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Tree mortality is a complex process that not only be  affected by the various 
factors, such as stand and climate factors, but also the various long-term effects 
of the factors to each other. In this study, based on the long-term spacing trials of 
Chinese fir in four regions of southern China, a Bayesian network was used to model 
tree mortality in response to stand and climate factors, as well as comparing this 
approach with logistic regression and random forest method. The results showed 
that the Bayesian network method had the highest accuracy in predicting tree 
mortality. In addition, the Bayesian network approach could find the dependency 
in the relationship between data and provide a theoretical framework for modeling 
uncertainty by using probabilistic calculus and underlying graph structure. 
Sensitivity analysis showed relative diameter was the most important factor, and 
temperature was the most important climate factor. Furthermore, climate factors 
not only directly affected tree mortality, but also indirectly affected tree mortality 
through affecting relative diameter, stand density and Gini coefficient. We also 
found that stand competition, structural heterogeneity and age affected tree 
mortality under climate change, and a moderate level of competition condition 
and stand structure heterogeneity weakened the negative impact of climate 
factors on tree mortality. Old trees were more sensitive to climate change than 
young trees, especially under extreme climate conditions. Besides, we  found 
that tree mortality was negatively correlated with moderate annual precipitation, 
winter mean minimum temperature, and stand structure (Gini), and low age, but 
positively correlated with low relative diameter, high density and age. The results 
will provide adaptive options for effective forest management of Chinese fir 
plantations under the backdrop of global climate change in the future.
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1. Introduction

Tree mortality refers to the process in which the vitality of trees 
gradually weakens and eventually dies under the combined effects of 
environmental interference and genetic characteristics (Lee, 1971), 
which in turn affects resource availability, tree regeneration, stand 
structure, and stand productivity (Franklin et  al., 1987). In the 
dynamic process of stand development, there are many causes of tree 
death (Craine and Dybzinski, 2013). Exploring the causes of tree 
mortality can help us understand stand dynamics and is important for 
sustainable forest management (Wang et  al., 2012; Kweon and 
Comeau, 2019). Except for a few external factors (such as fires, flash 
floods, etc.) that can cause trees to die in a short period of time, in 
most cases, the death of trees is related to the reduction growth 
productivity; that is, the gradual death of trees is due to their inability 
to cope with adverse conditions, such as drought, competition and 
other factors (Camac et  al., 2018). Due to the variability and 
randomness of catastrophic events, the research on the model of tree 
mortality mainly focuses on endogenous stand characteristics 
(Crecente-Campo et al., 2009; Zhang et al., 2017).

Stand and climate factors are the main driving factors determining 
the spatiotemporal patterns of tree mortality (Copenhaver-Parry and 
Cannon, 2016; Devi et  al., 2020); thus, the factors affecting tree 
mortality are divided into internal factors and external factors 
correspondingly. Among the stand factors, competition is generally 
considered to be the most important factor affecting tree growth and 
death (Ruiz-Benito et al., 2013), and is an important force to promote 
the dynamic change and succession of stands (Franklin et al., 1987). 
Due to the different maturity periods of trees, competition for 
nutrients such as light, water, and nutrients in the forest between large 
and small trees leads to the gradual death of trees with weaker 
competitiveness (Zhang et al., 2017). Negrón and Wilson (2003) found 
a strong relationship between mortality and tree density index, with 
an increase in mortality in denser stands, which is related to 
competition among trees. Kweon and Comeau (2019) found that 
under warmer conditions, competition variables have a stronger 
impact on tree mortality, and the degree of impact varies among 
different ages. Zhang et al. (2015a) found that competition, rather than 
climate, was the main factor leading to tree death in the northern 
forests of western Canada.

Stand structure (Gini) is the other factor which plays an important 
role in predicting future growth and death of forests (Cortini et al., 
2017; Kweon and Comeau, 2019), and is strongly influenced by a 
number of factors, which can help in tree mortality modeling and 
detecting the main drivers of tree mortality (Crecente-Campo et al., 
2009). In the process of forest succession, stand structure affects the 
dynamics of competition by regulating the intensity of competition 
between trees and their availability of resources, leading to differences 
in competition intensity and resource use efficiency, ultimately leading 
to tree death (Luo and Chen, 2013; Forrester, 2019). The other related 
stand factors including age and site condition can also affect tree 
mortality (Bennett et al., 2015; Zhang et al., 2015a).

In addition to stand factors, the external factors (hereafter, 
we  refer primarily as climate factors) also have impacts on tree 
mortality (van Mantgem et al., 2009). Severe droughts, combined with 
unusually warm temperatures, were thought to be significant drivers 
of tree death (Jentsch et al., 2007). van Mantgem et al. (2009) studied 
the causes of death of unmanaged old-growth forest in the western 

United States and found that the increase in mortality may indicate 
significant changes in forest structure, composition and function, and 
regional warming may be the main factor leading to the increase in 
tree mortality. Allen et al. (2010) found that mortality has increased 
in some regions as a result of global climate change, due to a 
combination of higher temperatures and drought.

Extreme droughts caused by higher temperature accompanying 
climate change have been the main cause of widespread tree death in 
the southwestern United States in the past decade (Floyd et al., 2009). 
Furthermore, severe droughts can lead to significant forest death, 
regardless of tree density (Allen et al., 2010). Gitlin et al. (2006) found 
tree mortality had a spatially heterogeneous pattern, and drought 
related climate change can lead to high tree mortality rates along 
altitudinal gradients. Under drought conditions, rising temperatures 
not only increases the background rate of tree death, but also increases 
the physiological pressure related to drought (Trumbore et al., 2015), 
which affects individual tree resilience and leads to more frequent and 
widespread death (McDowell et al., 2008; Adams et al., 2009). Luo and 
Chen (2013) found that climate change led to an increase in mortality, 
and the increase in the mortality of young forests was significantly 
higher than that of old forests, possibly because young forests were 
more sensitive to regional warming and drought (McDowell et al., 
2008; Teskey et al., 2014).

Stand and climate factors do not act independently on tree death, 
but interact with each other (Calama et al., 2019). In recent years, 
some studies have used different methods to model tree mortality. The 
main forms of the model are the Weibull distribution function, logistic 
regression (Yao et al., 2001; Yang et al., 2003; Qiu et al., 2015), and 
Bayesian model averaging (Lu et al., 2019). Studies mainly focused on 
the simple linear relationship between the factors affecting mortality, 
while ignoring the uncertainty in the relationship between factors. 
However, tree mortality is a complex process that not only needs to 
consider the impact of various factors on tree mortality, but also 
consider the uncertainty and linkage of the various long-term 
interactive effects of the factors (Sevinc et al., 2020).

