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Introduction: Atmospheric temperature affects the growth and development of 
plants and has an important impact on the sustainable development of forest 
ecological systems. Predicting atmospheric temperature is crucial for forest 
management planning.

Methods: Artificial neural network (ANN) and deep learning models such as gate 
recurrent unit (GRU), long short-term memory (LSTM), convolutional neural 
network (CNN), CNN-GRU, and CNN-LSTM, were utilized to predict the change 
of monthly average and extreme atmospheric temperatures in Zhengzhou City. 
Average and extreme atmospheric temperature data from 1951 to 2022 were 
divided into training data sets (1951–2000) and prediction data sets (2001–2022), 
and 22 months of data were used as the model input to predict the average and 
extreme temperatures in the next month.

Results and Discussion: The number of neurons in the hidden layer was 14. Six 
different learning algorithms, along with 13 various learning functions, were trained 
and compared. The ANN model and deep learning models were evaluated in terms 
of correlation coefficient (R), root mean square error (RMSE), and mean absolute 
error (MAE), and good results were obtained. Bayesian regularization (trainbr) in the 
ANN model was the best performing algorithm in predicting average, minimum and 
maximum atmospheric temperatures compared to other algorithms in terms of R 
(0.9952, 0.9899, and 0.9721), and showed the lowest error values for RMSE (0.9432, 
1.4034, and 2.0505), and MAE (0.7204, 1.0787, and 1.6224). The CNN-LSTM model 
showed the best performance. This CNN-LSTM method had good generalization 
ability and could be used to forecast average and extreme atmospheric temperature 
in other areas. Future climate changes were projected using the CNN-LSTM model. 
The average atmospheric temperature, minimum atmospheric temperature, and 
maximum atmospheric temperature in 2030 were predicted to be 17.23 °C, −5.06 
°C, and 42.44 °C, whereas those in 2040 were predicted to be 17.36 °C, −3.74 °C, and 
42.68 °C, respectively. These results suggest that the climate is projected to continue 
warming in the future.
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1 Introduction

Climate change has affected the reproduction and life of plants, 
alpine plant species and communities, alpine tree lines, the structure 
and function of forest ecosystems, forest fires, net biome production, 
terrestrial biodiversity, air quality, and human health (García-Duro 
et al., 2021; Guo et al., 2021; Zheng et al., 2021; Zhang J.-H. et al., 2021; 
Farooqi et al., 2022; Khalil and Osborne, 2022; Zhang et al., 2022; 
Dong et al., 2023; Fernández-Martínez et al., 2023; Neira et al., 2023; 
Guo et al., 2023a). Climate change threatens the survival and wellness 
of urban trees, as well as the various benefits they bring to urban 
residents. It has been predicted that low-latitude cities are at the 
highest risk as all urban tree species are vulnerable to the impact of 
climate change (Esperon-Rodriguez et al., 2022). The sensitivity of the 
phenology of spring leaf unfolding to global warming has significantly 
decreased (Fu et al., 2015). Modern climate change has caused most 
tree lines in the Northern Hemisphere to migrate to higher elevations 
and latitudes (Hansson et al., 2023). Climate change has increased the 
mortality rate of temporal trees. The increase in the mortality rates of 
young forests related to climate change is significantly higher than that 
of older forests due to the higher sensitivity of the former to regional 
warming (Luo and Chen, 2013). The impact of extreme atmospheric 
temperatures on forests may depend on tree species and provenance. 
Half of the annual seedlings of juvenile European beech (Fagus 
sylvatica L.) are subjected to high-temperature stress in their first 
spring, and plants exposed to high temperatures exhibit a decrease in 
growth during their first year (Vander Mijnsbrugge et  al., 2021). 
Radial tree growth is related to temperature rise and altitude 
differences in the Guandi Mountains. Due to climate change, Picea 
wilsonii has been more susceptible to high temperatures (Huang et al., 
2021). Tree growth has also been shown to be sensitive to climate 
change in the Northwestern Yunnan Plateau. The relationship between 
four different chronologies and climatic factors (monthly mean 
temperature, monthly maximum temperature, monthly minimum 
temperature, and monthly total precipitation) has been analyzed. In 
mid-to-high latitudes, the temperature of the first 11 months of a 
plant’s life is a key factor affecting tree growth (Sun et al., 2021). The 
burned area of Australian forests presents a linear positive annual 
trend but increases exponentially during the autumn and winter 
seasons. The average number of years since the last fire has been 
continuously decreasing every year for the past 40 years, whereas the 
frequency of catastrophic forest fires (>1 million hectares) has 
significantly increased since 2000. The increase in forest burning 
regions is consistent with serious fire weather conditions, as well as 
increases in risk factors related to thermal convection (including 
thunderstorms caused by fires) and fires caused by dry lightning, all 
of which are related to human climate change to varying degrees 
(Canadell et al., 2021).

