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Soil temperature (ST) is a crucial parameter in Earth system science. Accurate ST 
predictions provide invaluable insights; however, the “black box” nature of many 
deep learning approaches limits their interpretability. In this study, we  present 
the Encoder-Decoder Model with Interpretable Spatio-Temporal Component 
(ISDNM) to enhance both ST prediction accuracy and its spatio-temporal 
interpretability. The ISDNM combines a CNN-encoder-decoder and an LSTM-
encoder-decoder to improve spatio-temporal feature representation. It further 
uses linear regression and Uniform Manifold Approximation and Projection 
(UMAP) techniques for clearer spatio-temporal visualization of ST. The results 
show that the ISDNM model had the highest R2 ranging from 0.886 to 0.963 and 
the lowest RMSE ranging from 6.086  m3/m3 to 12.533  m3/m3 for different climate 
regions, and demonstrated superior performance than all the other DL models 
like CNN, LSTM, ConvLSTM models. The predictable component highlighted the 
remarkable similarity between Medium fine and Very fine soils in China. Additional, 
May and November emerged as crucial months, acting as inflection points in the 
annual ST cycle, shaping ISDNM model’s prediction capabilities.
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1 Introduction

Soil temperature (ST) has been recognized as a vital element of the Essential Climate 
Variables by the Global Observing System for Climate (GCOS, 2016). It is integral to a plethora 
of ecosystem processes and functions (Yan et al., 2018). Moreover, ST exerts substantial influence 
across diverse disciplines, including meteorology (Sanikhani et al., 2018; Feng et al., 2019), 
agriculture (Cornu et al., 2016; Kim et al., 2016; Zhang et al., 2021), environmental studies (Yang 
et al., 2019; Xu et al., 2021; Wei et al., 2023), and climate change research (Li et al., 2022a; Ran 
et al., 2023). Accurate predictions of ST can aid in mitigating soil erosion, optimizing water 
utilization during irrigation, and enhancing grain yields (Karandish and Shahnazari, 2016; Bodić 
et al., 2018). Historically, the primary approach to understanding ST has been through process-
based models, which operate on control equation feedback tied to intricate land-atmosphere 
mechanisms (Kalakuntla et  al., 2013), such as the land-surface data assimilation method 
(Henderson-Sellers et al., 1993). However, these models’ computational demands, coupled with 
uncertainties in physical drivers and potential oversights in key processes, contribute to 
prediction ambiguities (Reichstein et al., 2019).
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In more recent times, data-driven models have garnered traction 
in Earth science applications (Reichstein et al., 2019), with estimations 
spanning a range of meteorological variables, including atmospheric 
and dew point temperatures, precipitation, solar radiation, and soil 
moisture (Kisi et al., 2013; Cobaner et al., 2014; Kisi and Sanikhani, 
2015; Mohammadi et  al., 2016; Li Q. et  al., 2020; Li et  al., 2021, 
2022a,b).

Conventional machine learning (ML) models, such as Multi-
Layer Perceptron (MLP), Back Propagation Neural Networks (BPNN), 
Extreme Learning Machine (ELM), Generalized Regression Neural 
Networks (GRNN), and Radial Basis Neural Networks (RBNN), have 
risen in prominence for ST prediction. They adeptly map the intricate, 
nonlinear dynamics between ST and selected influencing factors. For 
instance, Tabari et al. (2011, 2015) leveraged the MLP model for daily 
ST prediction in Iran, noting the significance of ST memory for 
enhancing extended ST predictions. Yin et  al. (2023) predicted 
changes in lake boundaries based on U-net and spatial transformation 
network. Similarly, studies by Kisi et al. (2013), Sanikhani et al. (2018), 
and Feng et al. (2019) showcased the merits of RBNN, ELM, and 
BPNN, respectively, in ST estimations across different contexts. The 
fusion of ML models with other techniques has been spotlighted as a 
promising avenue, delivering enhanced accuracy in both short-term 
and long-term ST predictions (Mehdizadeh et al., 2020). Nevertheless, 
there remains a window of opportunity for refinement and innovation 
in this domain, as alluded to by Yan et al. (2020).

ST prediction has been notably augmented by the implementation 
of deep learning (DL) methods (Li L. et al., 2020; Li Q. et al., 2020; Li 
et al., 2021, 2022a,b). One classical DL method is the Long Short-term 
Memory (LSTM) network (Hochreiter and Schmidhuber, 1997), adept 
at utilizing sequential data. With its unique capability to use prior 
outputs as inputs and preserve this information through memory 
gates, LSTMs have gained prominence in ST prediction. For instance, 
Li Q. et al. (2020) employed multi-channel LSTM with lagged ST data, 
revealing its proficiency in capturing both long-term and short-term 
ST behaviors.