Bayesian network (BN) and random forest (RF) are both machine 
learning (ML) models that can learn from input variables. RF models 
use algorithms to learn and generate predictions directly from data. 
As a discriminative model, RF models do not assume conditional 
independence between variables and have a direct mapping from 
observation to prediction (Wang et al., 2021). BN is a useful technique 
which utilizes probability calculus together with an underlying 
graphical structure to provide a theoretical framework for modeling 
uncertainty (Holmes and Jain, 2008). It expresses conditions and 
results as probabilities, especially for describing errors of true absence 
and false absence, which makes BN applicable in risk analysis and 
management (Fenton and Neil, 2012). In addition, BN can 
be  constructed from a combination of empirical data and prior 
knowledge (Uusitalo et  al., 2005) and can be  updated with new 
information (Pawson et al., 2017). Further, it is reported that given the 
many interdependencies between variables, BN is better suited to 
capture the complexity of the underlying decision-making process 
(Fenton and Neil, 2012). According to the advantages of systematic 
estimation of occurrence path, causality and probability (Lee et al., 
2020), BN has been widely used for effective multi-risk assessment 
and prediction in different fields, such as clinical medicine (Gevaert 
et al., 2006; Ducher et al., 2013; Witteveen et al., 2018), transportation 
(Gret-Regamey and Straub, 2006), education (García et  al., 2007; 
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Culbertson, 2016), ecology (Marcot et al., 2001), etc. Although there 
are some reports on the applications of BN in forestry, especially for 
forest fire predictions (Dlamini, 2011; Penman et al., 2011; Sevinc 
et al., 2020), the applications of BN in tree mortality are relatively rare.

Chinese fir [Cunninghamia lanceolata (Lamb.) Hook] is an 
important fast-growing tree species in China. According to the 9th 
National Forest Resources Inventory, the area of Chinese fir 
plantations has reached 10 million hectares, occupying 27.23% of the 
total plantation area (Zhang et al., 2019). Effective management of this 
widely distributed tree species needs an accurate understanding of the 
complex mechanisms of tree mortality. The objectives of this study 
were to: (1) model tree mortality in relation to stand and climate 
factors using Bayesian network, random forest and logistic regression 
methods and find out which method is better; (2) disentangle the 
effects of stand and climate factors on tree mortality; (3) analyze 
changes in tree mortality with different climate conditions under a 
given stand level.

2. Materials and methods

2.1. Study sites and data

The data for this study were obtained from Chinese fir plantations 
situated in four provinces in southern China. For Jiangxi, the 
experimental forest was established in 1981, while the remaining three 
provinces (Fujian, Guangxi, and Sichuan) were all established in 1982. 
In terms of climate conditions, Fujian, Jiangxi, and Sichuan belong to 
subtropical climate, while Guangxi belongs to a subtropical climate. 
The soils in the study areas of Fujian, Guangxi, and Sichuan provinces 
are mainly red soil developed on parent materials such as granite, 
while the soils in the study areas of Jiangxi are mainly yellow-brown 
soil developed on sand shale.

The experiment in each province consisted of five initial planting 
densities: a density level with a row spacing of 2 × 3 m, 1,667 trees/ha, 
B density level with a row spacing of 2 × 1.5 m, 3,333 trees/ha, C 
density level with a row spacing of 2 × 1 m, 5,000 trees/ha, and D 
density level with a row spacing of 1 × 1.5 m, 6,667 trees/ha, and E 
density level with a row spacing of 1 × 1 m, 10,000 trees/ha. Each 
density experiment was repeated three times in each province and the 
size of each sample plot is 20 m × 30 m. In addition, two rows of trees 
were set around each plot as a buffer zone to eliminate interference. 
Plot measurements were all conducted in winter. In Fujian, plot 
measurements were conducted annually from 1985 to 1990, and every 
2 years from 1990 to 2010; in Jiangxi, plot measurements were 
conducted annually from 1985 to 1989, and every 2 years from 1989 
to 2007; in Sichuan, plot measurements were conducted annually from 

1985 to 1995, and every 2–3 years from 1995 to 2012; in Guangxi, plot 
measurements were conducted annually from 1990 to 1995, and every 
2 years from 1995 to 2012. In plots, trees above 1.3 m tall were marked 
and their corresponding diameter at breast height (DBH) were 
measured. In addition, 50 trees were randomly selected from each plot 
to measure tree height (H), and the average height of the six tallest 
trees in a plot was calculated as the stand dominant height (Hd).

2.2. Stand variables

The stand variables that affect tree mortality can be divided into four 
categories: stand age, competition, site conditions, and stand structure. A 
total of six stand variables were used in this study, and competition can 
be represented by stand basal area (BA), number of trees per hectare (N), 
and relative diameter (RD). The site conditions can be reflected by the 
stand dominant height (Hd). In terms of stand structure, Gini coefficient 
was selected to measure the heterogeneity of stand structure. Gini 
coefficient is a measure of inequality derived from the Lorentz curve 
(0 ~ 1) and calculated from the DBH of trees in a stand. The closer the 
value is to 0, the more uniform the stand size. Gini coefficient can 
be calculated using the software package “ineq” in R (Zeileis, 2014), and 
the formula is listed as follows:
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where n is the number of trees in a sample plot, |xi -xj| is the 
absolute value of the diameter difference between any two trees, and 
x  represents the average value of diameter x. The statistics of stand 
factors are shown in Table 1.

2.3. Climate variables

In order to explore the influence of climate factors on tree mortality 
of Chinese fir, ClimateAP was used to obtain the climate data of the plots 
(Wang et al., 2012). The principle of the spatial interpolation is to estimate 
the climate based on latitude, longitude and elevation of a location. In this 
study, 10 climate factors, including mean annual temperature (MAT), 
annual precipitation (AP), annual heat-moisture (AHM), mean warmest 
month temperature (MWMT), mean coldest month temperature 
(MCMT), summer mean maximum temperature (SMMT), winter mean 
minimum temperature (WMMT), and summer mean temperature 
(SMT), degree-days below 0°C (DD0), degree-days above 5°C (DD5), 
were selected as candidate variables for model development. The statistics 

TABLE 1 Summary statistics of stand variables by province.

Study sites A Hd N RD Gini

Fujian 15.45 ± 7.50 11.28 ± 5.52 6,069 ± 2,670 0.95 ± 0.25 0.14 ± 0.032

Guangxi 17.91 ± 5.31 13.77 ± 2.99 4,481 ± 2,167 0.96 ± 0.24 0.14 ± 0.017

Jiangxi 13.85 ± 9.81 10.42 ± 3.92 6,100 ± 2,549 0.96 ± 0.26 0.16 ± 0.029

Sichuan 14.43 ± 6.95 10.66 ± 3.84 5,786 ± 2,577 0.99 ± 0.26 0.15 ± 0.027

Total 14.72 ± 7.07 11.18 ± 4.50 5,798 ± 2,603 0.96 ± 0.25 0.15 ± 0.028

A, stand age (year); Hd, stand dominant height (m); N, number of trees per hectare; RD, relative diameter (cm); Gini, Gini coefficient of tree size (diameter) diversity.
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of climate factors are shown in Table 2. Changes in MAT and AP against 
year are shown in Figure 1.