In the context of climate change, the forest composition and 
ecosystem productivity of temperate forests are currently undergoing 
significant changes. The sensitivity of ecosystem productivity to 
temperature (≥50%) is higher than that to precipitation. In the case of 
climate warming, the increase in ecosystem respiration is greater than 
that of gross primary productivity, leading to the reduction of carbon 
sequestration and net ecosystem exchange (Wu et al., 2023). Tree 
growth positively correlates with air temperature in March but 
negatively with the highest temperatures in November and September. 
At the regional level, air temperature accounts for most of the 

differences in radial growth of both natural forests and planted forests 
(Ni et  al., 2023). The increase in air temperature, site quality, 
precipitation, and competition intensity has had a positive impact on 
the growth of tree height in mixed forests in Northeastern China (Tian 
et  al., 2022). The ecosystems in colder regions mainly respond to 
changes in air temperature, with this group mainly consisting of 
northern forests, temperate forests, and permafrost (Higgins et al., 
2023). The temperatures of the current spring and previous winter are 
the key factors limiting the growth of Pinus pumila in the north and 
south of northeastern China (Yang et al., 2022).

At the same time, forests have a significant impact on climate 
change. The forest ecosystem is the largest carbon pool in the 
terrestrial ecosystem, accounting for approximately 80% of the total. 
The forest ecosystem absorbs carbon dioxide from the atmosphere 
through plant photosynthesis, playing an important role in reducing 
the increase in carbon dioxide concentration in the atmosphere, 
reaching carbon neutrality, and alleviating climate change (Caldera 
and Breyer, 2023; Wang et al., 2023a,b). The positive feedback between 
carbon levels and climate may exacerbate climate change and affect 
the achievement of ambitious climate goals, such as the 1.5°C and 2°C 
warming targets set by the Paris Agreement (Fernández-Martínez 
et al., 2023). The estimated total amount of aboveground carbon (C) 
in forest-protected areas (PAs) is 61.43 Gt, accounting for 26% of all 
terrestrial woody carbon. Compared to unprotected forests, these 
higher carbon reserves are mainly due to emissions avoided by 
deforestation and degradation in protected areas. This total amount is 
roughly equivalent to the annual global emissions of fossil fuels in 
1 year (Duncanson et al., 2023).

Global afforestation has led to a weakening of the northern and 
mid-latitude circulation and a shift toward the poles, slowing down 
the Atlantic meridional overturning circulation and affecting the 
strength of Hadley cells, whereas deforestation has led to a reversal of 
these changes. Therefore, global forestation and deforestation changes 
have had significant impacts on regional precipitation, temperature, 
cloud cover, and surface wind patterns (Portmann et  al., 2022). 
Changes in forest and forest coverage have had a significant impact on 
the regional climate in Changbai Mountain, China. Compared with 
open land, forests can reduce the summer daytime land surface 
temperature (LST) and nighttime LST in summer by approximately 
1.10°C and 0.07°C, respectively. The increase in forest coverage in 
summer can reduce the summer daytime LST and nighttime LST by 
approximately 0.66°C and 0.04°C, respectively. The increase in forest 
and forest coverage has a cooling effect on the summer temperature 
of Paektu Mountain, which is mainly reflected in the decrease in 
daytime temperature. The daytime cooling effect is mainly related to 
the increase of latent heat flux caused by the increase in 
evapotranspiration (Zhang J. et  al., 2021). Urban trees play an 
important role in reducing urban surface temperature through 
transpiration and evapotranspiration (Schwaab et  al., 2021). The 
cooling effect of urban trees is reflected in the absolute coverage of 
trees and the cooling efficiency of trees. In the context of global cities 
and climate change, the cooling efficiency of urban trees is likely to 
change over time, with great spatial heterogeneity (Zhao et al., 2023).

