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Termites have become a global concern, and their e�ective management has

remained a challenge since time immemorial. Certain microbial and botanical

agents have been used for their management, but their e�cacy has been

compromised, particularly in field conditions. Hence, the current study was

designed to check the e�cacy of low doses of di�erent pesticides, such as

chlorpyrifos, fipronil, bifenthrin, and chlorantraniliprole, against mortality and

behavioral responses of Odontotermes obesus at two di�erent temperatures (16

± 1 and 26± 1◦C). The discrete behavioral symptoms included intoxication, ataxia,

moribundity, and death. Laboratory-maintained termite workers were exposed to

di�erent concentrations of pesticides through a filter paper bioassay. All tested

pesticides and their concentrations di�ered significantly regarding their lethal

time (LT50) values compared to the mortality of termite workers. Moreover,

the LT50 values of pesticides gradually decreased with increased pesticidal

concentrations. Temperature also had a significant e�ect on the e�cacy of tested

pesticides as all pesticides showed better results at higher temperatures. At both

tested temperatures, chlorantraniliprole (5 ppm) proved to be the most e�ective

pesticide against termite workers. Similarly, the behavioral symptoms also varied

depending on pesticides and their administered concentrations and existed for

a relatively longer time span at lower temperatures. In most cases, the order

of responses was moribundity, followed by intoxication and ataxia. Moribundity

and intoxication were the most frequently observed symptoms for chlorpyriphos

and bifenthrin-treated termite workers. In the case of fipronil, intoxication was

the most pronounced symptom. Similarly, the maximum value of ataxia was

recorded in the case of chlorantraniliprole. However, moribund symptoms lasted

longer in all tested concentrations of chlorantraniliprole, followed by ataxia and

intoxication. The overall order of toxicity was chlorantraniliprole > bifenthrin >

fipronil > chlorpyrifos. These pesticides, at their low doses, did not exhibit any

repellent action and were not detected by the foraging termite workers. Moreover,

their slow action mechanism makes them a suitable candidate for infecting
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whole colonies away from treated surfaces. Therefore, these pesticides can be

successfully incorporated into di�erent integrated termitemanagement programs

to keep the plantation free from threatening underground pests.
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behavioral symptoms, mortality,Odontotermes obesus, pesticides, temperature

1. Introduction

Forests are an important component of human’s natural

environment and cover approximately 30% of the total land area.

They provide a score of useful ecosystem services that are crucial

for the functioning of the Earth and human society (Keenan

et al., 2015). They play vital roles in different biogeochemical

cycles, sequester carbon, support fauna, and produce huge amounts

of organic matter, which sustain different terrestrial organisms,

including humans (Klapwijk and Björkman, 2018). However, the

current global climatic variations may pose severe threats to forests

ranging from different abiotic to biotic sources (Balla et al., 2021).

Among biotic threats, insect pests are of prime importance as

they damage a large proportion of forest trees every year in

both commercial and natural settings. Non-indigenous insect pests

pose a severe threat to forest ecosystems because of their rapid

establishment and limited or no natural control in new localities

(Prospero et al., 2021).

Termites, with 2,000 known species belonging to 8 sub-

families and 250 genera, are found liberally everywhere, from

cultivated land to wild plantations. Termites can easily adapt

to a new locality owing to their cryptic feeding behavior

and the formation of nests, which not only provide ideal

conditions for population maintenance but also serve as a

food storage site (Manzoor et al., 2011; Zanuncio et al.,

2016). Among the different termite species, Odontotermes obesus

(Blattodea: Termitidae) is the most damaging subterranean

termite, which causes major economic losses to humans through

feeding on stored timbers, wooden structures and buildings,

agricultural crops, standing tress, and forests (Ravan et al.,

2015).

A number of studies proved that this particular termite species

has crossed all boundaries and can be found in forests as well as

rural and urban areas, inflicting damage onmultiple hosts (Rathour

et al., 2014; Lin et al., 2015). In forest ecosystems, mature trees are

usually more susceptible to termite attack, but damage is also being

inflicted on young seedlings (Aslam et al., 2023). The infestation

usually starts at the roots and later spreads to the upper plant

tissues. Termites affect tree plants either through direct feeding

on under and aboveground plant tissues or indirectly, which

involves increased susceptibility of damaged plants to pathogenic

attack (Rust and Su, 2012; Paul et al., 2018). It is anticipated

that termites cause a notable economic loss of more than US$40

billion annually worldwide (Subekti et al., 2015; Ahmad et al.,

2021).