Convolutional Neural Networks (CNN) (LeCun et  al., 1989), 
another DL archetype, excel in memory efficiency through their 
convolutional structure. With components like local perception fields, 
weight sharing, and pooling layers, CNNs mitigate model overfitting. 
Their application in ST prediction, such as by Hao et al. (2020), has 
validated their effectiveness, especially when utilizing historical 
ST data.

Although deep learning models are widely used in ST prediction, 
Yet, capturing the nuanced spatio-temporal variations of ST remains 
challenging. Factors influencing ST vary temporally and spatially, and 
these variations often interplay (Zhao et al., 2013; Li et al., 2022a). 
Furthermore, another lingering concern with DL methods, however, 
is their “black box” nature, often eliciting skepticism due to over-
parameterization and unclear mechanisms (Li et  al., 2022a). 
Advancing DL model interpretability is, thus, also a prime challenge 
(Reichstein et al., 2019).

Addressing these, the model first incorporated an encoder-
decoder structure, known to boost deep learning efficacy (Cho et al., 
2014; Shang and Luo, 2021). Furthermore, our Interpretable Spatio-
Temporal Deep Network Model (ISDNM) synergized the strengths of 
both CNN and LSTM by melding the CNN-encoder-decoder with the 
LSTM-encoder-decoder. While the LSTM captures temporal nuances, 
the CNN is more attuned to spatial variations.

Second, our model incorporated spatio-temporal interpretable 
components and grounded the learning process in physical 
knowledge, analyzing the interactions between influencing factors and 
ST variations.

In essence, ISDNM was designed to not only enhance ST 
prediction but also to clarify its learning mechanisms. Comprising a 
prediction component and an interpretable component, it marries the 
accuracy of capturing spatio-temporal ST variations with heightened 
model interpretability. Our key contributions include:

1. A cutting-edge fusion model elevating predictive performance.
2. An innovative interpretable component offering spatio-

temporal insights.
3. Benchmarking of ISDNM against CNN, LSTM, and 

ConvLSTM, underscoring its superior predictive prowess.

2 Materials and methods

The ISDNM model was introduced to enhance the accuracy of ST 
prediction and to provide a clear interpretation of the model’s 
operation. The selection of algorithms was based on their suitability 
for handling the complex spatio-temporal patterns in our dataset. The 
CNN and LSTM architectures were chosen for their proven 
capabilities in capturing spatial and temporal dependencies, 
respectively, which have been demonstrated in previous studies related 
to soil temperature prediction (Li L. et al., 2020; Li Q. et al., 2020; Li 
et  al., 2021, 2022b). The integration of these models in our 
Interpretable Spatio-Temporal Deep Network Model (ISDNM) 
allowed us to exploit the synergies between these techniques, 
enhancing the model’s ability to extract nuanced spatio-temporal 
features. As illustrated in Figure 1, the model is bifurcated into: (i) the 
predictive component and (ii) the interpretable component. The 
former is dedicated to extracting both spatio-temporal and time-
variant features of ST, thereby boosting predictive accuracy. In 
contrast, the interpretable component, which comprises a linear 
regression model paired with Uniform Manifold Approximation and 
Projection (UMAP), seeks to furnish spatio-temporal interpretive 
results for ST.

2.1 Data

For testing DL models in ST prediction, the model adopted the 
ERA-5 data product. Utilizing 36KM spatial resolution data as our 
input, the new structure not only expedited the model’s validation 
but also earmarked future exploration at finer spatial resolutions. 
Key meteorological variables incorporated include soil moisture 
(SM), total precipitation (TP), 2 m-height wind speed (Wind), 
2 m-height air temperature (AT), short-wave radiation (SW), long-
wave radiation (LW), and surface pressure (SP). These factors were 
highlighted for their significance in ST prediction by Li et  al. 
(2022a). The dataset was divided into training, testing, and validation 
sets, typically using a 4:1:1 split ratio. The exact percentages were 
chosen to strike a balance between having a sufficiently large training 
dataset for model learning and ensuring rigorous evaluation on 
unseen data through testing and cross-validation. These percentages 
were selected based on prior literature and experimental validation 
to ensure the robustness and reliability of our results (Li L. et al., 
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FIGURE 1