Predicting climate change provides new insights into the 
management of existing urban green spaces, as well as future 
afforestation and green space construction planning. A series of 
climate models have been often used to predict climate change in the 
past few years (Tewari et al., 2022; Zhou et al., 2022). Regional climate 
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models (RCMs) include regional climate forecasting model (RegCM), 
weather research and forecasting (WRF), climate-weather research 
and forecasting (CWRF), providing regional climates for impacts 
studies (PRECIS), and high-resolution limited-area model (HIRHAM) 
(Deng et al., 2023). Due to the different climate feedback processes of 
various models, there is significant uncertainty in climate sensitivity, 
affecting the credibility of climate forecasting (Guo et al., 2023b).

Artificial neural networks (ANNs) explore artificial intelligence 
techniques in computing the rendition and superiority utilizing 
appropriate and admissible input parameters. ANNs can unravel 
highly non-linear relationships and map complex input–output rules 
in data, which makes them applicable in multiple fields (Zema et al., 
2020; Guo et  al., 2023c,d,e). ANNs have been widely utilized in 
atmospheric science (Astsatryan et al., 2021; Goudarzi et al., 2021; 
Shrivastava et al., 2022). The Levenberg–Marquardt algorithm has 
performed better compared to other algorithms in most of the 
previous studies as it can rapidly solve any non-linear least squares 
problems (Pakalapati et al., 2019; Perera et al., 2020). However, the 
Bayesian regularization (BR) algorithm performed better than the 
Levenberg–Marquardt algorithm in other studies (Pandey et al., 2012; 
Guo et al., 2020; Nasrudin et al., 2020; Guo and He, 2021; He et al., 
2022). The BR algorithm improves the generalization capability of the 
network by iterating sufficiently during the training process 
(Pakalapati et  al., 2019). In addition, BFGS quasi-Newton and 
conjugate gradient algorithms have performed better compared to the 
conventional gradient descent algorithm. These algorithms employ 
second-order methods, unlike the gradient descent algorithm, which 
computes first-order methods only (Perera et  al., 2020). Generic 
algorithms can outperform backpropagation algorithms as the former 
ensures training the network with optimal weights (Awolusi et al., 
2019). These learning algorithms have good generalization ability and 
accuracy. Therefore, various learning algorithms are used to predict 
atmospheric temperature in Zhengzhou.

With the rapid development of machine learning (ML), the 
success of ML models in dealing with complex non-linear problems 
has led to the improvement and substitution of climate models 
worldwide (Bi et al., 2023). As deep learning (DL) has achieved great 
success in big data analysis, it may be a good candidate to leverage the 
potential of complex climate data (Kim et  al., 2021). Deep 
convolutional neural networks (CNNs) are a powerful tool for 
effectively extracting hidden information from massive data sets and 
have increasingly been applied in climate prediction (Ham et al., 2019; 
Sun et al., 2023). Recurrent neural networks (RNNs) are an effective 
tool for processing sequence data for time series prediction. Due to 
their inherent problem of vanishing or exploding gradients, the 
performance of traditional RNNs in sequence prediction has not 
significantly improved. However, long short-term memory (LSTM) 
can solve this problem (Gao et al., 2020). Considering the significant 
time series characteristics of climate data, LSTM has demonstrated 
excellent predictive performance in the field of climate change (Xing 
et al., 2023). Gated recurrent units (GRUs) have shown considerable 
performance, but their structure is simpler, and their computational 
speed is higher (Gao et al., 2020; Gharehbaghi et al., 2022). The hybrid 
CNN-GRU prediction model improves prediction accuracy and 
generalization ability by combining the feature expression ability of 
CNNs with the time series memory advantage of GRUs (Yu et al., 
2021). CNNs have been used to extract high-dimensional features 
from input climate data, and LSTM has been used to capture temporal 

correlations within historical sequences. The combined CNN-LSTM 
model can perform well in time series prediction (Dehghani et al., 
2023; Wan et  al., 2023). Although deep CNN and LSTM can 
independently predict time series problems, their performances are 
limited. For example, CNN is not sensitive to the characteristics of 
time series, and it is difficult for LSTM to reduce the data 
dimensionality of high-dimensional problems. Furthermore, finding 
the optimal hyperparameters for these models is an extraordinary 
challenge, which may affect prediction performance. To address these 
limitations, we  developed a new CNN-LSTM that leverages the 
advantages of two algorithms and overcomes their drawbacks. There 
are three innovations in this study. First, taking features from different 
time domains as inputs for different machine learning models, 
we determine the impact of the input variables on the models. Second, 
multiple models are used to determine the number of hidden neurons 
to solve the local minima problem of neural networks. Finally, the 
optimal model is determined by comparing the performance of 
multiple machine learning models.

