. canariensis needles was found to change from being 
completely covered with nano-tubes, which proved a glaucous 
appearance in 1-year old primary needles to becoming smooth owing 
to the occurrence of amorphous epicuticular waxes in secondary 
needles (Stabentheiner et al., 2004). Both surface typologies could 
be observed in the same needles in our study.

Changes in wax concentration in response to several kinds of 
stress have been previously documented in herbaceous and tree 
species (Sánchez et  al., 2001; Samdur et  al., 2003; Shepherd and 
Griffiths, 2006; Harrington and Carlson, 2015). Increasing cuticle 
thickness through wax deposition could improve thermal insulation 
(Huggins et  al., 2018), which would be  relevant to restrain ice 
formation in the apoplast under moderate freezing temperatures and 
reduce the extent of cold dehydration. In agreement with this, 
we measured the largest decrease in needle water content in the only 
population in which wax concentration did not increase under 
freezing temperatures (Fayal). On the other hand, changes in needle 
surface roughness mediated by wax deposition would affect water film 

FIGURE 5

Average  ±  SE values of needle water content calculated on a dry weight basis (NWC). Values were measured in two-year old P. canariensis seedlings 
from different populations growing outdoors (freezing temperatures) or inside a greenhouse (chilling temperatures) during winter. Different letters 
indicate significant differences between means for plants growing outdoors (upper-case) or inside the greenhouse (lower-case) according to the 
unequal N HSD test (n  =  3–6 plants per population or family and growing location).
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formation (Fernández et al., 2017), destructive ice penetration into 
leaf cells (Rahman et al., 2021) and leaf reflectance patterns (Huggins 
et  al., 2018; Ustin and Jacquemoud, 2020). In this regard, needle 
surface SEM images showed both rough and smooth surfaces in our 

study. Changing this pattern would affect the amount of light scattered 
in all directions or reflected off the leaf surface by rough and smooth 
leaf surfaces, respectively, (Ustin and Jacquemoud, 2020) and thus the 
amount of energy that reaches the chloroplast.

FIGURE 6

Pressure-volume curves obtained for several populations of P. canariensis using the free-transpiration method. Data were collected from basal shoots 
cut from 2-year-old seedlings growing outdoors (solid symbols) or inside a greenhouse (empty symbols) in winter. Dashed lines show the logarithmic 
and linear regressions fitted to data obtained before and after reaching the turgor loss point in plants growing outdoors. Solid lines show the 
logarithmic and linear regressions for plants growing inside the greenhouse. Note the different scale in the Y-axis for the population Teide (T), n  =  3–4 
plants per population or family and growing location.
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Needle dehydration, osmotic adjustment 
and tissue elasticity

Freezing temperatures decreased needle water content and lead 
to osmotic adjustment by decreasing Ψs100 as previously reported in 
several species (Thomas and James, 1993; Rinne et  al., 2015; 
Hajihashemi et al., 2020; Wang et al., 2020). High concentration of 
solutes combined with less extracellular water to freeze reduce the 
probability of ice nucleation (Charrier et al., 2015) and contribute 
to cold acclimation. Both water exclusion and solute accumulation 
lower the freezing point and, more importantly, limit the extent of 
symplast desiccation due to extracellular ice formation. 
Interestingly, despite the significant decrease in needle water 
content expressed on a dry weight basis, basal shoots collected from 
outdoor plants had a higher relative water content than greenhouse 
plants in most populations. Both results are compatible with a 
strategy based on solute accumulation and wall stiffening, aimed at 
excluding water from plant tissues. Plants growing outdoors had 
almost all the water their needles could hold, which was less than 
the water held by the more elastic tissue of plants growing inside 
the greenhouse.

In agreement with our results, Scholz et al. (2012) found that the 
bulk leaf tissue elastic modulus increased during winter in cold desert 
shrubs. Similar results have been reported for tree species like Olea 

europaea (Arias et al., 2017) and Eucalyptus platypus (White et al., 
2000). Osmotic and elastic adjustment are considered 
non-simultaneous strategies to cope with tissue dehydration under 
drought (Lambers and Oliveira, 2019; Ghouil et  al., 2020). Both 
increasing the concentration of solutes and increasing cell wall 
elasticity can help to maintain a positive turgor pressure in a 
dehydrating environment. By increasing solute concentration inside 
the cell water can be taken from the apoplast instead of being lost from 
inside the cell to the apoplast, to avoid reaching the turgor loss point. 
However, if the cell walls are very elastic, water absorption would 
result in an increase in cell volume, which in turn would increase 
water potential and promote water moving back to the apoplast. In 
fact, cell wall stiffening under drought has been reported in Damask 
rose (Al-Yasi et al., 2020). Similarly, Leuschner et al. (2019) reported 
a tendency for εmax to increase from early to late summer in several 
broadleaf tree species. Our results show a simultaneous decrease in 
the osmotic potential and cell wall elasticity. The positive relationship 
between the increase in εmax and the osmotic adjustment suggests that 
both mechanisms may act synergistically to improve tolerance to 
freezing dehydration.

