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Evaluating climate change 
impacts on ecosystem 
resources through the lens of 
climate analogs
Nicholas A. Povak * and Patricia N. Manley 

USDA-FS, Pacific Southwest Research Station, Placerville, CA, United States

As disturbances continue to increase in magnitude and severity under 
climate change, there is an urgency to develop climate-informed 
management solutions to increase resilience and help sustain the supply 
of ecosystem services over the long term. Towards this goal, we  used 
climate analog modeling combined with logic-based conditions 
assessments to quantify the future resource stability (FRS) under mid-
century climate. Analog models were developed for nine climate 
projections for 1 km cells across California. For each model, resource 
conditions were assessed at each focal cell in comparison to the top 100 
climate analog locations using fuzzy logic. Model outputs provided 
a measure of support for the proposition that a given resource would 
be stable under future climate change. Raster outputs for six ecosystem 
resources exhibited a high degree of spatial variability in FRS that was 
largely driven by biophysical gradients across the State, and cross-
correlation among resources suggested similarities in resource responses 
to climate change. Overall, about one-third of the State exhibited low 
stability indicating a lack of resilience and potential for resource losses 
over time. Areas most vulnerable to climate change occurred at lower 
elevations and/or in warmer winter and summer environments, whereas 
high stability occurred at higher elevation, or at mid-elevations with 
warmer summers and cooler winters. The modeling approach offered a 
replicable methodology to assess future resource stability across large 
regions and for multiple, diverse resources. Model outputs can be readily 
integrated into decision support systems to guide strategic management 
investments.
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Introduction

The direct and indirect impacts from ongoing climate change are being observed 
throughout social and ecological systems across the globe (Pörtner et al., 2022). Recent 
studies have documented the susceptibility of dominant forest vegetation to current and 
predicted future climate and suggest that dominant vegetation types across portions of 
their range are unlikely to persist over time (Dobrowski et al., 2011; Coop et al., 2020; Hill 
et al., 2023). Declines in conifer forests across 30% of the southern Sierra region in 
California have been recorded following recent natural disturbances leaving vast areas 
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susceptible to conversions to alternative vegetation types (Steel et al., 
2022). As disturbances from drought, insect outbreaks, and wildfires 
increase in extent and severity, ecological impacts will be  more 
apparent where pre-fire vegetation types are currently outside their 
climatic tolerances (Thorne et al., 2017; Triepke et al., 2019; Coop 
et al., 2020; Hill et al., 2023).

Social-ecological systems are inherently multi-dimensional and 
changes in dominant climate regimes will likely permeate across biotic 
and abiotic processes Manley et al. (This issue). Tracking direct and 
indirect impacts from climate change is a high-dimensional problem, 
and understanding how climate may change in a given area may not 
adequately inform potential changes to key ecosystem provisions such 
as carbon sequestration, fire dynamics, or biodiversity (Garcia et al., 
2014). The direction and degree of these impacts may vary among 
ecosystem resources and impacts will likely vary spatially across 
biophysical gradients (Thorne et al., 2017).

While land mangers acknowledge the threats imposed by climate 
change, many barriers exist towards integrating climate change 
impacts into management planning (Urgenson et al., 2017; Morecroft 
et al., 2019; Brice et al., 2020). The ability to anticipate the magnitude 
and direction of change in key ecosystem properties can help 
managers strategically plan appropriate place-based treatments 
(Stein et  al., 2014). Treatments are aimed at either preventing 
transitions to alternative states by increasing the adaptive capacity 
of an ecosystem, or facilitating the transition to desirable alternative 
states that are more suited to predicted future climates (Coop et al., 
2020; Schuurman et al., 2020). Such goals represent a paradigm shift 
in management from a resistance-based model aimed at preventing 
change, towards managing for change and including a broader set of 
objectives that acknowledge the non-stationary nature of ecosystems 
over space and time (Aplet and Cole, 2010; Stein et  al., 2014; 
McWethy et  al., 2019). However, managers require tools to help 
reduce uncertainty in future climate conditions and associated 
downstream effects on key ecosystem resources to achieve these 
broader goals. Such information can help gain a shared 
understanding among stakeholders and policymakers of the 
potential impediments that climate may pose on securing and 
sustaining resources (Grafton et al., 2019; Gaines et al., 2022). Such 
models need to be  scalable to meet the needs of large regional 
landscapes, adaptable to various geographies and ecosystem 
resources, of high resolution to inform project-level planning, and 
easily integrated into decision support and other management 
planning tools to allow for integration into the planning process.

Climate analog modeling is one such approach that uses a space-
for-time substitution to identify locations across a large geographic 
region that match the climate regime of a given focal cell (Williams 
et al., 2007; Mahony et al., 2017). Specifically, backwards or reverse 
climate analogs are used to answer the question, “where on the 
landscape do climate regimes exist today that match my future 
predicted climate conditions?” Such analyzes have been used to infer 
1) the occurrence and ubiquity of future climates currently on the 
landscape (Williams et al., 2007; Mahony et al., 2018), 2) the distance 
between a focal cell and its future climate match (Dobrowski and 
Parks, 2016), 3) the displacement potential of climates outside of 
protected natural areas (Dobrowski et al., 2021; Parks et al., 2023), and 
4) the likelihood of changes in key ecosystem properties under future 
climate change (Parks et al., 2018, 2019; Hoecker et al., 2023). In the 
latter example, Parks et al. (2018) used climate analog modeling to 

quantify climate susceptibility by comparing dominant vegetation and 
associated fire regime conditions at each focal cell to their respective 
climate analog locations.

The objectives of the current study were to extend the methods 
of previous climate analog studies and incorporate them into a 
multi-resource ecosystem assessment of future potential conditions 
across California. Current resource conditions were modeled 
against their analog counterparts to determine the magnitude and 
direction of change anticipated under mid-21st century climate 
using fuzzy logic. This allowed for the integration of model outputs 
to assess potential climate impacts across a spectrum of ecological 
resources. From these results we asked the following questions: 
What are the patterns of future resource stability and are there 
similarities in the patterns across ecosystem resources? What are 
the biophysical factors driving patterns of future resource stability? 
How do inferences about resource stability differ using climate 
velocity (e.g., distance to climate analogs) versus the functional 
assessment used here?

Materials and methods

Study area

Our study was motivated by California’s Wildfire and Forest 
Resilience Action Plan and the associated Task Force that is aimed 
at developing strategies to increase the pace and scale of management 
across the Sate (California Wildfire and Forest Resilience Task Force, 
2022). Accordingly, we applied our modeling framework to 1 km 
cells across the state of California, United States (Figure 1). Some 
analysis results were summarized to the six broad ecoregions 
established by the Task Force, which included: Sierra, North Coast, 
Central Coast, South Coast, Central Valley, and Basin and Range 
regions (Figure 1).

Modeling workflow

We provide a detailed description of the modeling components in 
the following sections, and a graphical workflow is presented in 
Figure 2. In summary, for each 1 km cell in California, the process 
began by projecting climate to mid-century and identifying locations 
with similar climate regimes on the landscape today (i.e., climate 
analogs). Data at each analog location were collected across six 
ecosystem resources (e.g., vegetation, wildfire, biodiversity) and 
compared to each cell in California using fuzzy logic to determine the 
degree of resource stability under climate change (Figure 2).