Technology roadmap based on interpretable spatio-temporal deep learning model.
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2020; Li Q. et al., 2020; Li et al., 2021, 2022b). Specifically, the data, 
spanning from 2015 to 2020, carries a temporal resolution of a day. 
The span between 2015 and 2018 was earmarked for training, 2019 
for validation, and 2020 for testing. The geographical scope 
encompassed China, with longitudes ranging from 73°33′E to 
135°05′E and latitudes from 3°51’N to 53°33’N, offering a 
comprehensive national-scale testbed for ST prediction. The 
selection of the entire China as the case study was driven by several 
considerations. Firstly, China offers a vast and diverse geographical 
landscape with varied climate patterns (Beck et al., 2018), providing 
an ideal context to explore intricate spatio-temporal variations. 
Additionally, the nationwide scale of the study allowed for 
meaningful insights applicable to a wide array of environmental and 
agricultural planning scenarios. By opting for a nationwide scope, 
the research aims to contribute valuable knowledge that can inform 
policymakers and stakeholders at a national level, providing insights 
with broad applicability and relevance. It is worth to note that the 
variables are bifurcated into continuous and categorical types, the 
normalization was exclusive to continuous variables, with categorical 
ones remaining unchanged, as elaborated in Section 2.3.

2.2 Data preprocessing

Data was subjected to three preprocessing techniques: (i) 
Min-Max normalization, (ii) one-hot encoding, and (iii) entity 
embedding. These methodologies are oriented toward expediting 
model training. Primarily, Min-Max normalization is a tool to rescale 
data such that each element across the data spectrum is represented 
as a value between 0 and 1. The formula for Min-Max normalization 
is as follows:

 
X x x

x xnorm
i�
�
�
max

max min  
(1)

The normalized value, denoted by Xnorm is defined based on Xmax 
and Xmin, which, respectively, represent the data’s maximum and 
minimum values. Further, our model employs one-hot encoding, a 
method that represents categorical month variables (January 
through December) with a binary string. In this representation, one 
bit is set to 1 while the remaining bits are 0. Entity embedding, on 
the other hand, is leveraged to streamline data, specifically by 
turning categorical features into continuous ones using word 
embedding techniques.

2.3 Predictable component

To begin with, time variables are constructed using one-hot 
encoding, with months serving as the foundational time unit. For 
instance, if the current time variable corresponds to March, the third 
bit in the 12-bit encoded feature is set to 1, while all other bits are 0. 
The CNN-encoder-decoder model and LSTM-encoder-decoder 
model are tasked with extracting spatial and temporal features, 
respectively. Following their extraction, these features are 
amalgamated via a fully connected layer, yielding a comprehensive 
spatio-temporal feature. Post-training, the model adeptly extracts 
both time variable features and the combined spatio-temporal feature, 
leading to enhanced predictive accuracy.

The predictive component comprises the CNN-encoder-decoder 
model and the LSTM-encoder-decoder model. The primary role of 
the CNN-encoder-decoder model is to delineate spatial characteristics 
of ST. Initial steps involve segmenting the accumulated data into 
continuous and categorical variables. The spatial interpretability 
component primarily processes continuous variables like SM, TP, 
Wind, AT, SW, LW, and SP, alongside categorical non-temporal 
variables such as soil type and vegetation type. These variables 
undergo preprocessing using the entity embedding method and 
Z-score normalization, respectively. Subsequent to this preprocessing, 
the normalized continuous features and the categorical features are 
forwarded to the spatio-temporal deep learning model. This model, 
in turn, concurrently interprets both the temporal and spatial 
nuances of ST.

The time variable chiefly undergoes processing in the linear 
regression prediction model, facilitated by one-hot encoding (similar 
to the encoding described above for months). These encoded features 
are then channeled into a linear regression model, yielding 
characteristics specific to the time variable. Both temporal and spatial 
features, along with time variable characteristics, are integrated using 
a weighted sum approach within a fully connected layer. The 
combined features are then co-trained. The calculations are structured 
as follows:

 
Y W a W a blr

T
lr stdl

T
stdl� � �

 (2)

Where Y is the predicted value, Wstdl
T  is the output weight of deep 

learning prediction component, Wlr
T

 is the output weight of linear 

regression prediction component, and b is the bias term. The predicted 
value Y of ST and the actual value Y’ of ST will be transferred to the 
loss function training prediction model.

2.3.1 LSTM-encoder-decoder
LSTM-encoder-decoder mainly extracts the temporal dimensional 

feature of ST, and the core part also includes an encoding network and 
a corresponding decoding network. The model encoder the previous 
states of ST, and decoder the current ST for ST temporal. The ST at the 
previous time and the current time state of the decoder to obtain the 
ST temporal feature at this time.