We analyzed the following questions: (i) What is the long-term 
trend of temperature changes in Zhengzhou? (ii) How are the network 
structures and parameters? (iii) Which training algorithm is most 
suitable for temperature prediction? (iv) Which training function is 
most suitable for prediction? (v) Which ML model is most suitable for 
predicting climate?

2 Materials and methods

2.1 Monthly average and extreme 
atmospheric temperatures

The monthly average, minimum, and maximum atmospheric 
temperatures time series in Zhengzhou city were divided into two 
groups: one subset for training the parameters of the models and for 
testing the ANN (from January 1951 to April 2001), and another 
subset for model prediction (from May 2001 to December 2022). In 
other words, the training data were 70% of the raw data, and the 
testing data were 30% of the raw data.

2.2 Artificial neural network

ANN is an artificial intelligence method inspired by 
neurophysiological discoveries about the structure and function of the 
human brain, consisting of interconnected units that achieve 
functions. As shown in Figure  1, the multi-layer feed-forward 
backpropagation ANN comprises input, hidden, and output layers. 
Each layer contains multiple neurons (nodes). The output of each 
neuron (node) is achieved by subsequently applying the activation 
function (transfer function) to the sum of weighted inputs and 
thresholds (biases). Various activation functions can be hired, such as 
softmax, sigmoid, hyperbolic tangent, linear, and threshold (Falcone 
et al., 2022). Four typical types of activation functions in ANN are 
tansig, logsig, purelin, and ReLU. The algorithm is a method of finding 
the minimum loss function. The function of optimization algorithms 
is to minimize the loss function by improving the training method. 
The six different algorithms are gradient descent (GD), conjugate 
gradient (CG), quasi-Newton (QN), Bayesian regularization (BR), 
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Levenberg–Marquardt (LM), and resilient backpropagation (Rprop). 
The learning functions of CG are CG with Polak–Ribére updates 
(traincgp), CG with Powell–Beale restarts (traincgb), CG with 
Fletcher–Reeves updates (traincgf), and scaled CG (trainscg). The 
training functions of GD are GD (traingd), GD with adaptive learning 
rate (traingda), GD with momentum (traingdm), and GD with 
momentum and adaptive learning rate (traingdx). The learning 
functions of QN are Broyden–Fletcher–Goldfarb–Shanno QN 
(trainbfg) and one-step Secant backpropagation (trainoss). The 
learning functions of LM, BR, and RProp are trainlm, trainbr, and 
trainrp, respectively (Guo et al., 2023e). Thirteen different learning 
(training) functions were previously employed in predicting monthly 
average and extreme atmospheric temperatures in Zhengzhou, China 
(Nasrudin et al., 2020).

2.3 Gated recurrent unit

In recent years, DL technologies have been used to predict 
extreme climate changes. Moreover, DL methods have seen impressive 
progress, with more accurate and effective forecasts of climate change 
(Wang G.-G. et al., 2023). In this study, the input of the model is 
considered a sequence of previous climate features in chronological 
order. Nevertheless, traditional RNNs have the problem of gradient 
vanishing or exploding due to backpropagation algorithms and long-
term dependencies. Therefore, it is difficult for traditional RNNs to 
capture the correlation of large time steps in time series. To overcome 
this drawback, GRUs have been proposed as a variant of RNN, which 
not only overcomes gradient vanishing or explosion problems but also 
prevents overfitting by utilizing fewer training parameters. In GRUs, 
the reset gate allows the hidden state to discard any irrelevant 
information, whereas the update gate controls the amount of 
information transferred from the previous hidden state to the current 
hidden state (He et al., 2024).

2.4 Long short-term memory

Compared with traditional RNNs, LSTM can better process 
valuable information over a relatively long stage. Three gates (input 
gate, forget gate, and output gate) handle the flow of climate 
information. The input gate controls whether the new state should 
be updated into the memory cell (MC), the forget gate controls which 

information should be  forgotten from the previous MC, and the 
output gate adjusts the output depending on the current MC (Cao 
et al., 2023).