Climate analog modeling

We followed Mahony et al. (2017) and others (e.g., Dobrowski 
et  al., 2021) who developed and applied methods to statistically 
evaluate climatic similarity across large regions using a backwards or 
reverse climate analog approach. For a given focal cell, reverse analog 
modeling identifies locations across a broad geography that currently 
have a climate regime similar to the future climate projected for the 
focal cell (Hamann et al., 2015).
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Selection of climate analog locations
We used the Mahalanobis distance (D) and the standardization 

based on the Chi distribution (σ; see, Mahony et al., 2017) as the 
measure of statistical distance between 1) mid-21st century (2041–
2070) climate for all focal cells within California and 2) recent 
(reference) climate conditions (1971–2000) for selected analog cells 
within a 1,000 km radius. The Mahalanobis calculation requires an 
estimate of the sample inverse covariance matrix (ICV) for the climate 
data. We used the distribution of future climate data as a conservative 
approach to estimating the ICV. These data 1) exhibited larger 
variation compared to the reference climate data, 2) likely 
overestimated the variability, and 3) led to a more conservative 
estimate of climate distance (C. R. Mahony, personal communication).

For each focal cell, we identified the top 100 climate analogs with 
the lowest σ value. The selection of the 1,000 km buffer was necessary 
to limit processing run times while ensuring an adequate search 
window. Dobrowski et  al. (2021) used a 2000 km buffer for 
identifying analogs for the end-of-21st century climate projections. 

Parks et al. (2023) used a 500 km radius for mid-21st century based 
on the estimated upper range of dispersal for some species. Schloss 
et  al. (2012) reported a 15 km yr−1 upper quantile estimate of 
dispersal velocity, which matches the 1,000 km search window 
used here.

The selection of climate analog locations was done separately for 
each of nine downscaled general circulation models (GCM). These 
GCMs were found to be most representative of spatial variation in 
model uncertainty and were recommended for use in regional 
analyzes (Mahony et al., 2022). GCMs included: ACCESS-ESM1-5, 
CNRM-ESM2-1, EC-Earth3, GFDL-ESM4, GISS-E2-1-G, MIROC6, 
MPI-ESM1-2-HR, MRI-ESM2-0, UKEMS1-0-LL. This resulted in the 
identification of a total of 900 climate analogs for each 1 km cell in 
California. Project climate data were from the Representative 
Concentration Pathway (RCP) 8.5 and Shared Socioeconomic 
Pathway (SSP) 5 Fossil Fuel Development from the 6th Coupled 
Model Intercomparison Project Phases (CMIP6) to match previous 
studies (Dobrowski and Parks, 2016; Parks et al., 2018; Dobrowski 

FIGURE 1

Ecoregions of the state of California and LANDFIRE Biophysical Setting (BpS) GROUPVEG classification representing potential vegetation under a pre-
European settlement disturbance regime.
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et al., 2021). All computations were done within the R version v4.04 
computing environment (R Core Team, 2021).

Climate data
ClimateNA (v7.30, Wang et al., 2016) data were used to represent 

both current climate (reference climate data for the years 1971–2000) 
and mid-21st century projected climate (years 2041–2070). 
We selected the reference time period to balance the representation of 
climate prior to major warming (sensu, Dobrowski et al., 2021) while 
still representing more recent climate conditions to support the 
assessment of “current conditions” (see also Parks et al., 2019). The 

mid-21st century future time period was chosen as it was relevant for 
management planning horizons while still representing a period of 
significant future climate change. ClimateNA downscales gridded 
climate data from PRISM (Daly et al., 2000; Daly and Bryant, 2013) 
and WorldClim (Fick and Hijmans, 2017) for historical and current 
time periods and Coupled Model Intercomparison Project (CMIP6) 
for projected future conditions. The climateNA model downscales 
gridded climate data from 4 km to scale-free point data using a 
combination of bilinear interpolation between cell centers and local 
elevation adjustments using empirical lapse rates specific to the 
climate variable, location, and elevation (Wang et al., 2016). These data 

FIGURE 2

Example modeling workflow outlining the methods behind the climate analog modeling for each 1  km cell in California [zi; (A–C)], subsequent fuzzy 
logic modeling (D–F), extrapolation across cells and climate models (G,H), and combining results into a final map (I). See Supplementary Figures S1-S7 
for more information on the specific logic model details, which vary across the six ecosystem resources. Supplementary Figure S8 provides the logic 
for averaging across GCMs (Steps H-I).
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have been used in previous climate analog modeling efforts (Littlefield 
et al., 2017; Mahony et al., 2017; Parks et al., 2018, 2019).

Variable selection
As Mahony et al. (2017) point out, the selection of the number of 

variables to represent climate conditions requires a balance between 
generality (too few variables) and specificity (too many variables). 
Parks et al. (2018) developed climate analog models for the western 
US using two variables to represent climate: Hargreaves’ climatic 
moisture deficit (CMD; mm yr.−1) and Hargreaves’ reference 
evaporation minus climatic moisture deficit (i.e., evapotranspiration 
[ET; mm yr.−1]). Williams et al. (2007) used four climate variables: 
mean summer temperature, mean winter temperature, summer 
precipitation, and winter precipitation. For this study, we conducted 
initial tests using different selections and numbers of climate variables. 
In general, given the high collinearity of the ClimateNA variables, the 
model was robust to the climate variables selected, but sensitive to the 
number of variables. As such, we  selected a series of five climate 
variables that were similar to variables used across previous studies 
and represented both seasonal temperature and moisture regimes to 
reflect climate gradients and main drivers of ecosystem processes.  
The final set included: climatic moisture deficit (CMD), summer 
precipitation (PPTsm), winter precipitation PPTwt( ), mean warmest 
month temperature (MWMT ), mean coldest month 
temperature (MCMT ).

Evaluating ecosystem resource stability 
under climate change

We used fuzzy logic to evaluate future resource stability (FRS) 
across six main ecosystem resource outcomes, which encompass a 
wide array of essential ecosystem services. Fuzzy logic has been used 
widely in spatial decision support applications as a means of evaluating 
environmental conditions and informing strategic and tactical 

planning (Reynolds, 2001; Reynolds et  al., 2023). Logic models 
interpret data to determine the degree to which they satisfy a 
proposition (e.g., forest vegetation is resilient to climate change). 
Relevant to the current application, fuzzy logic evaluates the condition 
of spatial data using one or more membership functions 
(Supplementary Figures S1–S8) (Reynolds, 2001). Outputs from fuzzy 
logic modeling are strength of evidence (SOE) scores that quantify the 
level of support towards accepting the proposition that a given 
resource is stable under mid-century climate. SOE scores range from 
−1.0 (low resource stability) to +1.0 (high resource stability).

The selected ecosystem resources were based on six of the ten 
Pillars from the Framework for Resilience (Manley et al., This issue), 
which is a hierarchical conceptual model used to characterize the 
many interrelated social and ecological functions provided by resilient 
ecosystems. Pillars represent ecosystem service outputs expected from 
resilient systems and are often the target of management. For each 
ecosystem resource (aka Pillar), we  developed a logic model to 
evaluate the proposition that a given resource will maintain or 
improve in condition under climate change (e.g., live carbon will not 
decrease under climate change) (Table  1; Supplementary Figures 
S1–S7).

The fuzzy logic model for each ecosystem resource consisted of 
two terms. First, the standardized Mahalanobis σ score (see below) 
represented the degree of climatic matching between each analog and 
the focal cell, referred to as the Analog Similarity Score. Second, 
we compared the current resource conditions at the focal cell with 
those across a set of 900 climate analog locations, referred to as the 
Ecological Score. These two scores were calculated for each focal cell, 
and the score with the lowest value (poorest strength of evidence) was 
assigned to the cell for each GCM.

Focal cell scores for the individual GCM models (n = 9) were 
combined to derive a final resource stability score. The SOE scores 
were first averaged across the nine GCM models, and then the 
standard deviation of the SOE scores was scaled from 1 (no variation 
among GCMs, SOESD = 0) to 0.5 (high variation among GCMs 

TABLE 1 Future condition evaluations using fuzzy logic and climate analog modeling.