The model uses the semantic coding vector C at each time, the ST 
Yi−1 at the previous time and the current time state Si of the decoder 
to obtain the ST time characteristic feature at this time through the 
full connection layer function g, and the calculation is as follows:

 F g s y Cporal i ieatures , ,tem � � ��1  (3)

The semantic coding vector Ci  at each time is obtained by 
weighting the hidden vector at each time of the encoder, indicating 
that the influencing factors of ST may be different at each time. Ci is 
calculated as follows:

 C a hi i j i� � ,  (4)

In equation 4, hi represents the hidden vector at time I in the 
encoder, ai j,  refers to the weight of the hidden vector at each time in 
the encoder, and ai j,  are calculated as follows:
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(5)

In equation 5, ei j,  is calculated from the state S j−1 of the decoder 
at the previous time and the hidden vector hi of the encoder at the 
current time, as follows:

 e U Vh Wsi j i j, tanh� �� ��1  (6)

In equation 6, U, V and W represent the parameters of the model, 
and tanh refers to the hyperbolic tangent activation function; the 
current time state S j  of the decoder is calculated as follows:

 s f s y Ci j j j j, � � �� �1 1, ,  (7)

In equation 7, yi−1 refers to the actual value of ST at time j-1, and 
f represents the decoder network model.

2.3.2 The CNN-encoder-decoder
The CNN-encoder-decoder is specifically designed to extract the 

spatial features of ST. This model boasts six convolution kernels. Its 
architecture is bifurcated into an encoding network and a 
complementary decoding network.

The encoding segment comprises a convolutional layer, a batch 
normalization layer, a rectified linear unit (ReLU) for activation, and 
a pooling layer. The initial three convolution kernels play a pivotal role 
in reducing resolution. Conversely, the decoding section is outfitted 
with an upsampling layer, a convolutional layer, a batch normalization 
layer and a ReLU. It’s worth highlighting that the last three convolution 
kernels within the decoder serve to extrapolate the spatial feature of 
ST. This is achieved by restoring the low-resolution encoded feature 
map of ST to its original input resolution.

2.4 Iinterpretable component

The primary objective of the spatial component is to elucidate the 
spatial correlations inherent in ST. At its heart, this component is 
equipped with an embedding layer and UMAP. When grappling with 
categorical variables, the model have opted for the entity embedding 
approach as proposed by Guo and Berkhahn (2016). Their research 
underscored the efficacy of this method over traditional one-hot 
encoding. The advantage being, it sidesteps the pitfalls of data sparsity 
post-encoding, which can detrimentally impact prediction 
model accuracy.

UMAP, standing on the foundational principles outlined by 
McInnes et  al. (2018), leverages local manifold approximations. 
These approximations are meticulously stitched together, utilizing 
their local fuzzy simplicial set representations. This methodical 
process constructs a topological representation of high-dimensional 
data. Furthermore, a parallel process can craft an equivalent 
topological representation, culminating in the minimization of the 
cross-entropy between the two representations. In practice, UMAP 
is adept at condensing the embedded vectors into a three-
dimensional space, enabling a vivid visualization of ST’s 
spatial correlations.

In its operational phase, UMAP shrinks the embedded vector to 
a three-dimensional realm. This aids in calculating the cosine distance 
between disparate variables, serving as a benchmark to discern inter-
variable correlations. The pertinent calculations are articulated 
as follows:

 

Dist
x y
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i
n
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(8)

Let Xi and Yi denote eigenvectors of length N. A smaller value 
indicates a heightened correlation between the two eigenvectors. 
For instance, when analyzing the spatial influence of ST on 
terrain, one can examine it within a three-dimensional space. If 
two specific terrain eigenvectors are proximate within this space, 
it suggests that the ST of the two terrains significantly influences 
each other.

Furthermore, by extracting the weights from the linear regression 
model, the model can directly gauge the contribution of each 
individual value within a variable. To illustrate, if the ‘month’was 
considered as the temporal variable, it can shed light on the monthly 
impact on ST. A higher absolute weight value signifies that a particular 
month exerts a considerable influence on the ST.

3 Results

The model experimented with various DL architectures to forecast 
ST. For evaluation, metrics like R2, RMSE and MAE were reported 
(Willmott and Matsuura, 2005; Hyndman and Koehler, 2006). The 
formula for calculating RMSE, MAE and R2 is as follows:

 

( )
( )

2
2 1

2
1

ˆ
1

N
i ii

N
i ii

y y
R

y y
=

=

−
= −

−

∑
∑  

(9)

 

( )21
ˆN

i ii y y
RMSE

N
=

−
=
∑

 
(10)

 
MAE

y y

N
i
N

i i
�

�
�� 1



 
(11)

where yi is the observed variables of the i-th time steps, ŷi is the 
predicted variables of the i-th time steps obtained by predictive 
models, and −yi is the average value of the observed variables.