2.5 Convolutional neural network

The key advantage of CNNs is that they can combine feature 
extraction and prediction tasks into one framework. CNNs can 
analyze non-linear and non-stationary data. The core parts of a CNN 
include convolutional layers, max-pooling layers, and fully connected 
(dense) layers (Zhang et al., 2023).

2.6 CNN-GRU

A CNN comprises two convolutional layers (CLs) and two pooling 
layers (PLs). First, feature extraction is completed in the CL, and then, 
the hidden information is obtained through the PL to reduce the 
dimensionality. Second, the feature vectors output from the CNN are 
input to the GRU. Finally, the output is normalized inversely to give 
the final forecast result (Guo et al., 2023f).

2.7 CNN-LSTM

The CNN-LSTM model first chooses a suitable CNN model for 
time series data to predict future fluctuation directions and then 
establishes an LSTM model to predict specific values. First, feature 
extraction is performed on the CL of the CNN model. Second, the 
PL further obtains hidden information and reduces feature 
dimensions to achieve the training objectives. Third, the pooled 
information is input to the LSTM layer to obtain features with 
long-term dependence. Finally, the obtained features are input into 
the fully connected (FC) layer to predict climate data (Zhang and 
Li, 2022).

2.8 Criteria of evaluation

Evaluation tools such as root mean square error (RMSE), mean 
absolute error (MAE), and correlation coefficient (R) are exploited to 
assess the effectiveness of the ANN and DL models developed in this 
study and their ability to make precise predictions. RMSE, MAE, and 
R are calculated using the following equations:

 
RMSE =

∑ −( )A C
D
l l

2

,
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FIGURE 1

Architecture of the ANN for predicting atmospheric temperature.
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MAE = ∑ −

1

D
A Cl l ,

 
(3)

where Al  denotes the measured atmospheric temperature, Cl
denotes the predicted atmospheric temperature, A is the mean 
measured atmospheric temperature, and C is the mean predicted 
atmospheric temperature.

3 Results

3.1 Change of annual average and extreme 
atmospheric temperatures in Zhengzhou 
city from 1951 to 2022

As shown in Figure  2, the annual average, minimum, and 
maximum atmospheric temperatures in Zhengzhou in 2022 were 
3.1°C, 9.1°C, and 2.3°C higher than those in 1951, respectively. The 
long-term warming rate of the annual average atmospheric temperature 
was 0.367°C/10 years from 1951 to 2022. The warming rate of the 
annual minimum temperature was 0.938°C/10 years. In 2022, the 
global average temperature was 1.11°C higher than the 
pre-industrialization level, and it was 0.89°C higher than the baseline 
period (1951 to 1980), which was one of the five warmest years as there 
were complete meteorological observation records. In 2022, the average 
temperature in China was 10.51°C. From 1951 to 2022, China’s annual 
average surface atmospheric temperature showed an upward trend, 
with a warming rate of 0.26°C/10 years. The atmospheric temperature 
in Zhengzhou city rose faster than that of the world and China.

3.2 Performance of different nodes in input 
and hidden layers for predicting monthly 
average atmospheric temperature

The number of neurons in the input and hidden layers is 
practiced by trial and error. The climate dataset is split at a 

training–testing ratio of 70:30. Training is needed in ML because it 
allows the model to learn the relationships from the training climate 
data. This enables the model to generalize to new, unseen climate 
data and make accurate predictions. The performance of the DL 
models is also evaluated based on 10-fold cross-validation (CV) 
results. This is a reliable method to assess the performance of ML 
models as it eliminates bias in the results generated by the random 
splitting of the dataset. The climate dataset is initially divided into 
10 equal parts: nine are used for training the ML models, and one 
is used for testing. The remaining eight parts are used to train the 
model. In the second step, eight parts are used to train the model, 
and two parts are used for testing. This process is repeated until all 
10 parts are used for training and testing. The overall prediction 
result is the average prediction result of all parts used for training 
and testing (Vakharia et  al., 2016, 2023; Xu et  al., 2023). The 
statistical indicators (R, RMSE, and MAE) of different numbers of 
neurons are listed in Tables 1–7. Tables 1–6 show the various input 
variables, and Table 7 shows different neurons in the hidden layer. 
Tables 1–6 show the simulation results of monthly average 
atmospheric temperature in the training and testing phases. 
Twenty-two variables are selected for the prediction model input. 
We use the most recent 260 months from May 2001 to December 
2022 during the prediction phase. Additionally, the number of 
neurons in the hidden layer is set to 14. Eventually, network 
topologies of the ANN model (22-14-1) were the best ones.