Pillar Proposition Data Reference

Air quality
Heavy fuel loads will not increase under 

climate change

Downed fuel loads (short tons per 

acre) sound + rotten >9″ diameter

FCCSa fuel beds

LANDFIRE (2020)

Biodiversity conservation

Species richness among main classes of 

tretrapods do not decrease under climate 

change

Species richness:

 - Mammals

 - Birds

 - Amphibians

 - Reptiles

Amphibians, birds, mammals: Jenkins 

et al. (2013)

Reptiles:

Roll et al. (2017)

Carbon sequestration
The amount of aboveground live carbon does 

not decrease under climate change
Aboveground live carbon Spawn et al. (2020)

Fire dynamics

Fire frequency will not change, and the 

probability of high severity fire will not 

increase under climate change

LANDFIRE BpS

 - Probability of replacement severity

 - Fire return interval

LANDFIRE (2020)

Vegetation Resilience
Dominant physiognomic type will remain 

stable under climate change
LANDFIRE BpS vegetation group LANDFIRE (2020)

Water security
Climatic water stress will not increase under 

climate change
Hogg’s climatic moisture index Hogg (1997), Wang et al. (2016)

aFuel characteristics classification system.
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SOESD =1). The SOE and SOESD  scores were multiplied together, 
which served to temper the strength of the resource stability score in 
instances of high variability in logic model scores across the GCMs 
(Supplementary Figure S8).

Analog similarity score
The comparison of focal and analog climatic conditions was 

conducted once to derive the Analog Similarity Score. We used the 
Mahalanobis standardized σ as a measure of climatic dissimilarity 
between the future climate of a given focal cell and its top 100 climate 
analogs. The σ statistic is similar to a Z-score with lower scores 
indicating more similar climate matches. Dobrowski et al. (2021) 
suggested that analogs with >2σ indicated a poor climate match and 
represented a novel or no-analog future climate condition. Parks et al. 
(2022) used a < 0.5σ cutoff to indicate good climate matches. From 
these examples, we used a > 1.64σ to indicate poor climate matches 
(SOE = −1) and < 0.5σ as good climate matches (SOE = +1) 
(Supplementary Figure S1). Intermediate values of σd  were linearly 
ramped between −1 and + 1.

Vegetation Resilience FRS calculation
We evaluated the likelihood and severity of dominant vegetation 

conversions under climate change to represent the Vegetation Resilience 
Ecological Score. We followed the methods of Parks et al. (2018), who 
used LANDFIRE biophysical setting (BpS; LANDFIRE, 2020) data to 
compare vegetation among focal cells and their respective climate 
analogs. The BpS layer represents potential vegetation types given the 
dominant biophysical setting and modeled pre-European settlement 
disturbance regime. This was chosen over existing vegetation to remove 
the influence of recent disturbances and to represent anticipated 
changes in broad vegetation types driven by mid-century climate 
change. We used the GROUPVEG variable within the BpS dataset, 
which included a total of 12 broad vegetation and non-vegetated cover 
types (Supplementary Figure S2). For analog locations falling in Mexico, 
and outside the footprint of the LANDFIRE data, we attributed BpS 
GROUPVEG types to Rehfeldt et al. (2012) ecoregions based on their 
predominant vegetation, climate, and proximity to dominant BpS type 
(for those near the US/Mexico border) (Supplementary Table S1).

Each vegetation type was assigned an ordinal ranking such that 
types with similar physiognomies (e.g., conifer and hardwood-conifer) 
were closer in rank than those with much different physiognomies (e.g., 
hardwood and grassland). While subjective, the ranking allowed the 
model to differentiate the “severity” of potential vegetation conversions 
such that larger shifts in vegetation would receive SOE scores converging 
on −1. The absolute differences between the focal cell vegetation class 
and the vegetation classes at the climate analog locations were calculated. 
An SOE score of +1 indicated no change in vegetation type from the 
focal cell to the analogs, and a − 1 SOE was assigned for absolute 
differences >4. The value of 4 roughly corresponded to shifts from tree-
dominated to non-forest types. Importantly, this measure of stability 
was non-directional in that it was agnostic to the type of conversion 
(e.g., transitions from conifer to shrubland and from shrubland to 
conifer received an SOE score of −1).

The resulting Ecological Score Ei j k, ,( ) was then combined with 
the Analog Similarity Score ( , ,σ i j k ) using the And operator, which 
calculates the minimum of the Ei j k, ,  and σ i j k, , scores. The subscripts 
indicate the ith focal cell (n = 373,213), the jth analog (n = 100), and the 
kth GCM (n = 9).

Fire Dynamics FRS calculation
LANDFIRE BpS data were also used to characterize the Fire 

Dynamics Pillar, based on fire return interval (FRI) and probability of 
replacement severity (PRS), similar to Parks et al. (2018). For analog 
locations falling in Mexico, we used the same BpS classification of the 
Rehfeldt et al. (2012) ecoregions that was applied to the Vegetation 
Resilience Pillar (above) (Supplementary Table S1).

For each focal cell, a weighted empirical distribution was 
developed for FRI and PRS data from the 100 climate analogs for each 
of the 9 GCMs, separately (Supplementary Figure S3). The weight of 
each analog was determined by the logic model output for σ 
(Supplementary Figure S1). Weights ranged from 0 to 2, where a 0 
weight was assigned to an Analog Similarity Score of −1 (i.e., poor 
climate match yielded lower weights), a weight of 2 for Analog 
Similarity Score of +1 (i.e., good climate match yielded higher 
weights). All intermediate σ logic scores were ramped linearly between 
0 and 2.

The current FRI and PRS at a focal cell were then evaluated against 
their respective analog distributions to determine the percentile 
condition of the focal cell. For PRS, larger percentiles indicated the 
probability of replacement severity fire was currently higher at the 
focal cell compared to its analogs, suggesting a potential decrease in 
high-severity fire, and leading to a SOE score approaching +1. For 
FRI, the scoring was agnostic to direction, and low SOE scores were 
given to cells where the current FRIs were in the tails of the analog 
distribution, indicating a high degree of change in the FRI.

For each FRI and PRS, the resultant Ecological Score Ei j k, ,( )was 
then combined with the mean Analog Similarity Score ( ,σ i k ) across 
all 100 climate analogs using the And (minimum) operator. Finally, 
FRI and PRS logic scores were combined using a Union (average) 
operator (Supplementary Figure S3).

Biodiversity Conservation FRS calculation
Data for the Biodiversity Conservation model was represented 

by species richness for the four classes of tetrapods. Spatial data 
representing species range maps for bird, mammal (excluding 
humans), and amphibian species groups were from Jenkins et al. 
(2013) and reptile data were from Roll et al. (2017) and Caetano 
et  al. (2022). Data were rasterized to 1 km cells across North 
America to match the resolution of the climateNA data, and cell 
values represented the number of species for each of the four 
taxonomic classes.

Akin to the Fire Dynamics FRS, a weighted empirical distribution 
was developed for species richness from the 100 climate analogs. 
Current richness for the focal cell was evaluated against the analog 
distribution (Supplementary Figure S4). Large percentiles indicated 
that current richness is high compared to its analogs and suggested 
future biodiversity will decrease under climate change leading to a 
score approaching −1. For each taxonomic class, the resultant 
Ecological Score Ei j k, ,( ) was then combined with the mean Analog 
Similarity Score ( ,σ i k ) across all 100 climate analogs using the And 
(minimum) operator.

Carbon Sequestration FRS calculation
Spawn et  al. (2020) provided data for global coverage of 

aboveground live carbon (ALC; MgC ha−1) for the year 2010 (300-m 
resolution). Model estimates are land-cover specific and provided a 
temporally and globally consistent assessment of ALC.
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The Carbon Sequestration logic model followed the percentile 
methodology as outlined for the Biodiversity Conservation and Fire 
Dynamics models (Supplementary Figure S5). For Carbon, large 
percentiles indicated current carbon levels at the focal cell were higher 
than those at the analog locations, and the likelihood for lower carbon 
levels under climate change led to a score converging on −1. The 
resultant Ecological Score Ei j k, ,( )was then combined with the mean 
Analog Similarity Score ( ,σ i k) across all 100 climate analogs using the 
And (minimum) operator.