As shown in Table  1, the ISDNM outperforms standard DL 
methods in terms of RMSE, MAE and R2.

3.1 Non-linear relationship between ST and 
meteorological factors

Prior research underscores the significance of meteorological 
variables in predicting ST (Cornu et al., 2016; Kim et al., 2016; 
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Sanikhani et al., 2018; Feng et al., 2019). Our exploration first delves 
into the nonlinear associations between ST and several 
meteorological factors. The left and middle columns of Figure 2 
present the spatial distribution and histograms of selected 
meteorological variables, such as precipitation, wind speed, and soil 
type, among others. The right column of the figure depicts 
relationships between ST and these variables, as modeled by the 
Generalized Additive Model (GAM).

From Table 1 and Figure 3, it can observe that northern China 
experiences lower precipitation levels. Regions with substantial 
rainfall are predominantly located in the middle and lower reaches of 
the Yangtze River plain, with the precipitation values of north China 
mainly ranging from 0 m to 0.0005 m. Wind speed is notably higher 
in northern areas, especially central Inner Mongolia, while other 
regions record speeds mainly between 0 m/s and 1 m/s.

The Southern part of China mainly comprises medium to fine 
soils, while northern regions predominantly have coarse soils. 
Deserted regions in northwest China and certain parts of Inner 
Mongolia exhibit very fine soil types.

In warmer areas, such as south and central China and Xinjiang 
province, snow albedo primarily lies between 0.8 and 0.9. Colder 
regions like Heilongjiang province, Jilin province, and Tibet province 
see values around 0.5. Snow density distribution mirrors snow albedo, 
with warmer areas having lower values and cold regions, especially the 
northeast and Inner Mongolia, registering higher figures.

Soil moisture measurements in areas like Xinjiang, northern 
Tibet, and western Inner Mongolia hover around 0.1. In contrast, 

TABLE 1 Comparison of the performance of different models (including 
CNN, LSTM, ConvLSTM, and ISDNM).

Method/
evaluation

R2 RMSE MAE

CNN 0.908 11.581 9.743

LSTM 0.916 10.963 9.230

ConvLSTM 0.923 10.472 8.798

ISDNM 0.936 9.513 8.320

FIGURE 2

RMSE, R2 and DELTA comparison between the ISDNM model and other models.

https://doi.org/10.3389/ffgc.2023.1295731
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regions around the Yangtze River Plain show a value close to 0.5. 
Central and northeastern China typically record values between 0.3 
and 0.4.

Lastly, dew point temperature exhibits distinctive characteristics: 
high-altitude areas such as Tibet report temperatures between 250 K 
and 260 K. In regions without significant altitude variations, the dew 
point temperature relates directly to ambient temperatures: colder 
environments have lower dew point temperatures and vice versa.

3.2 Overall performance of CNN, LSTM, 
CONVLSTM and ISDNM

In the ISDNM model, an LSTM cell with a hidden size of 512 
was implemented. The training was configured for 100 epochs with 
a learning rate of 0.001. A maximum timestep of 7 was set, and a 

batch size of 128 was determined. The mean squared error served as 
the loss function, and the Adam optimization technique was 
employed. The LSTM, CNN, and ConvLSTM models shared 
identical parameters with ISDNM. Through rigorous testing, these 
parameter choices consistently outperformed alternatives. Able 1 
provides a comparative performance analysis. ISDNM stood out 
with the highest ST predictive accuracy, achieving R2 = 0.936, RMSE 
of 9.513, and MAE of 8.320. Amongst all deep learning models 
tested, only ConvLSTM came close to the ISDNM’s performance, 
while CNN was the least effective.

Figure  2 visualizes the performance metrics of CNN, LSTM, 
ConvLSTM, and ISDNM models over the testing period. While most 
of China recorded an RMSE below 12, the northeastern and 
northwestern regions showcased patches with higher RMSE and lower 
R2 values. This could be  attributed to these regions experiencing 
significant ST variations.

FIGURE 3

Spatial distribution of variables (left column), descriptive statistics (middle column) GAM plot (right column). Shaded areas in the GAM plot indicate 95% 
confidence intervals. The value of p is 1.11e-16***. The area enclosed by two red lines in the GAM plot indicates the 95% confidence interval, and the 
Y-axis indicates the effective degrees of freedom for covariates and smoothing. The *** after each value of p indicates the 99% confidence interval of 
the fit (soil type 1: coarse; 2: medium; 3: medium-fine; 4: fine; 5: very fine; 6: organic; 7: tropical organic).
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To dissect these anomalies, seasonal performances using the 
ISDNM model were analyzed. Figure 4 elucidates the season-wise 
performance. The metrics considered included RMSE, R2, lag R, 
and standard deviation (SD). It became evident that both summer 
and winter seasons were challenging periods, displaying 
increased RMSE and diminished R2 values. Higher lag R and 
elevated SD values likely misled the model, causing dips in 
predictive accuracy. Both northeastern and northwestern regions 
manifested these heightened values throughout the year, 
particularly during summer and winter, explaining their reduced 
model performance.