2.4. Variable selection

The variance inflation factor (VIF) was used to test the collinearity 
of the variables. According to the general rule of thumb, there is no 
collinearity among the variables with VIF test result less than 5, so 
only the variables with VIF test result less than 5 are retained in this 
study for model construction development and subsequent analysis. 
It noted that while independent variables may be  discrete or 
continuous, continuous variables are also divided into discrete ranges 

for computational reasons when performing the analysis (Nash et al., 
2013). In this study, in order to analyze the impact of variables on 
mortality in high detail, the variables were divided into three groups 
(Table 3): the low level is the bottom 20% of the value size, the middle 
level is 20–80%, and the high level is the top 20%.

2.5. Model development

2.5.1. Logistic equation
Tree mortality is a binary classification data set, and the commonly 

used method for developing a tree mortality model is the logistic 
equation (Zhang et al., 2017). The model form is as follows:

FIGURE 1

Trends in annual mean temperature (MAT) and precipitation (AP) in relation to age for each site.

TABLE 3 The three groups of different stand and climate variables.

Levels AP WMMT MAT RD N Age Gini

Low 1028.0 ≤ AP < 1292.4 2.3 ≤ WMMT<4.4 17.3 ≤ MAT<18.4 0.02 ≤ RD < 0.6 812.5 ≤ N < 2,650 4.0 ≤ Age < 10 Gini<0.1

Middle 1292.4 ≤ AP < 2085.6 4.4 ≤ WMMT<10.8 18.4 ≤ MAT<21.5 0.6 ≤ RD < 2.2 2,650 ≤ N < 8162.5 10 ≤ Age < 20 0.1 ≤ Gini<0.2

High 2085.6 ≤ AP < 2,350 10.8 ≤ WMMT<13 21.5 ≤ MAT<22.6 2.2 ≤ RD < 2.8 8162.5 ≤ N < 10,000 20 ≤ Age < 28 Gini≥0.2

RD, relative density; N, number of trees per hectare; Age, plantation age; Gini, coefficient of stand structural heterogeneity; AP, annual precipitation; WMMT, winter mean minimum 
temperature; MAT, mean annual temperature. The low level is the bottom 20% of the value size, the middle level is 20–80%, and the high level is the top 20%.

TABLE 2 Mean values ± standard deviations of 10 climate factors for each provincial site location and an average across all sites.

Climate factors Fujian Guangxi Jiangxi Sichuan All sites

MAT (°C) 18.91 ± 0.46 22.24 ± 0.41 18.24 ± 0.47 18.39 ± 0.35 19.15 ± 1.49

MWMT (°C) 28.22 ± 0.66 28.25 ± 0.52 28.58 ± 0.81 28.2 ± 0.97 28.25 ± 0.79

MCMT (°C) 8.58 ± 1.06 13.65 ± 1.08 6.84 ± 1.22 8.43 ± 0.97 9.08 ± 2.54

AP (mm) 1809.53 ± 260.62 1,466 ± 238.76 1602.45 ± 197.26 1187.47 ± 115.08 1526.84 ± 285.66

AHM 16.25 ± 2.09 22.29 ± 3.20 17.83 ± 2.03 24.11 ± 2.35 19.76 ± 3.76

DD0 1.41 ± 0.62 0.00 ± 0.00 3.19 ± 1.62 1.63 ± 0.62 1.65 ± 1.49

DD5 5050.18 ± 165.26 6219.46 ± 81.04 4830.63 ± 116.26 4865.73 ± 125.02 5138.46 ± 521.16

SMMT (°C) 32.19 ± 0.5 31.8 ± 0.50 32.20 ± 0.77 30.72 ± 0.75 31.67 ± 0.92

WMMT (°C) 4.71 ± 0.92 12.16 ± 0.78 4.37 ± 0.96 7.15 ± 0.65 6.60 ± 2.94

SMT (°C) 18.39 ± 0.87 22.74 ± 0.56 17.68 ± 0.79 18.63 ± 0.53 18.99 ± 1.91

MAT, mean annual temperature; MWMT, mean warmest month temperature; MCMT, mean coldest month temperature; AP, annual precipitation; AHM, annual heat-moisture index; DD0, 
degree-days below 0°C; DD5, degree-days above 5°C; SMMT, summer mean maximum temperature; WMMT, winter mean minimum temperature; SMT, summer mean temperature.
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where Ps is the probability of tree survival, and X is a series of 
independent variables selected for this study, including stand age, 
stand dominant height, competition intensity, stand structure, and 
climate factors. α1 is the intercept of the model, β is the parameter 
vector containing the intercept, and q is the year between 
two measurements.

2.5.2. Bayesian network
Bayesian network (BN), also known as belief network, is a 

graphical model that solves problems of uncertain causal relationships 
in complex systems based on probabilistic graphs (Pearl, 1986). It 
utilizes existing datasets, process models, and expert knowledge 
(Penman et al., 2011), integrating qualitative analysis and quantitative 
research methods, utilizing prior knowledge and objective evidence 
for effective reasoning, and can uniformly describe multiple causal 
relationships (Holmes and Jain, 2008).

BN can not only explore the impacts of different variables on tree 
mortality, but also discover the interrelationship between different 
variables (Lee et al., 2020). BN model uses boxes to represent the 
relationship between variables, and arrows to describe the direction 
of influence (Penman et al., 2011). Among two nodes connected to 
each, we called the node before the edge as parent node, and called the 
directed node as child node. The probabilistic relationship between 
nodes is determined by the following equation:

 
θX P

i i
Xi i| |π α π= ( )

where X represents each variable, and parameter α quantitatively 
describes this dependency. Assuming that the parent node set of 
variable Xi in a directed acyclic graph is πi, then α contains the 
conditional probability of each variable. Pα represents the specific 
interdependency values of the target attribute and other variables.

In order to implement the BN approach and disentangle the 
drivers of tree mortality, we used the Netica modeling environment 
(Netica, 2019). By selecting the target node in Netica, the degree of 
influence of other nodes can be sequentially exported. A BN model 
can be interpreted using what is referred to as The Most Probable 
Explanation (MPE) (Kwisthout, 2011). The basis of MPE is that it can 
find the combination of multiple causes (node states) that may lead to 
a certain result from the combination of multiple causes (node states), 
and the combination with the greatest possibility is the most possible 
explanation. The most likely combination of causes can be  found 
through the MPE function available in Netica.