3.3 Performance of various training 
algorithms for ANN

Learning algorithms of the ANN for predicting monthly 
average atmospheric temperature were also trained by trial and 
error. Table 8 shows the performances of learning algorithms for 
predicting the monthly average atmospheric temperature in 
Zhengzhou city. Trainbr has the best performance in predicting 
monthly average atmospheric temperature, followed by trainlm. 
Table  8 shows the best performance in simulating the monthly 
average atmospheric temperature in Zhengzhou during both the 

FIGURE 2

Change of annual average and minimum atmospheric temperatures in Zhengzhou city from 1951 to 2022. (A) Average and minimum atmospheric 
temperature. (B) Minimum atmospheric temperature.
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TABLE 1 Performance comparison between different input neurons for the ANN.

Variables
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

1 0.8574 0.8514 0.8542 4.9783 4.9554 5.0287 4.3855 4.2857 4.4174

2 0.9788 0.9687 0.9801 1.9818 2.3756 1.9278 1.4940 1.8242 1.4623

3 0.9836 0.9762 0.9880 1.7507 2.1052 1.5076 1.3312 1.6599 1.1749

4 0.9879 0.9807 0.9893 1.5267 1.9707 1.4428 1.1890 1.5333 1.1215

5 0.9904 0.9852 0.9900 1.3853 1.8188 1.3995 1.0670 1.4359 1.0844

6 0.9910 0.9868 0.9900 1.3337 1.7198 1.4013 1.0380 1.3496 1.0806

7 0.9909 0.9867 0.9903 1.3481 1.7292 1.3753 1.0525 1.3667 1.0646

8 0.9925 0.9903 0.9900 1.1896 1.3743 1.3845 0.9058 1.0698 1.0592

9 0.9918 0.9895 0.9907 1.2466 1.4265 1.3261 0.9715 1.1287 1.0238

10 0.9931 0.9901 0.9910 1.1430 1.3530 1.2673 0.8997 1.0688 0.9729

11 0.9934 0.9910 0.9911 1.1123 1.2901 1.2458 0.8811 1.0237 0.9572

12 0.9939 0.9915 0.9911 1.0726 1.2488 1.2348 0.8408 0.9925 0.9612

13 0.9944 0.9921 0.9912 1.0269 1.1992 1.2302 0.8212 0.9273 0.9654

14 0.9945 0.9918 0.9913 1.0135 1.2271 1.2220 0.7938 0.9377 0.9540

15 0.9946 0.9916 0.9914 1.0041 1.2388 1.2235 0.7916 0.9527 0.9573

16 0.9945 0.9932 0.9915 1.0206 1.1281 1.2219 0.7971 0.8712 0.9523

17 0.9949 0.9935 0.9916 0.9816 1.1000 1.2241 0.7635 0.8633 0.9531

18 0.9943 0.9928 0.9917 1.0382 1.1555 1.2188 0.8052 0.8887 0.9527

19 0.9949 0.9932 0.9918 0.9788 1.1340 1.2205 0.7862 0.8809 0.9550

20 0.9952 0.9931 0.9919 0.9465 1.1317 1.2225 0.7483 0.8861 0.9579

21 0.9954 0.9944 0.9920 0.9349 1.0414 1.2165 0.7211 0.7977 0.9522

22 0.9964 0.9952 0.9921 0.8233 0.9432 1.2147 0.6456 0.7204 0.9495

23 0.9945 0.9939 0.9920 1.0175 1.0725 1.2184 0.7926 0.8306 0.9545

TABLE 2 Performance comparison between different input neurons for the GRU.