Air Quality FRS Calculation
The Air Quality model evaluated the potential emissions from fires 

as estimated by the abundance of “heavy” surface fuels. The premise 
being that these larger fuels are consumable during a severe wildfire and 
contribute to high levels of PM2 5.  during smoldering combustion 
(Peterson et al., 2022). To characterize large surface fuels, we used the 
FCCS (Fuel Characteristic Classification System) data available through 
LANDFIRE (Ottmar et al., 2007; Prichard et al., 2019). We selected 
a > 23 cm (9 in) diameter cutoff to identify heavy fuels, which combined 
the 23–51 cm (9–20 in) and > 51 cm (20 in) diameter classes in the FCCS 
database, and we included both sound and rotten types. This was similar 
to the 30.5 cm (12 in) diameter cutoff used by Young-Hart et al. (2023). 
These data did not expand beyond the US border and therefore analogs 
located in Mexico were assigned an NA value.

We adopted the percentile method described above to assess the 
future resource stability of heavy fuels (Supplementary Figure S6). 
Large percentiles indicated current heavy fuel loads at the focal cell 
are higher than those at the analog locations. Lower heavy fuel loads 
at the analog locations would indicate lower potential emissions under 
climate change and result in a SOE score converging on +1. The 
resultant Ecological Score Ei j k, ,( )was then combined with the mean 
Analog Similarity Score ( ,σ i k) across all 100 climate analogs using the 
And (minimum) operator.

Water Security FRS Calculation
The logic model for Water Security consisted of two metrics, 

both of which were based on the climate moisture index (CMI) 
from ClimateNA (1 km) as an indicator of drought (Hogg, 1997). 
The first metric evaluated the difference between the focal cell’s 
CMI and each of its climate analogs (Supplementary Figure S7). 
Large reductions in CMI indicated higher climatic moisture stress 
for the analogs and suggested a less hospitable future for forested 
vegetation. The second metric identified instances where CMI 
values were > 0 for the current climate (suitable for forest 
vegetation; Levesque and Hamann, 2022) but below 0 for the 
future analog (unsuitable for forest vegetation). Where this 
occurred, scores from the second metric ranged from −0.5 to −1.0 
and caused a reduction in the fuzzy logic score. Both metrics were 
averaged together to represent the final Ecological Score Ei j k, ,( ), 
which was then combined with the Analog Similarity Score ( , ,σ i j k
) using the And (fuzzy minimum) operator to derive the FRS score.

Statistical analyzes

After the final FRS scores were derived, we quantified and mapped 
the relationships among the ecosystem resource models to determine 
their biophysical drivers.

Question 1. What are the spatial patterns and biophysical affiliations 
of future resource stability scores for each of the ecosystem resources 
and are there similarities among the six ecosystem resources?

We used a principal components analysis (PCA) to determine the 
spatial variability in the magnitude and direction of correlation among 
the FRS scores. We hypothesized that some Pillars would covary more 
strongly (e.g., Fire Dynamics and Vegetation Resilience) than others 
(e.g., Carbon Sequestration and Water Security) and that relationships 
among Pillars would vary with the steep environmental gradients 
across the state. Areas with strong positive loadings indicated high 
overall stability whereas areas with strong negative loadings indicated 
low stability. PCA was conducted using the rasterPCA function in the 
RStoolbox package v0.3.1.9999 (Leutner et al., 2023) in R.

In a separate analysis, we  further interrogated the Vegetation 
Resilience analog results to identify the climatic suitability for conifer 
forest and potential transitions to other vegetation types. Conifer 
stability was assessed for a subset of cells in California with a conifer 
BpS GROUPVEG type and was calculated as the proportion of climate 
analog locations that were also in a conifer forest type. A value of 0.0 
would indicate that all analog locations were a non-conifer type, and 
a value of 1.0 would indicate all analog locations were conifer. Conifer 
stability was also assessed separately for 1) hardwood and hardwood-
conifer, and 2) shrubland, grassland, and non-vegetated transitions. 
Conifer stability was then used as a response variable in a random 
forest model to determine the current climate conditions associated 
with potential conversions from conifer forest to conifer-hardwood or 
hardwood types. Random forest was conducted using the ranger 
package v0.15.1 (Wright and Ziegler, 2017) in R.

Question 2. What are the biophysical factors driving patterns of 
future resource stability across ecosystem resources?

We used K-means clustering to identify regions of similar FRS 
profiles across ecosystem resources. K-means partitions observations 
into a specified number of clusters (k) where cluster centers are 
selected to minimize within-cluster variance (McCune and Grace, 
2002). By clustering these scores, we identified relatively homogenous 
areas that shared a common signature among the six FRS scores and 
partitioned the landscape into FRS classes. We used the elbow method 
to determine the number of classes to include in the K-means (Cui, 
2020). This method uses a plot of the total within-class sum of squares 
against the number of classes and identifies the inflection point above 
which the variability explained by additional classes begins to level off.

The classification also served to reduce the dimensionality of FRS 
scores and provided a basis for inferring the potential biophysical 
drivers of FRS. We used a conditional classification tree analysis (ctree) 
to explain differences in biophysical setting across the FRS classes 
(Hothorn et  al., 2006). This analysis helped determine if certain 
settings (e.g., low elevation, hotter environments) were associated with 
lower/higher FRS scores. Predictor variables included elevation, 
latitude, longitude, and several climate variables from climateNA 
including climatic moisture deficit, reference evapotranspiration, 
mean warmest month temperature (C), mean coldest month 
temperature (C), Hogg’s climate moisture index (mm) (Hogg, 1997), 
number of degree days >18o C, number of frost-free days, and the 
amount of precipitation as snow (mm) (Wang et al., 2016). The initial 
set of predictor variables was selected to represent variation in annual 
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and seasonal climate regimes across the State and to identify patterns 
across geographical gradients (i.e., latitude, longitude, and elevation) 
not explained by the climate variables.

The ctree analysis was conducted in the partykit package v1.2.20 
(Hothorn et al., 2006; Hothorn and Zeileis, 2015). The model was 
intended to be descriptive of the spatial distribution of the K-means 
classes, not purely predictive. Therefore, we imposed a maxdepth of 3, 
which allowed for interpretation of the biophysical drivers of these 
patterns but also contributed to some nodes with equivocal group 
memberships (i.e., suboptimal predictive ability).

Question 3. How do inferences about resource stability differ using 
climate velocity (e.g., distance to climate analogs) versus a 
functional assessment (e.g., FRS scores).

We used Pearson’s correlations to identify the similarity in 1) the 
average geographic distance between focal cells and their analog 
locations, and 2) the FRS scores. For each GCM, we  calculated a 
weighted average distance from each focal cell to its 100 climate 
analogs. Weights were assigned to each analog based on its Analog 
Similarity Score, with lower weights given to analogs that were poor 
climate matches to the future climate of the focal cell. These average 
distances were then correlated with the FRS scores. Large negative 
correlations would indicate that larger geographic distances are 
associated with lower FRS scores and are interpreted as “the further 
analog locations are from their focal cell, the less stable a given 
resource will be under climate change.” This analysis helped determine 
the ability to generalize climate velocity outputs to assessments of 
potential resource stability under climate change.

Results

Question 1. What are the spatial patterns and biophysical affiliations 
of future resource stability scores for each of the ecosystem resources 
and are there similarities among the six ecosystem resources?