3.3 Sensitive analysis for different input 
data

SM influences the soil’s water balance and subsequently affects ST, 
a relationship echoed in the findings of Zheng et al. (1993). External 
factors like precipitation, wind speed, and air temperature (AT) play 
pivotal roles in modulating ST. For instance, wind speed impacts 
evapotranspiration rates which, in turn, influence ST (Valipour, 2015). 
Furthermore, SW and LW absorbed by soil also affect ST, as described 
by Ronda and Bosveld (2009). Considering these interdependencies, 
SM, TP, Wind, AT, SW, LW, SP, SOILT, and THV were selected as 
foundational input variables. Table 2 presents the performances of 
CONVLSTM and ISDNM models across ten different input 

combinations, mirroring the methodology of prior research like (Li 
et al., 2022a).

While combination 1 utilized all basic input variables, 
combinations 2 through 10 adopted various permutations by omitting 
individual inputs. Notably, optimal results emerged when using all 
basic inputs. As per Table 2, the ISDNM model consistently surpassed 
the CONVLSTM in accuracy across all input combinations. While the 
omission of any foundational variable typically impacted model 
performance, certain combinations, such as 1, 2, and 3, still displayed 
comparable results.

3.4 Impact across different climate zones

Evaluating ST based on climate zones can offer nuanced insights 
into climate change dynamics (Li et  al., 2021). Referencing the 
Köppen-Geiger classification (Beck et al., 2018), the ST prediction 
performance across China’s diverse climate zones were assessed. 
Figure  5 categorizes China into eight distinct climate zones, and 
Table  3 presents their respective metric averages. The arid desert 
climate zone, primarily in Xinjiang, exhibited top-tier performance, 
likely due to its pronounced ST memory as reflected by a high lag R 
value (0.983). Conversely, the tropical monsoon/savannah climate 
zone struggled, potentially due to its limited sample size (0.2%) and a 
lower lag R (0.934). A similar trend was observed in the cold-no-dry 
season climate zone. The cold-dry-winter zone, encompassing 25.8% 

FIGURE 4

The RMSE, R2, lag R and SD of ISDNM for different season.
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of the sample and centered in North-East and Central China, yielded 
commendable results, perhaps due to the region’s high lag R 
correlation with ST. Overall, a strong correlation between ST’s lag R 
and model prediction performance was unmistakable.

3.5 Improvements in model performance

Figure 6 illustrates the R2, RMSE, and bias values for the CNN, 
LSTM, ConvLSTM, and ISDNM models. Evidently, the ISDNM 
model emerges as the premier deep learning model for ST prediction. 
This is discernible from its near-zero bias, its superior average R2 value 
which oscillates between 0.886 and 0.963, and its unrivaled minimal 
mean RMSE, which ranges from 6.086 to 12.533. The ISDNM’s 
superior performance is consistent across all eight climate zones in 
China. However, its distinct advantage is somewhat less pronounced 
in the tropical monsoon/savannah and cold, non-dry season zones, 
possibly due to limited sample sizes within these regions.

3.6 Spatio-temporal feature extraction 
using ISDNM

Figure  7 showcases the cosine distances of ST values across 
various soil types. An interesting observation is the proximity in 
cosine distance values between soil types 4 (Medium fine) and 5 (Very 

fine) in China. The minimized distance suggests that these two soil 
types share analogous features when analyzed by the model. This 
resemblance is likely because Medium fine and Very fine soils exhibit 
similar energy and water exchange characteristics compared to other 
soil types (Hulugalle et al., 2001; Yuan et al., 2023). The observation 
that identical soil types tend to have harmonized soil moisture 
exchanges validates our choice of using soil moisture as an essential 
covariate to characterize ST.