Variables
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

1 0.9876 0.9854 0.9847 1.5356 1.8743 1.7500 1.7555 1.7949 1.7635

2 0.9883 0.9844 0.9865 1.6372 1.6610 1.8226 1.6758 1.6999 1.7406

3 0.9887 0.9850 0.9867 1.5075 1.8866 1.6359 1.6776 1.6976 1.6426

4 0.9879 0.9832 0.9862 1.5691 1.9646 1.6762 1.6240 1.6270 1.6314

5 0.9885 0.9845 0.9867 1.8518 1.7620 1.8044 1.5790 1.5830 1.6170

6 0.9891 0.9858 0.9875 1.9524 1.8705 1.9807 1.5293 1.5688 1.6147

7 0.9893 0.9867 0.9873 1.5240 1.8034 1.6421 1.4925 1.5451 1.5259

8 0.9897 0.9864 0.9880 1.7047 1.7401 1.8701 1.4503 1.4873 1.4977

9 0.9905 0.9868 0.9893 1.5243 1.5833 1.6630 1.4420 1.4348 1.4869

10 0.9909 0.9908 0.9905 1.5574 1.5216 1.5997 1.4594 1.4582 1.4627

11 0.9910 0.9909 0.9907 1.4301 1.4376 1.5739 1.3136 1.3026 1.3806

12 0.9910 0.9909 0.9907 1.3528 1.3877 1.4605 1.2565 1.2528 1.2910

13 0.9912 0.9912 0.9910 1.3753 1.3265 1.4481 1.1025 1.1298 1.1394

14 0.9919 0.9919 0.9911 1.3217 1.3688 1.4018 1.0488 1.1231 1.0905

15 0.9922 0.9922 0.9913 1.2810 1.2806 1.3448 1.0365 1.0328 1.0434

16 0.9922 0.9922 0.9913 1.2761 1.2791 1.2996 1.0323 1.0138 1.0136

17 0.9928 0.9926 0.9915 1.1420 1.2688 1.2903 1.0315 1.0162 1.0379

18 0.9936 0.9929 0.9916 1.1375 1.1902 1.2783 0.9431 0.9677 0.9861

19 0.9936 0.9939 0.9916 1.0923 1.1286 1.2487 0.9326 0.9481 0.9767

20 0.9947 0.9949 0.9918 0.9966 1.0658 1.2371 0.9337 0.9365 0.9662

21 0.9959 0.9587 0.9919 0.8400 1.0648 1.2147 0.8205 0.8290 0.9443

22 0.9973 0.9968 0.9923 0.7937 0.9249 1.1941 0.6434 0.7175 0.9313

23 0.9958 0.9959 0.9919 0.8490 1.0524 1.2163 0.8274 0.8213 0.9426
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TABLE 3 Performance comparison between different input neurons for the LSTM.