Future resource stability (FRS) exhibited high spatial heterogeneity 
throughout California and patterns varied across resources (Figures 3, 
4). Overall, 33% of the state exhibited low (FRS < -0.25), 55% moderate 
(−0.25 < FRS < 0.25) and 12% high (FRS > 0.25) stability when the six 
resource scores were combined (Figure 3; Supplementary Figure S8). 
Similarly, when viewed across individual ecosystem resources, 
we found much of the land area in low-moderate stability for most 
resources (Figure 4). For example, for the Fire Dynamics Pillar, only 
the Sierra ecoregion exhibited >10% of its land area in high stability 
(FRS > 0.25). Similarly, most ecoregions showed low resource stability 
for Biodiversity Conservation, and Carbon Sequestration. Air Quality 
was an exception, with high FRS scores reported for 27–71% of the 
land area across ecoregions (Figures 4, 5).

Low stability scores in some areas resulted from poor climate 
analog matches overall (Supplementary Figure S9). This occurred 
primarily in the lower elevation portions of the South Coast and 
Central Coast (including the San Francisco Peninsula), southern 
Central Valley, southern Basin and Range, and eastern edge of the 
North Coast (Figures 3, 4; Supplementary Figure S9). As a reminder, 
each logic model included the Analog Similarity Scores 
(Supplementary Figure S1), which indicated how closely the climate 

at the analog locations matched the future climate of the focal cell. 
This prevented misinterpretations where the model identified high 
stability for a resource but where analog locations were not 
representative of the future climate (e.g., poor climate match; see 
section: Assumptions and limitations). Poor climate matches could also 
be indicative of non-analog future climate conditions at these locations.

In the Sierras, a clear gradient was observed from high resource 
stability at the mid- to upper elevations to lower stability at lower 
elevations and in patches on the drier eastside of the Sierras to the 
north (Figures 3, 4). A distinct area of high resource stability was 
present within this mid-to upper-elevation band in the Sierras 
(Figures 3, 4). Similarly, areas of higher elevation in the North Coast 
ecoregion exhibited consistently high stability apart from Biodiversity 
Conservation, which had low stability throughout the ecoregion.

The Basin and Range ecoregion was characterized by a high level 
of FRS for most ecosystem resources. This region is largely covered by 
desert ecosystems that are dominated by sparsely vegetated shrublands 
with some hardwood and conifer vegetation at the highest elevations 

FIGURE 3

Final future resource stability (FRS) map. This results from averaging 
the FRS scores from the six individual ecosystem resource models 
(see Figure 4). Dark red colors indicate low resource stability (high 
vulnerability) to climate change across all six resources. Dark blue 
colors indicate consistently high stability and low vulnerability across 
resources.
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(Figure  1; Bailey, 1995). The high FRS is likely a function of the 
temperature and drought-adapted nature of the existing ecosystems 
and due to the region’s low productivity, which limits the amplitude of 
climate change responses compared with other more mesic ecoregions, 
such as the North Coast.

We further explored the Vegetation Resilience response to 
investigate conifer vegetation (in)stability throughout the state 
(Figure 6). The areas of highest conifer stability occurred within the 

North Coast along the coastal ecoregion and at higher elevations, and 
within the Sierra at higher elevations (Figure 6A). Conifer instability 
was also identified across other portions of the State and followed 
steep gradients particularly in the Sierra foothills, and low elevations 
in the North Coast ecoregion (Figure  6B). Within these areas, 
transitions were largely from conifer to conifer-hardwood or 
hardwood types. Conifer transitions directly to shrubland occurred in 
the drier northeast portion of the state in the Modoc and South 

FIGURE 4

Future resource stability (FRS) scores across the six ecosystem resources for the state of California (1 km resolution). Color ramp is the same as in 
Figure 3 – red colors indicate low stability and high vulnerability to climate change, while blue colors indicate high stability and low vulnerability. Logic 
models are provided for each of the resource (A) Air quality, Supplementary Figure S6; (B) Biodiversity conservation, Supplementary Figure S4; 
(C) Carbon sequestration, Supplementary Figure S5; (D) Fire dynamics, Supplementary Figure S3; (E) Vegetation resilience, Supplementary Figure S2; 
(F) Water security, Supplementary Figure S7).
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FIGURE 6

Climate analog modeling results depicting conifer stability and instability throughout its range in California. Stability and instability were measured as 
the proportion of the 900 analog locations that were (A) conifer types (i.e., stability), (B) hardwood or hardwood-conifer types, and (C) shrubland, 
grassland, or sparsely vegetated types. The distribution of conifer vegetation was based on LANDFIRE Biophysical Setting GROUPVEG. Dark black areas 
indicated no analogs matched the given vegetation type depicted in the panel, light gray areas indicate around half of the analogs were of the 
associated vegetation type, and brightly colored areas indicate nearly all analogs were of the vegetation type.

Cascades ecoregions (Figure 6C). Overall, 31.2% of conifer forests 
exhibited some level of instability within the BpS conifer footprint 
(>50% of analogs in non-conifer types), while 18.2% exhibited high 
instability (>75% of analogs in non-conifer types).

Random forest models were predictive of climatic conditions 
associated with conifer conversions to hardwood forest types 
(Supplementary Figure S10). Predicted conifer instability was 
associated with lower elevations, warm summers, and winters with 

precipitation dominated by rain (as opposed to snow). We found an 
inflection point in the response to elevation near 2,000 m, below which 
conifer instability increased rapidly. This corresponded well with the 
findings of Hill et al. (2023) who found a high incidence (95%) of 
vegetation-climate mismatch for Sierran conifer forests below 2,356 m 
(Figure 6B).

Striking similarities were observed among the PCA and K-means 
analyzes (Figure 7) indicating a high level of spatial structure in FRS 

FIGURE 5

Percentage area of each ecoregion exhibiting high future resource stability (FRS score  >  0.25) for each of the six ecosystem resources. Darker colors 
indicate a lower proportion of the ecoregion exhibited high FCS scores, while lighter colors indicated a higher incidence of stability.
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geographic patterns. For the PCA, the first PC axis explained 59.6% of 
the variability in FRS scores and all loadings were positive for this PC 
(Table 2; Supplementary Figure S11). This suggested a high degree of 
correlation among ecosystem resource scores, and patterns in the PCA 
outputs (Figure  7A) reinforced those observed in the FRS scores 
(Figure 4). PC 2 explained only 17.6% of the variation and largely 
differentiated Carbon Sequestration from Air Quality. This is an 
intuitive result given that live carbon and heavy fuel loads were 
positively correlated (r = 0.66 across the western US) and that relatively 
high carbon loads at a given focal cell would indicate low FRS (i.e., 
carbon loads expected to decline under climate change) while 
comparatively high fuel loads would indicate high FRS for Air Quality 
(i.e., fuel loads decline under climate change).

The high resource stability along the spine of the Sierra ecoregion 
is indicated by PC 1 as depicted in the bright blue coloration of the 
mapped results (Figure 7A). Focal cells along the crest of the over  
600 km length of the Sierra Nevada Mountain range were associated 
with high Analog Similarity Scores (i.e., close matches to analog 
climates, Supplementary Figure S9), and resource conditions at the 
analog locations were similar to, or in some cases supported higher 
resource values than, their respective focal cell. High resource stability 
also existed at higher elevations in the North and Central Coast 

ecoregions and for the Basin and Range ecoregion. Dark brown areas 
observed in the southern most portions of the Basin and Range 
ecoregion, the foothills of the Sierra, and at the northern nexus of the 
Central Valley with its mountainous neighboring ecoregions indicated 
low stability in this region across multiple resources.