Although substantial progress has been made in devising

sustainable termite management strategies that mostly

include biological, cultural, botanical, and physical barriers

and bait applications, their efficacy in field conditions

is questioned due to the cryptic feeding behavior of

termites (Potter, 2007; Iqbal and Saeed, 2013). Termite

management with pesticides has become a global phenomenon,

and various pesticide application strategies have been

practiced in different parts of the globe (Verma et al.,

2009).

The soil application of slow-action non-repellent pesticides

has been recommended for managing termites, particularly their

subterranean species. These pesticides mainly counter termite

infestations through remedial control (Spomer et al., 2008).

Remedial control usually involves the application of non-

repellent/odorless slow-action pesticides so that the infested

termites may not be killed immediately and may easily transfer

toxicants in lethal amounts from the application site to unexposed

nestmates, ultimately infecting the whole colony through social

grooming and trophallaxis (Kard, 2003; Tsunoda, 2006; Bagneres

et al., 2009; Quarcoo et al., 2010). The objective of using

these pesticides is to suppress colony populations rather than

target termite workers at the point source. Another advantage

of using odorless pesticides is that the target insects are unable

to differentiate between pesticide-treated and untreated soil, even

if pesticides are used at higher concentrations, and continue to

forage on contaminated soils (Saran and Rust, 2007; Quarcoo et al.,

2019).

The toxicity of pesticides is also greatly influenced by

changing temperature, but the direction and extent of the

effect, either positive or negative, depend on the target insect,

tested pesticide, and temperatures (Satpute et al., 2007). In field

conditions, increased temperature is associated with intense

tunneling, foraging, and feeding activity, which ultimately

enhance the uptake and transfer of toxicants from point source

to termite colony (Spomer et al., 2008). Moreover, research

regarding temperature-induced variations in pesticidal toxicities

becomes critical due to differences in temperature at altered

soil depths and climatic seasons. Hence, studies regarding

the efficacy of specific termiticides must be conducted under

a varying set of ecological conditions (Spomer et al., 2008).

Keeping in mind the above realities, this study was designed

to check the efficacy of low doses of different pesticides such

as chlorpyrifos, fipronil, bifenthrin, and chlorantraniliprole

against mortality and behavioral responses of O. obesus at two

different temperatures (16 ± 1 and 26 ± 1◦C). Previously,

information on the specific effects of varying temperatures on the

toxicity of these pesticides against O. obesus was missing from

the literature.
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2. Materials and methods

2.1. Insect culture

A worker caste of termites (Odontotermes obesus) was collected

from standing and infested fallen trees of Dalbergia sissoo plants

present in Chichawatni Reserved Forest (30.5311◦ N, 72.6329◦ E),

Punjab, Pakistan. The infested plants selected for collection were

not exposed to any chemical or microbial treatment for managing

termites. The collected specimens were brought to the Insect

Biodiversity and Biosystematics Laboratory (IBBL), Department

of Entomology, University of Agriculture, Faisalabad, Pakistan,

for rearing purposes. A termite colony was maintained in plastic

containers (80 cm × 70 cm × 70 cm) and offered pieces of wood

in a dark chamber under controlled environmental conditions (25

± 1◦C and 65–70% RH) (Aslam et al., 2023). Only the worker

caste of O. obesus was selected for the bioassay because of their

voracious feeding nature and potential to distribute the termiticide

to untreated colony nestmates through different social behaviors.

2.2. Chemicals

The pesticides procured during the current trial were

chlorpyrifos (40%, Kanzo AG, Evyol Group), fipronil (5%, Kanzo

AG, Evyol Group), bifenthrin (20%, Kanzo AG, Evyol Group), and

chlorantraniliprole (20%, FMC). A stock solution of each pesticide

was prepared by diluting them in 500ml of distilled water. The

details of the serial dilutions of pesticides used are given in Table 1.