For quantifying the influence of each variable on tree mortality, 
sensitivity analysis was conducted: this involves the analysis of the 
influence and degree of multiple reasons (node state) on the result 
(target node) (Frayer et  al., 2014). A BN model can evaluate the 
sensitivity of the response variable to the probability distribution of 
other variables (Marcot, 2012). Mutual information refers to the direct 
or indirect information flow rate, which can indicate whether two 
nodes are interdependent or not, and measure the degree of 
dependence between nodes (Zou and Yue, 2017). It not only helps to 
further verify the validity of the model, but also reveals the most 
influential and informative variables relative to the target variables of 

interest (Sun and Müller, 2013). The following formula is used to 
calculate model sensitivity in Netica:

 
I H Q H QF

P q f P q f
P q P fq f= ( ) − ( ) = ( ) ( ) 
( ) ( )

|
, ,

Σ Σ
log2

where H (Q) is the entropy of Q before any new findings and H 
(Q|F) is the entropy of Q after new findings from node F. The 
calculations of model sensitivity were done according to Marcot 
et al. (2006).

2.5.3. Random forest
Random forest (RF) model is a highly flexible machine learning 

algorithm based on Bagging integrated learning model. It can generate 
multiple prediction models and summarize the results of the models 
to improve the classification accuracy at the same time. Random forest 
can help prevent overfitting by analyzing large nonparametric data 
sets with high multicollinearity and nonlinear relationships and 
creating decision trees by randomly selecting training data to vote out 
the optimal final model over multiple iterations (Shanley et al., 2021).

In terms of model tuning, RF has two main parameters: mtry (the 
number of randomly selected split prediction variables at each split) and 
ntree (the number of decision trees in the random forest) (Zhao et al., 
2019). The default value of mtry is usually one-third of all predicted 
variables, and we set ntree equals 1,000 as a replacement, and set other 
parameters to default values. The RF model was implemented with the 
“randomForest” package in the R software (Breiman, 2001).

2.6. Model evaluation

Receiver Operating Characteristic (ROC) curve is a widely accepted 
indicator used to evaluate the predictive performance of binary models 
(Kweon and Comeau, 2019). AUC refers to the area under the ROC 
curve, and the score of AUC ranges from 0 to 1. If a model has a larger 
AUC value, it indicates that the model is more suitable for data. The 
widely accepted evaluation rule for an AUC value is: 0.9–1 is excellent, 
indicating that there can be a good distinction between tree survival and 
mortality; 0.8–0.9 is good; 0.7–0.8 is average; 0.6–0.7 is poor; 0.5–0.6 is 
very poor (Zhang et al., 2011).

3. Results

In the study, we used the VIF test to remove the collinear variables 
and retained 7 non-collinear variables (VIF < 5), including stand age, 
stand density (N), relative diameter (RD), stand structure (Gini), and 
climate factors including annual precipitation (AP), winter mean 
minimum temperature (WMMT), and mean annual temperature 
(MAT) (Table 3).

3.1. Comparison of the three methods

Based on the 7 variables that passed the VIF test, the three models 
were constructed to fit the relationship between tree mortality and 
stand and climate factors. The AUC value of Bayesian network model 
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FIGURE 2

Bayesian network model of tree mortality in the initial case and its posterior probability. RD, relative density; N, number of trees per hectare; Age, 
plantation age; Gini, coefficient of stand structural heterogeneity; AP, annual precipitation; WMMT, winter mean minimum temperature; MAT, mean 
annual temperature.

was 0.9997, and that of random forest model and Logistic regression 
was 0.9273 and 0.8844, respectively (Table 4), indicating that the three 
models can effectively fit tree mortality, but Bayesian network model 
performed the best.

3.2. Effects of stand factors on tree 
mortality (posterior probability)

In this study, the Bayesian network model with 8 nodes and 21 
directed edges was constructed. Based on Netica software, the 

response of tree survival to various variables at different levels (low, 
middle and high) was analyzed. Results showed that under the initial 
condition of not adjusting any variable, the survival probability was 
78% (Figure 2).

In Netica, we set the statuses of certain levels of factors as 100%, 
and could also analyze the relationship between different stand factor 
levels and tree mortality in Figure 3. It could be seen that relative 
diameter (RD) had the greatest impact on tree mortality. A low level 
of RD had the greatest impact on mortality compared to middle and 
high levels, with low levels of RD increasing mortality by 36.9%, and 
middle (−11.3%) and high (−1.2%) levels of RD reducing tree 
mortality (Figure 3). N was the other stand variable that had a strong 
influence on mortality. In contrast to RD, a high level of density had 
the greatest impact on mortality, resulting in a 23.4% increase in 
mortality, compared to the low level (−1.4%) and middle level 
(−10.1%) which reduced tree mortality. Compared with RD and N, 
age and stand structure (Gini) had less of effects on tree mortality. The 
high level for age had the greatest impact on mortality with a 5.5% 
increase, compared to the low level for age (−3.9%) which had a 
negative effect on mortality, and middle age level had little effect on 
mortality. The Gini coefficients of low and high levels were positively 
associated with tree mortality, increasing the mortality rate by 1.4 and 
3.4%, respectively, while the Gini coefficients of middle level (−1.2%) 
decreased tree mortality (Figure 3).

In addition, if we set the status of “alive” to 0, we could further 
analyze the changes of stand factors at different levels with mortality 
(Figure 4), thus further verifying our above results. First, RD had the 
greatest influence on mortality, the probability of low level increased 
by 29.4%, while the probability of middle and high levels decreased by 

TABLE 4 Parameter estimates (including mean and standard deviation 
error) of logistic model and AUC values of three models.

Variable Estimate Std. Error Pr (>|z|)

(Intercept) 1.449e+00 3.346e-01 1.49e-05

N -2.607e-04 8.925e-06 < 2e-16

Gini -2.740e+00 7.304e-01 0.000176

A -2.079e-01 3.158e-03 < 2e-16

RD 5.211e+00 6.296e-02 < 2e-16

MAT 3.497e-01 2.292e-02 < 2e-16

AP -1.082e-03 5.538e-05 < 2e-16

AUC (BN) 0.9997

AUC (RF) 0.9273

AUC (LR) 0.8844

BN, Bayesian network model; RF, random forest; LR, logistic regression.
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28.0 and 1.5%, respectively (Figure 5). It could be seen that with the 
increase of RD, survival rate showed an increasing trend. The change 
of N was different from that of RD; i.e., the probability of low and 
middle levels decreased by 1.8 and 22.5%, respectively, but the 
probability of the high level increased by 24.4% (Figure 5). It indicated 
that increases in low and middle stand density were conducive to tree 
survival, while increases in high stand densities can lead to tree 
mortality. When the survival rate was adjusted from 78 to 0%, the 
probability of middle and high level of age increased by 0.3 and 6.0% 
respectively, while the probability of low age decreased by 6.3%. Stand 
structure (Gini) had a relatively small impact on tree mortality. As the 
mortality rate increased, the probability of low and high levels of stand 
structure increased by 1.1 and 2.6% respectively, while the probability 
of middle level of stand structure decreased by 3.7% (Figure 5).