High vegetation type is another crucial factor in determining ST 
in any region (Owen et al., 1998). Figure 7 illustrates that the cosine 
distances for high vegetation types 5 (deciduous broadleaf trees) and 
6 (evergreen broadleaf trees) are notably closer than those of other 
vegetation types. This is attributed to both these tree types being 
broadleaf varieties with overlapping distributions in China (Zheng-Yu 
et al., 2003). Furthermore, soils with denser vegetation covers retain 
moisture better than their sparser counterparts. This higher vegetation 
cover contributes to a slower decline in ST, as water possesses a greater 
heat capacity than soil. Higher soil moisture levels also equate to 
reduced fluctuations in ST. This is evident from Figures 2, 4, which 
indicate superior model results in southern China. One potential 
reason for this is the relatively stable atmospheric temperature in the 
south, as denoted by its reduced standard deviation, leading to more 
predictable changes in ST. This observation aligns with the findings of 
Cheng et al. (2008).

Lastly, from a temporal perspective, as observed in Figure 7, ST 
weights in May and November are notably higher than in other 
months. This suggests that these months play a pivotal role in our 
model’s ST prediction capabilities. An intriguing aspect is that May 
and November serve as inflection points in annual cycles (Huizhi 
et al., 2009; Tian et al., 2019). The trend in May’s ST has a cascading 
effect on June’s ST, resulting in May receiving greater weight and June 
less. A similar pattern is evident in November, given the more 
pronounced drop in ST observed in the preceding month of October 
(Huizhi et al., 2009; Tian et al., 2019).

4 Discussion

Several machine learning models, including MLP (Tabari et al., 
2011, 2015), BPNN (Karandish and Shahnazari, 2016; Mehdizadeh 
et al., 2020), ELM (Sanikhani et al., 2018; Feng et al., 2019), GRNN 

TABLE 2 Comparison of the performance of different input combination.

Input combination ConvLSTM (RMSE) ConvLSTM (MAE) ISDNM (RMSE) ISDNM (MAE)

 1 SM, TP, Wind, AT, SW, LW, SP, SOILT, 

THV
10.393 8.899 9.513 8.320

 2 SM, TP, Wind, AT, SW, LW, SP, SOILT 10.402 9.012 10.983 8.313

 3 SM, TP, Wind, AT, SW, SP, THV 10.412 9.031 10.843 9.623

 4 SM, TP, Wind, AT, SW, SP, SOILT, THV 12.863 11.262 10.978 9.565

 5 SM, TP, Wind, AT, SW, LW, SOILT, THV 11.049 9.641 10.306 8.739

 6 SM, TP, Wind, AT, SW, LW, SOILT, THV 11.255 9.743 10.204 8.686

 7 SM, TP, Wind, SW, LW, SP, SOILT, THV 10.883 9.481 10.431 8.929

 8 SM, TP, AT, SW, LW, SP, SOILT, THV 11.092 9.678 10.305 8.767

 9 SM, Wind, AT, SW, LW, SP, SOILT, THV 11.041 9.629 10.415 8.801

10. TP, Wind, AT, SW, LW, SP, SOILT, THV 11.049 9.640 10.246 8.732

FIGURE 5

The Köppen-Geiger climate region map of China.
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(Feng et al., 2019), and RBNN (Kisi and Sanikhani, 2015; Feng et al., 
2019), have been deployed for ST prediction, emphasizing their 
versatility and robustness. Nevertheless, deep learning methods are 
frequently labeled as “black box optimizers” due to their limited 
interpretative abilities.

In this context, the ISDNM model was introduced, which not only 
predicts ST but also incorporates spatio-temporal interpretative 
features, shedding light on the learning process using domain-specific 
knowledge. Specifically, ISDNM employs cosine distance to probe 
relationships between ST across varied categorical variables. 
Additionally, ISDNM is capable of determining linear regression 
coefficients, offering insights into the monthly contributions to the 
annual ST.

Addressing this perceived limitation, the ISDNM model emerged 
as a beacon, achieving great results both in predictive accuracy and 
model transparency. Beyond merely predicting ST, ISDNM seamlessly 
integrates spatio-temporal interpretative aspects, offering a more 
nuanced understanding of the underlying processes. Through its 
innovative use of cosine distance, the model provides an analytical 
lens to examine the relationships of ST across different categorical 
parameters. Moreover, its ability to determine linear regression 
coefficients paints a clear picture of monthly contributions to annual 
ST dynamics.

While our findings clearly demonstrated the superiority of the 
ISDNM over traditional models like CNN, LSTM, and ConvLSTM, 

it’s imperative to set these results against the backdrop of previous 
studies for a holistic perspective. Previous research primarily focused 
on achieving optimal prediction results, often sidelining the 
importance of interpretability. In contrast, the ISDNM not only 
showcases enhanced predictive capabilities but also champions the 
cause of interpretability, a feature often sought but rarely achieved in 
deep learning models. This dual capacity of the ISDNM model 
positions it favorably against its predecessors and contemporaries.