2.3. Behavioral and mortality bioassay

The workers of O. obesus were collected from the laboratory-

maintained termite colony and carefully transferred to Petri

dishes (9.1 cm internal diameter and 1.7 cm height) provided with

WhatmanNo. 1 filter papers of the same diameter treated with each

tested concentration of pesticides. However, Petri dishes containing

filter papers treated with only deionized water served as untreated

controls. The Petri dishes were then sealed with Parafilm R© strips to

avoid moisture loss and placed in a large plastic container covered

with aluminum foil to maintain a dark environment. The plastic

containers containing Petri dishes were subsequently placed in

growth chambers (NK System Biotron, Model 03E-D3P, Japan)

maintained at two different temperatures, i.e., 16 ± 1 and 26 ±

1◦C with 65% RH. The treated termite workers were observed after

every hour (behavioral symptoms) for the first 2 days and later after

a 6-h interval until 100% mortality was achieved. The behavioral

symptoms associated with pesticide exposure were video recorded.

The discrete behavioral symptoms included intoxication, ataxia,

and moribundity. Intoxication usually includes disorientation,

horizontal oscillatory movements, and frequent changes in walking

speed and direction. Termites showing ataxia symptoms showed

frequent circling, frequent falling, reverse walking, drooping

antennae, and often the release of proctodeal or stomodeal fluids.

However, termites defined as moribund were unable to move a

distance equivalent to the length of their body, remained stationary

on their tarsi or dorsum, and the antennae remained bent and

motionless (Quarcoo et al., 2010).

The percentage of individuals exhibiting each

behavior/condition was calculated using the following formula:

Number of individuals exhibiting behavioral symptoms

Total termites
×100

The experimental setup was laid out in a completely

randomized design with five replications per treatment (20 workers

per replication). The mortality and behavioral responses were

recorded at both tested temperatures, i.e., 16 ± 1 and 26 ± 1◦C.

These temperatures were selected based on soil temperature data

reported by Hu and Appel (2004).

2.4. Statistical analysis

An analysis of variance (ANOVA) test was used on mortality

data, and further means were separated by using Tukey’s post-hoc

HSD test (p ≤ 0.05). The data also analyzed a probit regression

model using the likelihood computer-based program “POLO-PC”

to obtain medium exposure time to kill 50% (LT50) test termites,

95% fiducial limits, slope, and chi-square values. Significant

differences in LT50 were determined on a non-overlapping basis

by keeping 95% confidence intervals in view. The behavioral data

were subjected to SigmaPlot 12.5 to record the response of worker

termites to different sublethal and low-lethal concentrations.

3. Results

3.1. LT50 for mortality

The tested pesticides and their concentrations differed

significantly (p≤ 0.05) regarding their LT50 values recorded against

the mortality of termite workers (O. obesus). The results further

showed that lethal time (LT50) values of tested pesticides gradually

decreased with increased pesticidal concentrations (Tables 2, 3).

Temperature also had a significant effect on the efficacy of

tested pesticides as all pesticides exhibited better results at higher

temperature (26 ± 1◦C). The results of the current study further

revealed that at both tested temperatures (16 ± 1◦C and 26 ±

1◦C), chlorantraniliprole (5 ppm) proved to be the most effective

pesticide against termite workers with LT50 values (3.01 and 2.08 h,

respectively). However, LT50 values rapidly increased from (3.01–

23.14 h at 16 ± 1◦C) to (2.08–13.77 h at 26 ± 1◦C) when the tested

pesticidal concentrations of chlorantraniliprole decreased from 5 to

0.15 ppm, respectively. Similarly, bifenthrin also proved to be more

toxic at its highest concentration (5 ppm) with recorded LT50 values

of 3.25 and 2.43 h at 16 ± 1◦C and 26 ± 1◦C, respectively. Among

all the tested pesticides, chlorpyrifos was the least toxic with the

highest LT50 values (Tables 2, 3).

3.2. Behavioral responses

The worker termites exposed to most of the pesticidal

concentrations exhibited distinct behavioral responses, including
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TABLE 1 List of pesticides used against worker caste ofO. obesus.

S. No. Pesticides Formulation ppm Stock solution Concentrations (ppm)

1 Chlorpyrifos 40 10 20 10, 5, 2.5, 1.25, 0.62, and 0.31

2 Bifenthrin 20 2 10 5, 2.5, 1.25, 0.62, 0.31, and 0.15

3 Fipronil 5 5 4 2, 1, 0.5, 0.25, 0.12, and 0.06

4 Chlorantraniliprole 20 5 10 5, 2.5, 1.25, 0.62, 0.31, and 0.15

TABLE 2 E�ect of pesticides on time-dependent mortality response ofO. obesusworkers at 16 ± 1◦C.