3.3. Effects of climate factors on tree 
mortality (posterior probability)

AP, WMMT and MAT not only directly affected tree mortality, but 
also indirectly affected tree mortality through affecting RD, N, and Gini 
(Figure 2). It could be seen that with the increase of climate factors, tree 

mortality rate showed a trend of first decreasing and then increasing, and 
that the moderate climate condition was the most favorable for tree 
survival (Figure 3). WMMT and MAT had similar effects on mortality. 
Low and high levels of WMMT and MAT showed positive effects on tree 
mortality, while moderate WMMT and MAT reduced tree mortality 
(Figure 3). The effect of MAT was greater than that of WMMT, and the 
increase in mortality with high level of the corresponding climate factor 
was 30.3 and 25.4%, respectively. Furthermore, annual precipitation (AP) 
of low and high levels were positively associated with tree mortality, 
increasing the mortality rate by 8.4 and 7.0%, respectively, while the AP 
of middle level (−4.1%) decreased tree mortality (Figure 3).

In addition, if we set the status of “alive” to 0, we could further 
analyze the changes of climate factors at different levels with mortality, 
thus further verifying our above results (Figure 4). First, MAT had the 
greatest influence on mortality among the climate factors, the 
probability of middle level decreased by 19.2%, while the probability 
of low and high levels increased by 0.8 and 18.4%, respectively 
(Figure 5). The change of WMMT and AP were similar to MAT. The 
probability of middle level decreased by 18.5 and 12.2%, respectively, 
but the probability of low levels increased by 3.0 and 6.6%, respectively, 
and the probability of high levels increased by 15.5 and 5.4%, 
respectively (Figure 5).

FIGURE 3

Change in probability of mortality at certain levels of factors. Red shows the decrease in mortality at a certain level of a factor, and green shows the 
increase in mortality at that level.
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FIGURE 4

Bayesian network of tree mortality after adjusting for survival rate.

3.4. Combined effects of stand and climate 
variables on tree mortality (posterior 
probability)

The correlation among nodes in Bayesian network was relatively 
complex, and each node influences each other, thereby directly or 
indirectly affecting tree mortality (Figure  2). Multiple factors can 
be fixed to analyze their combined effects on tree mortality.

Examples of the combined effects of climate and stand variables 
on mortality were shown in Table 4. As stand density increased in 
highest WMMT conditions, tree mortality increased from 48.3 to 
49.9%, while the mortality rate of median density was 44.4% 
(Table 5). Compared with the effects of climate variables alone, the 
addition of low levels of RD and high levels of N significantly 
increased tree mortality to a large extent (Figure 6). Middle levels of 
RD and N reduced the effect of climate change on tree mortality, but 
this effect was less than the effect of higher levels of increase 
(Figure 6). Under the effect of only low level of AP, tree mortality 
was 30.4%, and when considering the effects of age, the high level of 
age increased tree mortality (36.6%) and the low level of age 
decreased tree mortality (22.2%), indicating that age modulated the 
response of tree death to climate change (Table 5). Similar results 
could be seen at different levels of MAT and AP conditions (Table 5). 
We could also compare the effects of two variables on tree mortality 
with one variable. For example, under the influence of the same 
stand variables, the influence of climate variables also showed that 
moderate climate variables reduced tree mortality, while low and 
high climate conditions increased tree mortality, roughly (Figure 7). 
In addition, high levels of WMMT and MAT had the greatest impact 

on tree mortality (Figure  7). Besides, we  could also analyze the 
effects of three or more factors on tree mortality. For instance, in the 
stands with high-density, low relative diameter, and moderate 
WMMT, tree mortality increased from 22 to 86% compared to the 
initial state (Figures 2, 8).

3.5. Model sensitivity analysis

The sensitivity analysis of Netica was able to determine the relative 
importance of factors to tree mortality. The sensitivity analysis results 
of this model were presented in Table 6 and the nodes were ranked in 
according to the degree of influence of their findings on the outcomes 
of the Alive node calculated as a measure of mutual information or 
variance reduction (expressed as a percentage).

As shown in Table 6, it can be seen that the mutual information 
(0.1147) of node “RD” was the largest, which indicated that it had the 
strongest impact on “Alive,” followed by “N” which had mutual info of 
0.0688 and then followed by MAT, WMMT, AP, age and Gini.

3.6. The most probable explanation

In this study, there were 2,187 (3 × 3 × 3 × 3 × 3 × 3 × 3) 
combinations of causes (node status) that affect tree mortality in the 
Bayesian network (BN) framework. It can be  observed that the 
combination of the most likely causes (node status) for tree mortality 
was: low level of RD; middle level of AP, WMMT, age, and Gini; and 
high level of N and MAT (Figure 9).
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4. Discussion

4.1. Comparison and evaluation of the 
models

The Bayesian network model (AUC = 0.9997) was superior to the 
random forest model (AUC = 0.9273) and logistic regression model 
(AUC = 0.8844) (Table  4). The BN model could overcome the 
limitations of logistic regression and RF model, and had several major 
advantages in predictive modeling.

Firstly, BN allows learning causality between variables. When 
there are many interference factors affecting causality in a problem, 
BN can also learn. However, when more variables are introduced for 
a given data set, the interrelationships among the variables become 
more complex, logistic regression will lead to overfitting (Mazzocco 
and Hussain, 2012; Witteveen et al., 2018). In addition, unrelated 

variables may be included after multiple tests, and logistic regression 
has limited ability to select important variables due to their random 
effects, leading to inconsistent results (Ottenbacher et  al., 2004), 
whereas BN can manage any inconsistencies in learning databases or 
applications (Rubin and Schenker, 1991).

Secondly, BN uses graphical methods to describe the relationship 
between data, which maintains the consistency and integrity of the 
probability knowledge base and is easy to understand (Ducher et al., 
2013). In BN, probability distribution is used to express the strength 
of the dependency relationship between various variables, and the 
integration of prior knowledge and data is promoted by combining 
prior information and sample knowledge (Zhang et al., 2013).