Differences between populations in the 
response to chilling and freezing 
temperatures

We found significant differences between P. canariensis populations 
in evapotranspiration, needle water content, Ψs100 and the content of 
epicuticular waxes. Interestingly, the response to chilling and freezing 
temperatures differed between populations, as shown by the interactions 
between population and growing location found in three of these 
parameters. These results show some degree of adaptation to low 
temperatures, in agreement with the results reported by López et al. 
(2013) for xylem and leaf traits. The extensive, long-distance gene flow 
widely documented in the species (Navascués et al., 2006; Vaxevanidou 
et al., 2006; Navascués and Emerson, 2007; López de Heredia et al., 2014) 
can promote adaptive evolution by increasing genetic variation and 
enhancing plastic responses (López et al., 2013) even in the harshest 
environments. The extreme aridity of their natural habitat did not 
prevent Arguineguín families to show different degrees of plasticity in 
response to low temperatures in our study. Though populations from 
extreme environments tend to show lower levels of plasticity than those 

FIGURE 7

Relationship between the average osmotic adjustment and the 
increase in the maximum modulus of elasticity for P. canariensis 
basal shoots from different populations.

TABLE 2 Average  ±  SE values of osmotic potential at full turgor (Ψs100, MPa) measured in P. canariensis seedlings growing inside the greenhouse (IN) and 
outdoors (OUT) and the average degree of osmotic adjustment (OA) calculated as the difference between them for each seed source (n  =  3–4 data per 
population or family and growing location).

A54 A79 A80 Fayal Taburiente Hierro Colada Teide

Ψs100 IN −0.9 ± 0.08 −1.1 ± 0.09 −1.1 ± 0.05 −1.3 ± 0.3 −0.57 ± 0.04 −1.0 ± 0.05 −0.9 ± 0.1 −0.73 ± 0.1

Ψs100OUT −1.3 ± 0.1 −1.1 ± 0.06 −1.3 ± 0.02 −1.0 ± 0.1 −0.8 ± 0.03 −1.1 ± 0.2 −1.4 ± 0.2 −1.3 ± 0.06

OA (MPa) 0.43 0.04 0.25 −0.3 0.24 0.11 0.45 0.55

RWC, IN 0.921 0.968 0.956 0.982 0.882 0.944 0.949 0.887

RWC,OUT 0.98 0.968 0.997 0.962 0.964 0.975 0.978 0.975

εmax, IN 6.7 10.3 10.5 14.2 6.7 10.5 11.7 4

εmax,OUT 15.1 11.9 20 11.6 18.3 16.7 16.8 16

Values of the maximum elastic modulus (εmax, MPa) and the relative water content (RWC) for a water potential of − 1 MPa were calculated using one average P-V curve for each population x 
growing location (see text for further details).
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that evolve in variable environments, the response to extreme conditions 
would depend on genetic variation (Chevin and Hoffmann, 2017).

Among the populations tested, Fayal showed the lowest plasticity 
in the parameters derived from the P-V curves, together with some 
atypical responses. Interestingly, this population belongs to the same 
ecological region than the only population that showed no plasticity in 
the vulnerability to cavitation in a previous study (López et al., 2013). 
These results could be related to a stronger influence of the humid trade 
winds, being Fayal the most septentrional of the populations tested, 
located in a north-eastern facing slope and close to the sea. The 
abundance of clouds, typical of such locations, decreases the 
temperature range and needle transpiration, which would affect the 
adaptive response to low temperatures and needle dehydration.

Evapotranspiration under chilling conditions was the only 
parameter that grouped the three populations from the highest 
elevations. This response was particularly relevant in Teide, most 
probably as an adaptation to the rather low maximum temperatures 
and high radiation experienced at such high altitudes throughout a 
significant part of the year. Keeping the stomata opened may allow to 
maintain some photosynthesis and provide the plant with 
carbohydrates that may be used for storage or to protect cells and 
tissues from chilling and freezing damage. This effect would 
be reinforced by the displacement of the optimum temperature for 
photosynthesis toward lower temperatures during the cold season, as 
was reported for P. canariensis trees growing at high elevations (Peters 
et  al., 2008). We  measured the lowest evapotranspiration in the 
warmest population tested (Arguineguín), both under chilling and 
freezing conditions, supporting the stronger impact of chilling and 
freezing temperatures on plant metabolism previously reported in 
plants adapted to limiting environments (Smith et al., 2014). The effect 
of elevation remained elusive for the rest of parameters tested, which 
could be partially explained by the high microclimatic variability that 
characterizes the Canary Islands.

Conclusion

Our results show that freezing and chilling temperatures elicit 
heterogeneous plastic responses in P. canariensis seedlings from 
populations covering the elevation range of the species and contrasting 
climates. We measured the lowest ETP in the population from an 
extremely arid environment located at the lowest elevation both under 
chilling and freezing temperatures. Plants from the highest elevations 
kept a higher ETP under chilling, which probably is an adaptation to 
the shortening of the vegetative period with increasing altitude. 
Moderately cold temperatures (above −3.5°C) caused photoinhibition, 
with no significant differences in Fv/Fm values between populations 
despite the disparity of responses in terms of needle wax concentration, 
osmotic adjustment and tissue elasticity, both between and within 
populations. Lack of plasticity in the aforementioned traits contributes 
to explain the highest impact of cold dehydration measured in a 
population from an intermediate altitude.
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