Pesticides Dose (ppm) LT50 (h) Fiducial limits
(95%)

Slope ± SE Chi-square
value

Chlorpyrifos 10 3.44a 1.41–5.11 1.23± 0.27 1.84

5 8.94b 7.02–0.74 2.19± 0.10 10.59

2.5 17.16c 14.54–19.75 2.84± 0.07 13.76

1.25 26.96d 23.26–30.77 3.29± 0.07 9.89

0.62 40.26e 35.29–45.66 3.69± 0.06 6.29

0.31 69.45f 61.04–79.73 4.24± 0.06 2.44

Fipronil 2 3.35a 1.60–4.80 1.21± 0.24 2.11

1 7.67b 5.91–9.28 2.03± 0.11 10.71

0.5 14.58c 12.10–16.99 2.68± 0.08 14.84

0.25 22.69d 19.38–26.05 3.12± 0.07 14.09

0.12 33.17e 29.0–37.59 3.50± 0.06 13.75

0.06 38.26ef 33.57–43.32 3.64± 0.06 7.87

Bifenthrin 5 3.25a 1.45–4.69 1.18± 0.25 1.61

2.5 7.23b 5.58–8.73 1.97± 0.11 10.70

1.25 12.37c 10.23–14.44 2.51± 0.08 19.86

0.62 14.79cd 12.49–17.02 2.69± 0.07 19.33

0.31 24.21d 21.26–27.22 3.18± 0.06 20.75

0.15 28.34de 25.09–31.71 3.34± 0.06 14.97

Chlorantraniliprole 5 3.01a 1.02–4.48 1.10± 0.28 2.06

2.5 5.44b 3.72–7.01 1.69± 0.15 11.65

1.25 10.28c 8.24–12.22 2.33± 0.10 19.57

0.62 12.37cd 10.16–14.51 2.51± 0.08 20.98

0.31 18.30d 15.59–20.99 2.91± 0.07 22.58

0.15 23.14e 20.21–26.11 3.14± 0.06 21.75

Treatment means within a single column with different lowercase letters were significantly different at p ≤ 0.05; (Tukey’s post-hocHSD test).

intoxication, ataxia, moribundity, and death. The behavioral

symptoms varied depending on the pesticides and their

administered concentrations. The behavioral response was

observed at lower doses of each pesticide at both temperatures (16

± 1 and 26± 1◦C), owing to the fact that these dose rates provided

ample time for workers to exhibit behavioral symptoms before

dying. Moreover, as the tested dose rates of pesticides increased, the

time span to show behavioral symptoms decreased in both tested

temperatures. The results further showed that every behavioral

symptom of termite workers associated with pesticidal exposure

existed for a relatively longer time span at lower temperature (16±

1◦C) as compared to higher temperature (26± 1◦C). In most cases,

the order of responses was moribundity followed by intoxication

and ataxia (Figures 1–4).

Moribundity and intoxication were the most frequently

observed behavioral symptoms for chlorpyriphos-treated termite

workers. The maximum value of moribundity (66.66%) was

recorded in the case of 0.62 ppm concentration of chlorpyriphos at

26± 1◦C. Similarly, the maximum value of intoxication (40%) was

recorded at the same temperature at two dose rates of chlorpyriphos

(0.31 and 0.62 ppm) (Figure 1).

In the case of fipronil, all termite workers exposed to low

concentrations of pesticide (0.06 ppm at 16 ± 1◦C) exhibited

intoxication symptoms (46.66% to 100%) after 6- to 24-h intervals.
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TABLE 3 E�ect of pesticides on time-dependent mortality response ofO. obesusworkers at 26 ± 1◦C.