Thirdly, there are several BN calibration and update methods that 
can be used to better analyze the model, of which the expectation 
maximization (EM) learning algorithm is a popular method 
(Watanabe and Yamaguchi, 2003). While RF model uses algorithms 
to directly learn from data and generate predictions, and requires all 

FIGURE 5

The percentage change of each factor after adjusting the probability of Alive nodes. Red represents the decrease in the probability of a factor at each 
level after the survival or mortality rate was adjusted to 100%, and green represents the increase in the probability of a factor at each level after the 
survival or mortality rate was adjusted to 100%.
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input data to generate model output. The development of a RF model 
is not so transparent. It is like a dark box, and we cannot control its 
internal calculation operation, which is not as flexible as the Bayesian 
network approach.

In general, prediction of tree mortality is inherently complex 
with many factors, e.g., stand competition, age, stand structure, 
temperature, precipitation, and their interactions affecting tree 
mortality (Luo and Chen, 2013; Zhang et al., 2020). The interactions 
are usually excluded from traditional regression models (logistic 
model) (Zhang et al., 2017; Lu et al., 2019). BN explicitly includes 
interactions between predictors, and thus it is feasible for modeling 

complex systems (Aguilera et al., 2011; Hradsky et al., 2017), because 
it explicitly shows the degree of uncertainty in the prediction, 
reflected as the distribution of posterior probabilities (Marcot, 2012). 
We  can evaluate the impact of uncertainty and error as they 
propagate through the network, and we  can identify the least 
understood predictive variables that may have a significant impact 
on the prediction results. Given the above advantages of the Bayesian 
network model and its highest accuracy in model performance, the 
Bayesian network model performed better than logistic regression 
and random forest in predicting Chinese fir mortality and 
related problems.

TABLE 5 Mortality at different levels (low, middle, high) with fixed climate and stand variables.

Mortality rate AP WMMT MAT Initial state 
of 

mortalitylow middle high low middle high low middle high

RD

Low 50.7% 63.3% 55.6% 46.5% 69.0% 51.0% 59.2% 55.6% 63.3% 58.9%

Middle 18.8% 7.2% 17.3% 14.4% 5.4% 43.6% 14.0% 5.5% 42.9% 10.7%

High 34.9% 14.5% 30.7% 30.2% 11.4% 48.0% 17.7% 15.5% 47.7% 20.8%

N

Low 32.6% 14.3% 31.2% 24.2% 12.0% 48.3% 16.6% 16.2% 48.0% 20.6%

Middle 20.8% 7.9% 19.8% 17.0% 5.9% 44.4% 14.9% 6.4% 43.6% 11.9%

High 44.8% 47.0% 41.6% 42.8% 45.0% 49.9% 59.2% 33.1% 61.9% 45.4%

Age

Low 22.2% 14.2% 28.6% 19.2% 11.2% 50.0% 18.1% 10.6% 50.0% 18.1%

Middle 34.0% 18.4% 24.4% 25.3% 16.3% 45.4% 18.6% 15.8% 57.3% 22.2%

High 36.6% 22.5% 37.4% 33.4% 21.5% 46.9% 36.4% 18.1% 46.9% 27.5%

Gini

Low 39.5% 16.4% 30.4% 34.8% 11.5% 48.8% 23.9% 17.3% 48.1% 23.4%

Middle 27.1% 18.1% 25.8% 21.6% 16.6% 46.0% 22.1% 12.3% 53.9% 20.8%

High 31.4% 18.4% 41.6% 26.1% 16.4% 49.6% 23.2% 20.9% 49.6% 25.4%

Initial state of 

mortality
30.4% 17.9% 29.0% 25.1% 15.7% 47.4% 22.6% 14.5% 52.3% 22.0%

RD, relative density; N, number of trees per hectare; Age, plantation age; Gini, coefficient of stand structural heterogeneity; AP, annual precipitation; WMMT, winter mean minimum 
temperature; MAT, mean annual temperature.

FIGURE 6

Changes in tree mortality under the combined influence of climate and stand conditions compared to climate conditions only.
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4.2. Effect of stand variables on tree 
mortality of Chinese fir

Among the stand factors, competition is generally considered to 
be the most important factors affecting tree growth and death (Ruiz-
Benito et al., 2013), as it can affect the trees’ access to resources such 
as light, water, and mineral elements (Luo and Chen, 2013). Our study 

showed that competition (including RD and N) was the most 
important factor affecting tree mortality. As an important 
manifestation of the interaction between trees, competition can lead 
to differences in individual growth and development. Stand density 
(N), as an important indicator of stand competition, is an important 
driving factor for tree growth and has a promoting effect on tree 
mortality (Zhang et al., 2015b). The results of this study showed that 

FIGURE 7

Changes in tree mortality under the combined effects of climate and stand conditions compared to stand conditions only.

FIGURE 8

State of the Bayesian network in high-density, low relative diameter stands, and moderate WMMT.
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tree mortality increased with the increase of stand density. Trees that 
had large RD and were planted in low stand density tend to have lower 
mortality, which indicated the balance between competition and tree 
mortality should be  paid attention whether through thinning or 
low-density afforestation. It is generally believed that in a stand with 
higher stand density, the competition between adjacent trees for 
limited resources will become more intense, which leads to tree 
mortality (Calama et al., 2019). Secondly, high stand density will affect 
resource absorption efficiency of internal trees, reduce the available 
growth space, and inhibit the growth of tree canopy.

Among all the variables, RD was the most impact factor on tree 
mortality of Chinese fir, and tree mortality decreased with the increase 

of RD. Tree size is an important intrinsic attribute and a key factor 
affecting its growth and death. The relationship between tree death 
and DBH was usually shown in the form of a U-shaped curve (Coomes 
and Allen, 2007), that is, as the DBH of trees increases, tree mortality 
decreases first and then increases, indicating that small trees tend to 
have higher mortality (Wang et al., 2012). Generally speaking, the 
larger the tree is, the stronger its ability to resist external environmental 
pressure is, and compared with the smaller tree, it has an asymmetric 
competitive advantage for resources (Weiner, 1990; Uriarte 
et al., 2004).

Age is also a major factor affecting tree mortality (Zhang et al., 
2020). The results showed that tree mortality increased with the 
increase of age, which is consistent with previous findings that old 
trees were more sensitive to climate change than young trees (Primicia 
et al., 2015; Chen et al., 2016). Wang et al. (2022) found that tree 
growth decreased with the increase of tree age, and climate conditions 
can promote the growth of young trees and inhibit the growth of old 
trees, which meant that climate change may exacerbate the negative 
impact of age on tree growth. Research suggested that tree death 
caused by aging may be due to the decline in physiological vigor of 
older trees, resulting in carbon starvation or death of trees caused by 
external interference (Güneralp and Gertner, 2007). At the same time, 
older trees, affected by size, may have higher mortality due to the 
restrictions on water and nutrient transport to the canopy (Domec 
et al., 2008). Stand structure heterogeneity was represented by Gini 
coefficient, and tree mortality decreased in the middle level values of 
stand structure (Gini). With the growth and development of the stand, 
small trees are gradually eliminated due to their inferiority in 
competition with neighboring trees, which leads to a smaller value of 
structure in the stand (Soares et al., 2016).