However, as with any scientific endeavor, it’s crucial to evaluate the 
practicality of this work. A region-specific assessment of the ISDNM’s 
efficacy highlighted areas in northeastern and northwestern China 
that require further attention, as evidenced by the pronounced RMSE 
values and diminished R2 scores depicted in Figure 2. Such regional 
disparities necessitate a deeper dive, and seasonal analyses provided 
further context. Figure  4’s depiction of ISDNM’s season-centric 
performance underscores the challenges faced during summer and 
winter, characterized by elevated RMSE and reduced R2 metrics.

The juxtaposition of the ISDNM model against previous studies 
underscores its unique position in the landscape of ST prediction. 
While it resonates with the accuracy that deep learning models are 
renowned for, it also paves the way for a new era where model 
transparency is not sacrificed. The debates around the practicality of 
such models will undoubtedly continue, but the ISDNM model has 
set a benchmark, indicating the direction future research might take 
in this domain.

TABLE 3 Mean value of different metric of different climate regions, the lagged correlation of ST (lagged R), the Bias (K), root-mean-square error (RMSE, 
K) and R-square of the ISDNM, and number of pixels.

Climate regions Abbreviations
lagR Bias RMSE R2 Number of 

pixels

Tropical, monsoon/

savannah
Am/Aw 0.934 0.263 10.024 0.886 32

Arid, desert BW 0.983 0.213 7.003 0.963 3,318

Arid, steppe BS 0.972 0.487 8.576 0.945 1,935

Temperate, dry winter Cw 0.952 0.539 12.141 0.907 1,884

Temperate, no dry 

season
Cf 0.950 0.443 12.533 0.903 1,826

Cold, dry winter Dw 0.971 0.063 6.086 0.945 3,957

Cold, no dry season Df 0.953 0.774 7.829 0.914 30

Polar, tundra ET 0.964 0.801 10.194 0.927 2,333

FIGURE 6

The box plots of the R square, RMSE and bias.
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FIGURE 7

The spatial and temporal analysis of ISDNM retrievals. ST features for different soil types and type of high vegetation in China, mapped to 3D 
coordinates using UMAP. Monthly ISDNM determined weights indicating the contributions of ST in each month.
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5 Conclusion

ST stands as a critical element within the Essential Climate 
Variables as identified by GCOS, playing an instrumental role in 
numerous ecosystem processes and dynamics. Although deep learning 
methodologies have demonstrated significant potential in ST 
prediction, there remain reservations about their “black box” 
characteristics and limited physical interpretability. Moreover, 
accurately capturing the intricate spatio-temporal nuances of ST 
continues to pose challenges. To address these challenges above, the 
ISDNM model was introduced for ST prediction, utilizing ERA5 data. 
Trained on ERA5 data from 2015–2018 in China, with 2019 as the 
validation set and 2020 as the test set, ISDNM is structured in two 
distinct segments: the predictive and the interpretable components. 
While the predictive component is primarily engineered for feature 
extraction, the interpretable component elucidates both spatial and 
temporal correlations of ST.

Comprehensive assessments of ERA5-based ST via the ISDNM 
model highlight its remarkable advantage over conventional deep 
learning techniques. By integrating the CNN-encoder-decoder with 
the LSTM-encoder-decoder architectures, ISDNM attained the best 
performance. The standout attribute of ISDNM lies in its ability to 
provide insights, facilitating the extraction of spatio-temporal 
characteristics of ST. This design effectively delineates the associations 
between diverse categorical variables in connection with ST and 
discerns the temporal shifts in ST.

However, like all models, the ISDNM has its limitations. While it 
exhibits robust predictive and interpretative capabilities, it primarily 
relies on ERA5 data, which may introduce biases or errors inherent to 
this specific dataset. The model’s performance in regions outside 
China, or under different climatic conditions, remains to 
be  ascertained. Additionally, its dependence on CNN-encoder-
decoder and LSTM-encoder-decoder architectures might limit its 
adaptability to newer or alternative deep learning techniques.

Looking to the future, there is potential to refine the ISDNM 
model by incorporating more diverse datasets to enhance its 
generalizability. Furthermore, exploring the integration of newer deep 
learning techniques or alternative architectures could elevate its 
predictive and interpretative capacities. The pronounced impact of 
months like May and November on yearly ST predictions also suggests 
avenues for targeted, seasonal investigations. Future studies will delve 

deeper into these aspects, further exploring the complex dynamics 
governing the ISDNM model in the realm of ST.

Simultaneously, the quality of the dataset will be enhanced by 
incorporating station data and diverse satellite information, aiming to 
achieve even more competitive outcomes.
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