Pesticides Dose (ppm) LT50 (h) Fiducial limits
(95%)

Slope ± SE Chi-square
value

Chlorpyrifos 10 3.16a 2.22–4.48 1.34± 0.20 8.63

5 6.79b 5.58–8.58 0.09± 12.71 22.56

2.5 11.43c 10.08–12.74 1.10± 0.07 48.94

1.25 15.64d 14.23–17.02 1.23± 0.07 52.24

0.62 20.53e 18.98–22.08 1.32± 0.07 42.86

0.31 29.09f 27.13–31.10 1.32± 0.06 33.06

Fipronil 2 3.40a 1.84–4.41 1.73± 0.39 0.45

1 5.62b 4.50–6.66 1.19± 0.11 17.16

0.5 9.02c 7.76–10.22 1.12± 0.08 37.26

0.25 12.78d 11.49–14.02 1.24± 0.07 47.08

0.12 17.47e 15.93–19.00 1.18± 0.06 42.58

0.06 21.56f 19.83–23.29 1.19± 0.06 31.29

Bifenthrin 5 2.43a 1.05–3.61 1.20± 0.23 5.51

2.5 5.60b 4.46–6.66 1.16± 0.10 19.34

1.25 8.91c 7.63–10.12 1.09± 0.07 33.13

0.62 10.22cd 8.97–11.41 1.17± 0.08 32.63

0.31 15.17d 13.73–16.58 1.18± 0.07 44.70

0.15 17.93e 16.45–19.40 1.27± 0.07 39.09

Chlorantraniliprole 5 2.08a 0.42–3.42 1.30± 0.36 1.03

2.5 4.17ab 3.01–5.21 1.16± 0.13 15.45

1.25 6.66b 5.44–7.79 1.08± 0.09 30.48

0.62 7.47bc 6.27–8.60 1.12± 0.08 29.21

0.31 11.50c 10.09–12.87 1.05± 0.06 43.03

0.15 13.77d 12.38–15.13 1.17± 0.07 37.05

Treatment means within a single column with different lowercase letters were significantly different at p ≤ 0.05; (Tukey’s post-hocHSD test).

However, after 24 h, the number of termite workers exhibiting

intoxication rapidly declined. The results further showed that

intoxication followed by moribundity was more pronounced at

both temperatures in the case of the two lowest doses (0.06 and

0.12 ppm) of fipronil. However, at the highest concentration (0.5

ppm) of fipronil, moribundity was more pronounced (46.66% and

73.33%) at both temperatures (16± 1 and 26± 1◦C) (Figure 2).

Similarly, moribundity followed by intoxication was the most

commonly exhibited symptom of termite workers exposed to

bifenthrin at both temperatures. In the case of the lowest

concentration (0.15 ppm) at lower temperature, the number of

workers exhibiting moribundity ranged from 13.33 to 93.33%.

However, after a 24-h interval, this percentage rapidly declined.

Ataxia symptoms were only noted at the lowest concentration

(0.15 ppm) of the tested pesticide at both temperatures.

Moreover, 100% mortality was achieved relatively earlier at higher

temperatures, thus obscuring sublethal behaviors as compared to

lower temperatures (Figure 3).

Among all tested pesticides and their concentrations, the

maximum value of ataxia (53.33%) was recorded in the case

of chlorantraniliprole-exposed workers (26 ± 1◦C). Similarly,

intoxication symptoms were more pronounced at the lowest

pesticidal dose (0.15 ppm), with mean values of 46.66% and 73.33%

at 16± 1◦C and 26± 1◦C, respectively. Moribund symptoms lasted

longer at all tested concentrations of chlorantraniliprole, followed

by ataxia and intoxication (Figure 4).

4. Discussion

Termites are small detrimental creatures that cause severe

economic losses to forests and agro-ecosystems by feeding

plantations below the soil surface and destroying the internal

root systems of plants by making tunnels (Vargo and Husseneder,

2009; Shelton et al., 2014). The efficacy of different integrated

termite management approaches has been compromised primarily

due to the cryptic feeding behavior of this pest. Effective termite

management still remains a challenge for farming communities

belonging to different parts of the globe (Peterson, 2010). However,

the fate of termite management has changed dramatically with

the advent of certain new pesticide molecules such as pyrethroids

(bifenthrin), phenylpyrazole (fipronil), organophosphate
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FIGURE 1

Time-dependent behavioral and mortality response of O. obesus exposed to di�erent concentrations of chlorpyrifos at 16 ± 1◦C and 26 ± 1◦C.