K-means analysis mirrored the findings of the PCA and identified 
five distinct FRS classes (Figure 7B) ranging from Class 1 (highest FRS 
scores overall) to Class 5 (lowest FRS scores) (Figure  8). The 
classification differentiated the observed PCA gradients into distinct 
classes that varied by the signature of the FRS scores. Class 1 (highest 
FRS) represented the most stable conditions for Vegetation Resilience 
and Carbon Sequestration, and moderate to high stability for Air 
Quality and Water Security, which were largely relegated to mid to 
high elevations in the Sierra and at higher elevations in the two coastal 
ecoregions. Class 2 represented the most stable conditions for Air 
Quality and Biodiversity Conservation, with moderate stability for 
Water Security, and were largely responsible for the higher stability 
scores observed across the Basin and Range. Conversely, Class 4 
dominated the western half of the State, representing increasingly 
unstable conditions across all ecosystem resources, and Class 5 was 
limited in its distribution to a few transition areas around the Central 
Valley and the southern most part of the Basin and Range.

FIGURE 7

(A) PCA axis 1 (59.6% variance explained) from a principal components analysis on the resource stability scores across the six ecosystem resources for 
the state of California. Loadings were positive for all Pillars, and as such, blue areas indicate increasing stability across two or more Pillars, while brown 
colors indicate lower stability. (B) K-means clustering of the resource stability scores across the six ecosystem resources. K-means classes are ranked 
from 1, highest stability, to 5, lowest stability (see Figure 8). Percentages in the legend indicate the percentage coverage of each class across the state.
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Question 2. What are the biophysical factors driving patterns of 
future resource stability across ecosystem resources?

The five FRS classes were each associated with distinct biophysical 
environments based on predominant temperature and precipitation 
regimes (Figures 9, 10). Mean warmest month temperature was the 
main determinant of FRS class, followed by elevation (a driver of 
temperature) and, to a lesser degree, mean coldest month temperature 
and vegetation type (Figures 9, 10). In contrast, precipitation and 
moisture did not emerge as factors directly associated with patterns in 
future resource stability. Class 1 (highest overall stability, more 
mountainous areas) was most strongly associated with cooler summer 
temperatures (<28.1°C), higher elevations (>1,114 m), and cold forest 
types. Class 2 (moderate overall stability, primarily Great Basin and 
desert areas) was primarily associated with warmer summer 
temperatures, moderate elevations, and cooler winter temperatures 
(<11.6°C). Class 3 (variable stability across resources, limited 
distribution, primarily located along the interface between stable and 
unstable areas) was not well predicted by the ctree model and was 
distributed across the terminal nodes, but in general was associated 
with cooler summer temperatures at mid-elevations. Class 4 
(moderately unstable future climate across all resources, widespread 
across the western half of California) was associated with lower 
elevations and warmer summer and winter temperatures. Class 5 
occurred largely at the lowest elevations areas with the warmest 

summer temperatures, corresponding to areas without the mitigating 
influences of the ocean or mountains, which may explain the 
incidence of no-analog conditions identified for this class (Figures 8, 
9; Supplementary Figure S9).

Question 3. How do inferences about resource stability differ using 
climate velocity (e.g., distance to climate analogs) versus a 
functional assessment (e.g., FRS scores).

We found that climate velocity alone had virtually no relationship 
with future resource stability. Climate analogs further from their focal 
cell were not consistently associated with higher or lower FRS scores, 
regardless of the GCM (Table 3). This evidence suggests that climate 
velocity inferences are not generalizable to future resource stability.

Discussion

Climate will continue to be  a major catalyst of change across 
ecosystems creating high uncertainty for allocating strategic 
management investments (Stein et  al., 2014; Grafton et  al., 2019; 
Schuurman et  al., 2020; Hessburg et  al., 2021). Climate-informed 
management frameworks have recently gained attention by providing 
alternative management pathways to consider under future projected 
climate impacts (Aplet and Cole, 2010; Peterson St-Laurent et al., 

FIGURE 8

Average future resource stability (FRS) score for each of seven K-means clusters across the six ecosystem resources and for the final Ecosystem FRS 
(e.g., average of the six scores).

TABLE 2 Principal components analysis (PCA) loadings for the future resource stability scores associated with each of six ecosystem resources.

Resources PC 1 PC 2 PC 3 PC 4 PC 5 PC 6

Air quality 0.515 0.461 0.197 0.578 0.109 0.370

Biodiversity 0.417 0.157 0.536 −0.713 −0.043 0.065

Carbon sequestration 0.390 −0.871 0.170 0.175 0.056 0.163

Fire dynamics 0.315 0.032 −0.524 −0.251 0.750 −0.026 

Vegetation Resilience 0.404 0.021 −0.607 −0.160 −0.642 0.173

Water security 0.383 0.046 0.049 0.196 −0.094 −0.895

Proportion of variance 0.596 0.176 0.097 0.056 0.044 0.030

Cumulative proportion 0.596 0.773 0.870 0.926 0.970 1.000

The highest resource scores for each principal component are bolded.
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2021). However, few of these frameworks provide the necessary 
specificity to diagnose future conditions across large landscapes at 
high-resolution, provide resource-specific estimates of climatic 
stability, or offer a mechanism for quantifying potential future 
vulnerabilities. The method developed here integrates climate analog 
modeling with fuzzy logic evaluations to compare current ecosystem 
conditions with likely future trajectories under climate change. By 
evaluating a total of nine GCM models, our methods accounted for 
the high inter-model variability in future predicted climate conditions 
towards developing a robust estimate of ecosystem vulnerabilities to 
future climate. Incorporating fuzzy logic modeling into the assessment 
allowed us to quantify the direction and magnitude of change 
anticipated under future climates and relate that to a quantitative 
representation of future resource stability (FRS) for each of six 
ecosystem resources.

Using these methods, we found:

 1 High spatial cross-correlation existed among the six FRS scores 
across California despite the highly varied data sources 
accompanying the resource assessments. This was in part due 
to a lack of adequate climate analogs across portions of 
the State.

 2 Approximately 31% of conifer-capable forestland showed 
some evidence of instability (>50% of analog locations were 
non-conifer types). Transitions to hardwood types were 
indicated in the Sierran foothills and low elevations in  
the North Coast; transitions directly to non-forest types 
were identified in the southern Cascades and Modoc  
regions.

 3 FRS spatial patterns were highly variable within and among 
ecoregions and responded to elevational and biophysical  
gradients.

 4 High FRS was identified within the Sierra Nevada Mountains, 
at high elevations within the coastal ecoregions, and within the 
Basin and Range region.

 5 High FRS scores were most prominent at higher elevation 
(>1,114-m) or at mid-elevations with warmer summers and 

cooler winters. Areas most vulnerable to ensuing climate 
change occurred at lower elevations (<398 m) and/or in 
warmer winter and summer environments.

These findings support previous studies showing the vulnerability 
of low-elevation conifer forests to current and future climatic 
conditions. Hill et al. (2023) found 20% of Sierra Nevada conifer forest 
currently inhabit areas outside their early 20th century climate 
envelopes, suggesting that these areas of vegetation-climate mismatch 
portend future conversions to non-conifer types. The most vulnerable 
populations in their study were found below 2,356-m elevation. Our 
results corroborate these findings in the Sierra and identified 
additional areas of conifer instability elsewhere in the State with high 
concentrations of climate-vulnerable conifer forests in the North 
Coast region in the Klamath and Trinity River drainages. Random 
forest analysis provided further verification, with models showing a 
stark increase in the likelihood of conifer to hardwood transitions at 
elevations <2,000-m (Supplementary Figure S10). This elevation 
approximates the persistent snowline for the Sierra (2250–2,500-m, 
Shulgina et al., 2023), which shortens the period of drought stress in 
conifer trees, and fuels tree growth during periods of limited rainfall 
(Casirati et al., 2023), among other benefits (Stevens and Latimer, 
2015). Furthermore, elevation was an important predictor of FRS 
classes with higher elevations supporting high FRS (Class 1), while 
low elevations supported low FRS (Classes 4, 5). Cold forests at upper 
elevations exhibited high FRS, suggesting the important role these 
forest types play in providing a suite of stable ecosystem resources 
under climate change.