TABLE 6 Sensitivity analysis results ranked in decreasing order of 
influence on the Alive variable occurrence based on mutual information 
(info) or entropy reduction (also expressed as a percentage in brackets).

Node Mutual info/Entropy reduction (%)

Alive 0.76005 (100)

RD 0.11473 (15.1)

N 0.06883 (9.06)

MAT 0.05666 (7.45)

WMMT 0.0426 (5.61)

AP 0.01298 (1.71)

Age 0.00526 (0.693)

Gini 0.00133 (0.175)

RD, relative density; N, number of trees per hectare; Age, plantation age; Gini, coefficient of 
stand structural heterogeneity; AP, annual precipitation; WMMT, winter mean minimum 
temperature; MAT, mean annual temperature.

FIGURE 9

Most probable explanation of Bayesian network model.
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4.3. Effects of climate factors on tree 
mortality of Chinese fir

4.3.1. Annual precipitation
The impact of climate change on tree mortality has been 

extensively studied. A suitable climate environment helps to reduce 
the mortality of trees. Changes in temperature and precipitation alter 
the climate conditions in which trees grow, leading to maladaptive 
growth and death of trees, especially dry weather caused by climate 
change (Zhang et al., 2014).

The annual precipitation (AP) directly affected tree survival. 
Water condition is the key factor affecting the survival of trees: too dry 
or too wet is not conducive to the growth of trees (Tei et al., 2019). 
Peng et al. (2011) estimated tree mortality in natural stands of the 
Canadian boreal forest and found that water stress caused by regional 
drought may be  the main reason for the general increase in tree 
mortality, which may be because drought will weaken water uptake 
and carbon metabolism of trees under the influence of severe drought. 
At the same time, drought can weaken tree defenses, making trees 
vulnerable to insect and pathogen attacks (Weed et al., 2013). Besides, 
if the site has excessive precipitation, it would result in death of fine 
roots attributed to waterlogging and soil anoxia (Vygodskaya et al., 
2002). In areas with enough rainfall, excessive annual rainfall may 
increase tree mortality by reducing root activity and photosynthetic 
efficiency, thereby reducing stand density and stand structure 
(Dannenberg et al., 2019). Over precipitation in some sites might 
indicate poorer soil condition, due to increasing precipitation and 
nutrient leaching in the soils (Vizcaíno-Palomar et al., 2016), as well 
as leading to tree death. Zhang et al. (2020) reported that tree mortality 
increased with the increase of precipitation. Consistent with these 
results, it can be  foreseen that areas with abundant but excessive 
rainfall will increase tree mortality of Chinese fir (Figure 3).

In general, under the direct effect of AP on mortality and the 
indirect effect of AP on stand factors, it was finally shown that 
moderate annual precipitation had a positive effect on survival, while 
too high or too low rainfall was detrimental to growth and 
promoted death.

4.3.2. Temperature
Temperature also plays a crucial role in tree growth and mortality. 

According to the results of sensitivity analysis, temperature had a 
greater impact on the survival of Chinese fir than precipitation. It may 
be because the precipitation in the study area is abundant, such that 
even an area with relatively little precipitation can satisfy the growth 
of Chinese fir. In general, increasing temperature can promote tree 
growth, while insufficient heat is a key factor limiting tree growth 
(Körner and Paulsen, 2004). Winter mean minimum temperature 
(WMMT) affected Chinese fir mortality directly and indirectly 
through RD, N and stand structure (Gini). Some evidence suggests 
that winter temperatures or pre-growing season temperatures have a 
positive effect on tree growth (Ols et  al., 2018). Elevated winter 
temperatures can lead to early snow melt, resulting in faster soil 
drainage and warming, providing suitable conditions for the nutrients 
required for tree growth in the following growing season (Zheng et al., 
2021). A relatively warm winter can increase the length of growing 
season, therefore increase radial growth in the following year and 
improving tree vigor and increasing tree survival (Taccoen et  al., 
2022). Duan et al. (2012) studied the chilling injury dynamics of Pinus 

massoniana in southeast China and found that lower winter 
temperatures would have a negative impact on tree growth: i.e., they 
reported that the decrease of temperature in winter may lead to bud 
loss, reduce root activity and delay growth, thus inhibiting tree growth 
and increasing tree mortality. On the one hand, with the increase of 
WMMT, Chinese fir would be less affected by winter freezing damage 
and survive, but on the other hand, the increase of temperature may 
increase the consumption of carbohydrate reserves of Chinese fir due 
to excessive respiration and thereby inhibit the growth of trees (Chen 
et  al., 2015). Therefore, we  believe that a moderate increase in 
temperature will reduce the frost damage of Chinese fir and reduce 
the mortality of Chinese fir. With the continuous increase of 
temperature, the positive effect of temperature increase on trees will 
be  gradually offset by the negative effect of temperature increase, 
which will lead to tree death (Goulden and Bales, 2019).

Among all the climate factors, MAT had the highest correlation 
with the mortality of Chinese fir. The effect of MAT on Chinese fir 
was similar to that of WMMT, but the degree of effect of MAT was 
stronger than that of WMMT; that is, Chinese fir survival was more 
sensitive to the change of MAT. MAT directly affected tree mortality, 
but also indirectly affected mortality through N and RD. Some 
studies hold the view that tree mortality was positively correlated 
with MAT (Adams et al., 2009; Yaussy et al., 2012). In our study, tree 
mortality of Chinese fir was negatively correlated with the middle 
level of MAT. Chinese fir, as a shade-intolerant species, an increase 
in temperature within an appropriate range will accelerate its 
photosynthesis production (Zhang et al., 2019), thereby reducing 
tree mortality. In addition, it was found that tree mortality of 
Chinese fir was positive correlated with low and high levels of MAT, 
and indicates that the climate conditions beyond the appropriate 
temperature range will lead to lower photosynthetic efficiency, 
resulting in a decline in productivity (Wang et  al., 2021), and 
ultimately cause tree mortality.

The results of Bayesian Network showed with the increase of 
mortality, the probability of low and high levels of climate factors 
increases to varying degrees, while the probability of moderate levels 
decreases. It indicated that extreme climate change would lead to tree 
mortality, while the moderate level of climate change would 
be beneficial for the survival of trees (Figure 5), which was consistent 
with the findings by Fernández-de-Uña et al. (2015) that the growth 
of trees increases before reaching the optimal temperature, and then 
decreases with increasing temperature. Besides, the results of this 
study found that the impact of precipitation on tree mortality was less 
than that of other climate factors such as temperature, which was 
consistent with the results of Fernández-de-Uña et al. (2015) and 
Wang et al. (2021).