(chlorpyrifos), and anthranilic diamide (chlorantraniliprole)

(Davis and Kamble, 1992; Ahmed et al., 2007; Gunasekara et al.,

2007; Saran et al., 2014). Termite workers fail to detect the presence

of these pesticides due to their non-repellent nature and forage

freely on the treated soil. During foraging, the worker termites

carry lethal doses of toxicants from a point source and later transfer
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FIGURE 2

Time-dependent behavioral and mortality response of O. obesus exposed to di�erent concentrations of fipronil at 16 ± 1◦C and 26 ± 1◦C.
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FIGURE 3

Time-dependent behavioral and mortality response of O. obesus exposed to di�erent concentrations of bifenthrin at 16 ± 1◦C and 26 ± 1◦C.
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FIGURE 4

Time-dependent behavioral and mortality response ofO. obesus exposed to di�erent concentrations of chlorantraniliprole at 16 ± 1◦C and 26 ± 1◦C.
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them to their untreated nestmates, thus affecting whole colony

members (Quarcoo et al., 2010).

In the current trials, all the tested pesticides provided

satisfactory control of termite workers, which was quite evident

from their respective LT50 values. The results further revealed that

the LT50 values of each pesticide were considerably low when used

at higher dose rates. These results suggested the increased toxicity

of pesticides toward termite workers at higher concentrations.

The current results were in line with the findings of a number

of researchers who proved the toxicity of different pesticides

against different strains of termites both under laboratory and field

conditions (Iqbal and Saeed, 2013; Bhagawati et al., 2014; Manzoor

et al., 2014; Wang et al., 2014; Ahmed et al., 2015). Among the

currently tested pesticides, the toxicity of Fipronil against termite

workers had already been reported (Huang et al., 2006; Saljoqi et al.,

2014; Chen et al., 2015). Similarly, Nisar et al. (2020) also proved

the toxicity of bifenthrin against O. obesus. They also reported that

the LT50 values of the tested pesticide decreased with increased

pesticidal concentrations. In the current trials, chlorpyrifos also

provided satisfactory control of termite workers, particularly at

higher concentrations. The same had also been reported by Singh

and Singh (2001) who used chlorpyrifos 15G at 2.50 kg active

ingredient/ha and chlorpyrifos 20 EC at 1 kg active ingredient/ha

on sugarcane setts for controlling the termite infestations and got

satisfactory results. Similarly, Rana andDahiya (2001) also reported

that wheat plots treated with chlorpyrifos were least affected by

termite infestation.

In the current study, chlorantraniliprole provided the best

results against termite workers with the least LT50 values at all

concentrations compared with the rest of the tested pesticides.

This was mainly attributed to its unique mode of action which

involves targeting the ryanodine receptor, leading to impaired

muscle regulation, paralysis, and eventually death of the targeted

host (Cordova et al., 2006). This pesticide was recommended

to manage termites due to its better binding potential with soil

particles and minimal leaching losses (Spomer and Kamble, 2011;

Wagner et al., 2011; Shelton et al., 2014). It was also reported

that chlorantraniliprole (0.05%) applied to USDA Forest Service

field plots provided 8 years of protection from termite infestation

(Shelton et al., 2014).

All the tested pesticides used in the current study induced

lethal and sublethal behavioral disorders among termite workers,

and their ill effects are transmissible from poisoned termites to

non-poisoned individuals in the colony, leading to substantial

deaths (Haynes, 1988; Hu and Hickman, 2006). The results further

revealed that these behavioral responses were more pronounced at

lower pesticidal doses as compared to their higher concentrations.

Previously, it had been recommended that evaluation of pesticides

against termites could not be based on mortality alone, but

behavioral responses must also be considered because termites

could avoid or seal off treated areas and effectively protect

themselves and their colony from lethal damages (Su et al., 1982).