Thorne et al. (2017) provide an alternative assessment of potential 
climate change impacts on vegetation types across California. 
Vegetation vulnerability to climate change in their study was inferred 
where future climate conditions were in the extremes of the climate 
envelope for the vegetation type. Under warming and drying 
conditions, the authors found 19–24% of California’s vegetation will 
experience climatic stress by the mid-21st century. Spatial patterns 
were similar to the Vegetation Resilience results presented here with 
a few exceptions, including in the Central Coast ecoregion where our 

FIGURE 9

Conditional classification tree dendrogram depicting biophysical characteristics of each of the five K-means clusters. The color of each leaf matches 
the cluster membership from Figure 7B. Units are: elevation (ELEV), meters; mean coldest month temperature (MCMT), degrees C; mean warmest 
month temperature (MWMT), degrees C; vegetation type (BPS; CF, cold forest; DF, dry forest; MF, moist forest; SG, shrubland/grassland; SB, sparse/
barren [see Parks et al. (2018)]. The cluster identifier is ordered from 1 (most stable) to 5 (least stable) (Figure 8).
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FIGURE 10

Maps depicting the cutoff values identified in the classification tree analysis used to explain biophysical characteristics for the K-means clusters across 
the six pillars. See Figure 7B for the map of the K-means clusters and Figure 9 for the classification tree diagram. Vegetation classes were based on a 
classification of BpS types from Parks et al. (2018).

TABLE 3 Pearson correlation between the analog distances from the focal cell and derived measures of future resource stability for each of six 
ecosystem resources (Pillars).

GCM Air Biodiversity Carbon Fire Vegetation Water

ACCESS-ESM1-5 −0.04 0.16 0.21 0.07 0.03 0.11

CNRM-ESM2-1 −0.09 −0.03 0.11 −0.08 −0.06 −0.02

EC-Earth3 −0.02 0.06 0.08 −0.04 −0.03 0.04

GFDL-ESM4 −0.17 −0.02 0.00 −0.18 −0.13 −0.17

GISS-E2-1-G −0.04 0.05 0.13 −0.07 −0.03 0.02

MIROC6 0.02 0.12 0.06 −0.05 −0.05 −0.04

MPI-ESM1-2-HR −0.07 0.12 0.10 −0.08 −0.06 0.03

MRI-ESM2-0 −0.06 0.16 0.11 −0.06 −0.04 0.14

UKESM1-0-LL −0.06 0.18 0.35 0.15 0.06 0.18

Correlations were calculated separately for each of nine global circulation models (GCMs). Analog distances were based on weighteda average geographic distance of climate analog locations 
from their respective focal cell. Positive values indicate that resource stability was increased with analog distance, negative values indicate that resource stability decreased with analog 
distance.aWeights for the weighted average geographic distance were determined by the Mahalanobis sigma scores where lower weights were given to climate analogs with poor sigma 
scores – indicating the analog was a poor climate match to the focal cell’s climate.
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finding of low stability contrasted with Thorne’s finding of generally 
low climatic stress.

Similar approaches have been used to infer stability of other 
ecosystem resources outside of vegetation. For example, Coffield et al. 
(2021) used a multi-model approach, including climate analog 
modeling, to quantify potential carbon losses and gains by 2100 across 
California. The authors found carbon losses of 6–33% by end-of-
century and identified similar spatial patterns as our FRS 
representation. These estimates were validated by the authors using 
alternative niche-based and machine learning approaches to predict 
future carbon levels under climate change. Using our methodology, 
we  found a corresponding potential carbon loss of 14.5% by 
mid-century. We note that Coffield et al. (2021) used a single climate 
analog for each focal cell and assessed carbon trajectories separately 
for a set of GCM scenarios, whereas we assessed the average carbon 
loss over a distribution of 900 analogs across 9 GCMs. Both 
approaches identified stable carbon at high elevation areas, particularly 
in the Sierra and North Coast, compared with low lying areas in the 
Sierra foothills, coastal sections, and arid regions where moderate to 
substantial carbon declines are anticipated.

Previous climate analog studies have used the geographic distance 
to climate analog locations as a measure of the potential challenges for 
organisms to track the velocity of anticipated climate change to stay 
within its climatic tolerances (Burrows et al., 2014). Further distances 
would indicate a higher velocity is required to remain within their 
climatic niche. These assessments are often not organism- or resource-
specific and they often serve as a general assessment of potential 
climatic impediments. We found little to no relationship between the 
geographic distance to analog locations and their FRS scores across 
the ecosystem resources. Similarly, Coffield et al. (2021) found that 
their climate analog approach was insensitive to the search window 
size used to identify climate analogs. This suggests caution when 
interpreting climate velocity outputs. While analog locations further 
in geographic space may imply dispersal or other physical barriers for 
organisms, it does not necessarily indicate a direct relationship to 
functional ecosystem resource responses under climate change 
(Yegorova et al., 2021).

Climate-informed decision-making

Given the uncertainties associated with future climate impacts on 
ecosystem function, managers require science-based methods to 
strategically allocate project areas on the landscape where treatments 
can improve and sustain ecosystem functions into the future and 
where they cannot (Millar et al., 2007; Chapin et al., 2010; Millar and 
Stephenson, 2015). Landscape assessments reliant on current 
conditions alone without integrating evaluations of future potential 
climate may lead to lower management efficacy (i.e., return on 
investment; Williams, 2022). The methods introduced here 
incorporate future climate change modeling into landscape-level 
evaluations of specific ecosystem resources. The climate analog 
approach, combined with fuzzy logic modeling, allowed for a 
consistent methodology to quantitatively assess potential resource 
stability across large landscapes. We found that stability was similar 
across ecosystem resources and was largely driven by predictable 
elevational and biophysical gradients. As such, areas with low FRS 
may require a different management approach to prepare ecosystems 

for changing environmental conditions or assist in their transition to 
types that are more suited for the future prevailing climate (Schuurman 
et al., 2020). Such analyzes can also help identify the natural capacity 
for specific landscapes to supply and maintain ecosystem services 
over time.

The methods introduced here can contribute to the integration of 
climate change vulnerability assessments into climate-informed 
management frameworks [e.g., resist-accept-direct (RAD, Schuurman 
et  al., 2020); resist-resilience-transformation (RRT, Peterson 
St-Laurent et al., 2021); resistance-resilience-response (Millar et al., 
2007)]. Collectively, these approaches reflect nature-based solutions 
aimed at working within the parameters of natural systems in terms 
of the potential for sustaining existing states and setting realistic 
management expectations given anticipated climate impacts on 
resource conditions and functions (Seddon et  al., 2021). These 
frameworks acknowledge that ecosystems are non-stationary, 
particularly as climate change continues to challenge the capacity to 
maintain characteristic processes and functions. While this represents 
a leap forward in terms of managing for change rather than resistance 
to change (Morecroft et al., 2019), there remains a need to provide a 
standardized and adaptable methodology to generate a quantitative, 
spatially explicit representation of potential stability for ecosystem 
resources targeted by management across large landscapes.

For example, given the large scale and scope of ecosystem changes 
in forestlands across the western US, planning and management 
agencies are directed to increase the pace and scale of management to 
meet these challenges (North et al., 2012; Urgenson et al., 2017; Miller 
et al., 2020). Strategic planning is required to best allocate restoration 
treatments across the region to achieve multiple objectives including 
risk reduction to communities, improving biodiversity, securing 
freshwater sources, mitigating the negative effects of wildfires, among 
many others. Povak et al. (This issue) introduce the PROMOTe model 
that allows for the joint assessment of current conditions and future 
resource stability measures into a single decision support modeling 
framework. In their article, the authors leveraged a landscape 
simulation model (LANDIS-II) to model future conditions to 
mid-21st century under natural disturbances and climate change. 
Model outputs were used to identify areas of stable and unstable 
carbon across a million-hectare landscape in the central Sierras and, 
along with a current conditions assessment, provided quantitative 
support for a set of four management strategies (Monitor, Adapt, 
Protect, and Transform) to help achieve carbon objectives. These 
methods are adaptable to the full spectrum of social-ecological 
resources (Manley et al., This issue).