4.4. Stand conditions regulate the response 
of tree mortality to climate change

The effects of climate variables on tree mortality include direct 
effects and indirect effects through stand variables. Competition, like 
a modulator, alters the response of tree growth to climate and regulates 
the resilience of forests to climate stress (Ford et al., 2017; Wang et al., 
2022). Therefore, addressing tree mortality in the context of climate 
change needs to consider the impact of competition on stand growth 
and the response of competition to climate variables.
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Competition between trees is a chronic stress that affects each tree’s 
carbon and water balance (Linares et  al., 2010). As a medium of 
interaction between stand variables, the results showed that competition 
is the most important factor affecting stand growth, and stands with 
weak competition level tend to obtain higher growth increment (Wang 
et al., 2022). As a bridge to the impact of climate change on stand 
growth, competition regulates the adaptability or resistance of tree 
growth under climate stress, and it may regulate the response of tree 
growth to climate change. As stand density increased in highest WMMT 
conditions, tree mortality increased from 48.3 to 49.9%, while the 
mortality rate of median density was 44.4% (Table 4). Similar results 
were found at the highest mean annual temperature conditions, which 
may be  explained by the fact that competition also increases the 
resistance of trees to climate change. For example, a superior carbon 
balance is required when facing recovery from drought-induced canopy 
loss (Franklin et al., 1987), and long-term competition may enable trees 
to overcome the negative effects of drought events. This gives us some 
inspiration to reduce the impact of climate change by reducing stand 
density through thinning in forest management (Magruder et al., 2013). 
Under favorable climatic conditions (e.g., moderate WMMT), tree 
mortality rate was 15.7%, while with the addition of lower levels of 
competitive conditions, tree mortality rate dropped to 12% (Table 5). 
However, under conditions of high competition (e.g., high density), 
trees were mostly insensitive to climate, such as 42.8, 45, 49.9% of each 
AP level, with variations of −2.6, −0.4%, and 4.5%, respectively, 
compared with the original state of 45.4% (Table 5). This was mainly due 
to high-density crowding, which impinged on a trees’ ability to adapt to 
a more favorable climate and increase growth (Ford et al., 2017).

In addition, age and stand structure also influence the response of 
tree mortality to climate change. Under the same climate condition, tree 
mortality gradually increased with the increase of age (Figure 6), showing 
that the negative impact of age on tree mortality was greater for old trees 
than for young trees. This result was in line with Wang et al. (2022) which 
reported that climate conditions would promote the growth of young 
trees and inhibit the growth of old trees. Old trees were more vulnerable 
to extreme weather conditions, such as low and high AP, which increased 
the mortality rate of old trees by 6.2 and 8.4%, respectively (Figure 6). In 
addition, at the same age level, the middle level climate conditions had 
the lowest tree mortality (Table 5), indicating that these moderate climate 
conditions were the most favorable for tree survival, while the high or 
low climate conditions would increase tree mortality.

Under the same level of stand structure, the intervention of 
moderate climate conditions reduced tree mortality (compared with 
only considering the effect of stand structure). Moderate climate 
conditions were the most favorable for tree survival, while both high 
and low levels climate conditions would increase tree mortality 
(Figure 7). This suggested that low and high levels of climate factors 
may amplify the negative effects of stand structure heterogeneity on 
mortality. In addition, combining the effects of stand structure and 
climate factors, the moderate level of stand structure reduced tree 
mortality (compared with only considering the effect of climate 
conditions), while the low and high levels of stand structure increased 
tree mortality (Figure 6), indicating that the moderate level of stand 
structure heterogeneity weakened the negative impact of climate 
variables on tree mortality.

Due to the complex relationship of various variables to tree 
mortality, the physiological and growth responses of trees to 
environmental forcing are not linear (Gea-Izquierdo et  al., 2013); 

specifically, the functional responses to specific environmental 
variables are either sigmoid form or bell-shaped form (Fernández-
de-Uña et al., 2015). Fernández-de-Uña et al. (2015) found a nonlinear 
interaction between climate variables and stand competition, in the 
Mediterranean ecosystem with limited water resources. Tree growth 
and mortality are influenced by a combination of climate factors and 
competition (Panayotov et al., 2016). No matter whether it is climate 
or stand factors, their effects on tree growth and death are realized 
through the trees’ own characteristics, such as water use efficiency, 
resistance and functional traits (Camac et al., 2018). The effects of 
these variables are not mutually exclusive, but help to reconcile the 
various mechanisms, or there is some coupling mechanism. 
Competition modulates the effects of climate change on growth and 
mortality at the individual and stand scales in important but complex 
ways (Ford et al., 2017). We found that moderate level of competition 
condition and stand structure heterogeneity weakened the negative 
impact of climate variables on tree mortality, and the impact of age on 
tree mortality was greater for old trees than for young trees.

5. Conclusion

In this study, it showed that Bayesian network could automatically 
find the dependency relationship between data and provide a 
theoretical framework for modeling uncertainty by using probabilistic 
calculus and underlying graph structure. In contrast, Bayesian 
network has higher estimation accuracy and fitting stability than 
logistic regression and random forest.

Tree mortality was negatively correlated with moderate AP, 
WMMT, MAT, and stand structure (Gini) as well as low age, but 
positively correlated with low RD, high N, and age. According to the 
Most Probable Explanation, the most likely causes of tree mortality can 
be determined as low RD, middle AP, WMMT, Age, and Gini, and high 
N and MAT. Besides, RD was the stand factor with the highest influence 
on tree mortality, and temperature (including MAT and WMMT) was 
the climate factor with the highest association with tree mortality, 
whereas stand structure (Gini coefficient) was less important. There 
were direct or indirect interactions among the factors affecting tree 
mortality. Stand conditions modulated the response of tree mortality to 
climate and regulated the resilience of forests to climate stress. Moderate 
level of competition condition and stand structure heterogeneity 
weakened the negative impact of climate variables on tree mortality. The 
impact of age on tree mortality was greater for old trees than for young 
trees, which indicated that old trees were more sensitive to extreme 
weather conditions than young trees. Due to the complex relationship 
between various variables and tree mortality, as well as the regulatory 
role of competition, the physiological and growth responses of trees to 
environmental stress are not linear. This result indicates that we can take 
different measures according to different stand conditions, such as 
managing density or adjusting stand structure, while also taking into 
account stand age and site conditions, so as to mitigate the adverse 
effects of climate change on tree mortality.
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