This normally happens in cases where pesticides possess repellent

properties. However, in some cases, the target insects are unable

to detect the pesticidal inoculum and continue to move around

on the treated surface, which helps in the transfer of poison from

the treated surface to unexposed colony members (Su et al., 1982;

Soeprono and Rust, 2004). In the case of termites, the possible ways

of transferring toxicants among nest mates might be grooming,

cannibalism, necrophagy, and coprophagy (Haagsma and Rust,

2005; Neoh et al., 2012). Considering the LT50 values of pesticides in

the current trial, it can be anticipated that the pesticidal inoculum

can easily be transferred to naïve colony members, particularly in

the case of lower pesticidal doses. The same had also been reported

in a number of other studies, but the pesticide and their dose

rates were different from the current trial (Valles and Woodson,

2002; Saran and Rust, 2007; Bagneres et al., 2009). However, in

field trials, the donor/recipient ratios might play a crucial role

in the successful transfer of pesticidal inoculum (Hu et al., 2005;

Song and Hu, 2006; Spomer et al., 2008; Gautam et al., 2012).

The same had also been reported by Huang and Lei (2005), who

executed a study to explore the possibility of the transfer of fipronil

from treated termite workers to unexposed colony members. The

results of their study revealed that 15–20 donors subjected to 5

ppm pesticide and exposed to nestmates for a 6-h interval provided

significant mortality in recipient workers. Moreover, Santos et al.

(2004) also reported the phenomenon of social facilitation among

termite workers when poisoned, which affects the median time

for mortality.

In the current study, certain behavioral symptoms, such

as intoxication, ataxia, and moribundity, were also observed,

particularly at lower pesticidal doses at both tested temperatures.

These pesticide-induced behavioral symptoms play a vital role in

managing termite colonies (Su et al., 1982; Shelton, 2014). The

time span related to the availability of pesticide-exposed termites

to colony members was greatly affected by certain behavioral

symptoms, particularly intoxication (Quarcoo et al., 2010). The

behavioral symptoms, includingmoribundity and ataxia, associated

with high pesticidal doses might hinder workers ability to move

away from the treated area and affect pesticide uptake (Shelton

and Grace, 2003; Saran and Rust, 2007), and they also possess

the potential to transfer the pesticidal inoculum to other colony

members far away from the treated area (Osbrink et al., 2005).

However, sublethal behavioral symptoms, such as moribundity

and ataxia, associated with exposure to pesticide-treated termites

usually prompt caregiving and grooming from untreated termites

and hence increase the spread of pesticidal inoculumwithin termite

colonies through secondary and tertiary transfers (Hu et al., 2006;

Quarcoo et al., 2010).

Temperature may affect the LT50 values of pesticides by

altering target site interactions, distribution, metabolism, and

penetration (Scott, 1995). Moreover, it can cause movement,

decreased survival, rapid knockdown, and mortality in termite

workers. The current study also revealed that temperature had

a significant effect on the LT50 values of the tested pesticides.

The LT50 values of pesticides significantly declined at higher

temperatures as compared to lower temperatures. These results

are in line with the findings of Smythe and Williams (1972)

who conducted a laboratory bioassay and reported 90% mortality

of eastern subterranean termites at 35◦C. However, mortality

was significantly lower (44%) at 15◦C. Moreover, Quarcoo et al.

(2019) also reported that LT50 values declined with increasing

concentrations and temperatures for fipronil against eastern and

Formosan subterranean termites. Besides instant physiological

effects, temperature also influences the behavior of termite workers

including their movement, foraging, tunneling, and feeding. The
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movements associated with food transportation and tunneling

ultimately enhance the potential exposure of termite workers to

non-repellent pesticides (Fei and Henderson, 2004; Cao and Su,

2014).

5. Conclusion

Chlorantraniliprole proved to be the most toxic pesticide,

followed by bifenthrin, to manage termite workers, as evident

from their respective LT50 values. The efficacy of each pesticide

was more pronounced at high temperatures. This highlights

the importance of management season, as during the summer,

the temperature will be more favorable for pesticides to show

their full potential. Moreover, termite workers showed significant

behavioral symptoms at lower doses of pesticides, which also play a

significant role in the transfer of pesticide inoculum from the point

source to the rest of the colony nestmates. Termite management

science has progressed greatly in the last few decades but still,

the management approaches vary in different parts of the globe

depending on the situation and cost incurred. Although some

natural enemies of termites have been reported, reports regarding

their successful use are still in their infancy. Certain botanicals

have also been reported to possess anti-termite properties, but their

viable application technologies, particularly in forests, are yet to be

developed. Hence, no matter what termite management strategy

we may adopt, chemical control still remains the backbone of

termite management. Hence, more experimental work needs to be

executed to work out strategies to avoid their damage in a more

pragmatic way.
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