LANDIS-II has been widely adopted given its ability to depict the 
evolution of modeled in situ dynamics over time (Scheller et al., 2007; 
Manley et  al., 2023; Salter et al. 2023), and their implications for 
climate-induced change in resource conditions and functions. 
However, these models require expert knowledge to parameterize a 
given landscape, and processing times can be limiting for large regions 
at high resolution (Furniss et al., 2022). Climate analog modeling 
offers an alternative approach that captures observed ex situ dynamics 
that evolved under a given climatic and biophysical setting, and 
disturbance regime. Therefore, despite their fundamental differences, 
both approaches are aimed at quantifying the ecological implications 
of climate change and their downstream effects on the sustainability 
of social-ecological resources. Accordingly, where expertise or time 
prevent the application of a landscape simulation model, climate 
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analog models appear to provide a robust estimation of FRS across the 
social-ecological resource gradient and can be included in climate-
informed strategic landscape planning models.

Assumptions and limitations

Climate change impacts alone have a lag time, and low FRS does 
not necessarily indicate immediate loss of ecosystem function (Coop 
et al., 2020; Hoecker et al., 2023). Transitions to new states will likely 
be initiated by wildfire or other natural disturbances, particularly in 
climate change susceptible locations (Donato et al., 2016; Parks et al., 
2019). Parks et al. (2019) found that ~36% of forestland across the 
intermountain West will be climatically unsuitable for supporting 
forest vegetation (i.e., trailing edge forests), and 18% of these forests 
are at risk of fire-caused conversion to non-forest. We similarly found 
evidence for potential instability in 31% of conifer-capable forestland 
in California, suggesting that climate may be  an impediment to 
sustaining current levels of conifer forests across portions of the state. 
The increasing extent and severity of wildfires across much of the 
western US will likely leave many climate-sensitive areas vulnerable to 
conversions in the coming decades (Dennison et al., 2014; Parks and 
Abatzoglou, 2020; Hoecker et al., 2023).

An important component of the fuzzy logic modeling was the 
inclusion of the Analog Stability Score for each resource assessment, 
which contributed to high cross-correlation among FRS scores. Areas 
where climate analogs were poor matches to their focal cell received a 
lower score regardless of their resource condition. Therefore, focal 
cells with only a few close climate matches exhibited low FRS in our 
analysis. The choice of including the top 100 analogs per GCM could 
have affected the FRS results by potentially overemphasizing the 
influence of poor analogs in the logic calculations particularly in 
no-analog (or few-analog) locations. However, analog scores were 
derived using weights where more climatically dissimilar neighbors 
were weighted lower than closer neighbors. Furthermore, tests 
conducted using 10–100 neighbors for Vegetation Resilience FRS 
scores showed the number of neighbors included in the analysis had 
a minimal effect on FRS scores overall. Specifically, the area with FRS 
scores >0.25 decreased only slightly from 29.9 to 24.2% when the 
number of nearest neighbors included in the analysis increased from 
10 to 100 per GCM.

Vegetation Resilience was characterized by LANDFIRE BpS data, 
which represents potential vegetation conditions under active 
disturbance regimes for a given biophysical setting (Rollins, 2009). 
Caution is warranted in comparing these results to other studies based 
on existing vegetation (e.g., Donato et al., 2016; Steel et al., 2022; Hill 
et al., 2023; Hoecker et al., 2023). Our climate analog models are not 
acutely predictive of future conditions or descriptive of past 
conditions. Analogs represent ecosystem conditions in relative 
equilibrium with their climate (Parks et  al., 2018). The models 
therefore identified the climatic sensitivity of ecosystem properties to 
the dominant climate regime.

Analog-derived conversions from conifer to shrubland/grassland 
in parts of California (Figure 6) also indicated conversions from fire 
regimes associated with forested vegetation to those associated with 
these other cover types. For example, some shrublands are adapted to 
frequent fires while others, like chapparal, experience fires at less 
frequent (40–60 years) intervals (Keeley and Fotheringham, 2001). 

Most shrubland and grasslands burn at high severity. Therefore, 
changes in fire regime reflect not just climate influences but also reflect 
changes in predominant lifeform (Parks et al., 2018).

The desert-dominated ecoregion in our study (Basin and Range) 
exhibited moderate to high stability (Class 2) over much of the area. 
Given the existing climatic limitations on resource provisions in this 
area, this result should not be  interpreted as an indication that 
resources are projected to improve by mid-century. Current resource 
levels in this area were demonstrably low for the State and FRS results 
suggest they will remain low or improve slightly. Therefore, FRS 
outputs should be interpreted by resource planners with reference to 
current inventory levels (Povak et al., This issue).

Air Quality and Carbon Sequestration assessments both 
utilized datasets representing a snapshot in time (2016 and 2010, 
respectively), which is contrary to the BpS data used for Vegetation 
Resilience and Fire Dynamics FRS scores. For these two resources, 
data were less readily available to evaluate fundamental potential. 
As mentioned, the BpS data provide data on the potential 
conditions given the prevailing biophysical environment and a 
disturbance regime similar to that of the pre-European settlement 
period. For much of California, fires were generally more frequent 
and less severe than today and as a result, fire as a frequent 
disturbance likely trumped the influence of productivity gradients 
on accumulating live and dead carbon (Johnston et  al., 2016; 
Prichard et  al., 2021). Therefore, the potential Air Quality and 
Carbon Sequestration capacity of a given site may be lower than 
current under an active disturbance regime (Harris et al., 2019). 
Given that much of the western US is currently under a fire deficit 
(Parks et al., 2015; Haugo et al., 2019), it is likely that carbon and 
large fuels currently exceed their pre-European settlement era 
levels across much of the western US. Across 900 analog locations, 
these data may be more informative of site potential to accumulate 
large fuels and aboveground live carbon. However, caution should 
be taken in the interpretation of these results given they represent 
existing conditions, which have been subjected to natural and 
human-caused disturbances. The similarity in our Carbon 
Sequestration results to those of Coffield et  al. (2021) provides 
some validation for the robustness of the results from 
these methods.

Conclusion

Taken together, California is likely to experience a high degree 
of climate-driven changes in the coming decades. These will 
be pronounced where disturbances from fire, insects, and drought 
provide the catalyst for change in climate-vulnerable environments 
(Parks et al., 2019; Coop et al., 2020; Davis et al., 2023). Recovery to 
previous conditions following disturbances is less assured where 
climate is predicted to be an impediment to resource conditions 
moving forward (Parks et al., 2015; Thorne et al., 2017; Stewart et al., 
2021). Future resource stability was highly variable across the State, 
but distinct elevational and climatic gradients were predictive of FRS 
scores and indicated that low elevation areas are most vulnerable to 
potential future climate conditions. Methods presented here extend 
the utility of previous climate analog modeling by including fuzzy 
logic evaluations of potential climate impacts across a range of 
ecosystem resources. Model outputs provide land managers with a 
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high-resolution (1 km) and spatially resolved means to characterize 
potential climate impacts to the future sustainability of resource 
conditions. Such outputs can be directly integrated into decision 
support models that aid in strategic planning efforts to guide 
treatment placement and/or identify tactical options for directing 
transformative changes on the landscape where climate is likely 
unsuitable for sustaining conditions over time.
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