Variables
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

1 0.9871 0.9863 0.9829 1.7596 2.2165 1.9637 1.5609 1.7696 1.6934

2 0.9880 0.9863 0.9840 1.7178 1.6793 1.8074 1.5163 1.7397 1.6893

3 0.9785 0.9777 0.9732 1.6857 1.6135 1.7976 1.3917 1.6337 1.6644

4 0.9870 0.9861 0.9820 1.4703 1.5082 1.6752 1.2304 1.5603 1.6335

5 0.9877 0.9850 0.9839 1.4585 1.4739 1.5056 1.2238 1.4385 1.5184

6 0.9884 0.9872 0.9847 1.4230 1.4521 1.4913 1.1207 1.3870 1.3660

7 0.9887 0.9861 0.9860 1.3511 1.3620 1.4659 1.0937 1.2637 1.2241

8 0.9888 0.9869 0.9860 1.3329 1.3825 1.4694 1.0820 1.1665 1.2821

9 0.9903 0.9873 0.9887 1.3023 1.3501 1.4565 0.9945 1.0164 1.1205

10 0.9916 0.9909 0.9894 1.2545 1.2520 1.3695 0.9824 0.9879 1.0341

11 0.9919 0.9918 0.9910 1.2403 1.2484 1.3520 0.9708 1.9715 0.9881

12 0.9922 0.9922 0.9912 1.2102 1.2027 1.2567 0.9222 0.9682 0.9726

13 0.9922 0.9923 0.9912 1.1395 1.1538 1.2455 0.8640 0.9321 0.9714

14 0.9931 0.9927 0.9914 1.1138 1.1598 1.2174 0.8526 0.9222 0.9634

15 0.9932 0.9929 0.9914 1.0502 1.1497 1.2152 0.8312 0.8717 0.9620

16 0.9941 0.9935 0.9915 1.0351 1.0534 1.2054 0.8219 0.8691 0.9582

17 0.9943 0.9939 0.9916 1.0136 1.0346 1.1947 0.7808 0.8413 0.9551

18 0.9951 0.9942 0.9917 0.9855 0.9948 1.1868 0.7256 0.8369 0.9485

19 0.9952 0.9949 0.9919 0.9442 0.9846 1.1858 0.7131 0.8159 0.9462

20 0.9953 0.9953 0.9919 0.8742 0.9749 1.1753 0.7122 0.7516 0.9429

21 0.9961 0.9959 0.9920 0.8526 0.9466 1.1673 0.6921 0.7457 0.9316

22 0.9976 0.9969 0.9926 0.7674 0.9146 1.1620 0.6417 0.6968 0.9307

23 0.9961 0.9958 0.9920 0.8427 0.9475 1.1656 0.6913 0.7415 0.9323

TABLE 4 Performance comparison between different input neurons for the CNN.

Variables
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

1 0.9817 0.9768 0.9799 1.8627 2.1317 2.0266 1.6421 1.6678 1.6986

2 0.9808 0.9762 0.9795 1.9561 2.1508 2.1377 1.5602 1.6634 1.6433

3 0.9809 0.9705 0.9804 1.9620 2.5899 2.1469 1.5124 1.5949 1.6422

4 0.9904 0.9848 0.9899 1.4357 1.8787 1.4691 1.5431 1.4844 1.5989

5 0.9900 0.9868 0.9904 1.5619 1.6374 1.6015 1.5325 1.5149 1.5517

6 0.9909 0.9851 0.9861 1.5669 1.7025 1.7157 1.2406 1.4840 1.4163

7 0.9914 0.9902 0.9901 1.5065 1.5474 1.5005 1.3865 1.3144 1.3908

8 0.9910 0.9909 0.9903 1.3470 1.5501 1.4722 1.1877 1.2020 1.2498

9 0.9921 0.9911 0.9909 1.3541 1.4635 1.4698 1.0571 1.1396 1.1522

10 0.9923 0.9912 0.9912 1.3361 1.4474 1.4472 0.9912 0.9935 0.9964

11 0.9927 0.9913 0.9913 1.2482 1.3484 1.4314 0.9804 0.9895 0.9854

12 0.9926 0.9919 0.9913 1.1706 1.3416 1.3685 0.9730 0.9730 0.9749

13 0.9929 0.9919 0.9915 1.1797 1.3466 1.3606 0.9715 0.9739 0.9747

14 0.9934 0.9922 0.9916 1.1635 1.2530 1.3508 0.9581 0.9517 0.9550

15 0.9939 0.9929 0.9919 1.4580 1.2458 1.3430 0.8917 0.9285 0.9457

16 0.9948 0.9936 0.9919 1.1432 1.2428 1.3400 0.8806 0.9136 0.9455

17 0.9949 0.9937 0.9921 1.0608 1.1873 1.2944 0.8302 0.8520 0.9369

18 0.9954 0.9938 0.9921 0.9400 1.1486 1.2430 0.8105 0.8150 0.9350

19 0.9964 0.9949 0.9921 0.8447 1.0663 1.2246 0.7716 0.7830 0.9382

20 0.9978 0.9972 0.9929 0.7159 0.9133 1.1599 0.6338 0.6703 0.9267

21 0.9951 0.9947 0.9922 0.8726 0.9969 1.2282 0.7639 0.7655 0.9372
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TABLE 5 Performance comparison between different input neurons for the CNN-GRU.

Variables
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

1 0.9879 0.9835 0.9867 1.5653 1.9598 1.7098 1.6115 1.5530 1.5863

2 0.9891 0.9824 0.9884 1.5006 1.8587 1.7032 1.6526 1.6078 1.7291

3 0.9895 0.9840 0.9888 1.5031 1.8364 1.6560 1.5639 1.4615 1.5684

4 0.9916 0.9876 0.9891 1.4564 1.7828 1.6253 1.5321 1.4155 1.5537

5 0.9904 0.9871 0.9893 1.7575 1.4579 1.5830 1.4461 1.4083 1.5664

6 0.9913 0.9877 0.9908 1.5816 1.4944 1.5720 1.2442 1.3632 1.2602

7 0.9920 0.9908 0.9901 1.3487 1.5104 1.4500 1.0629 1.2154 1.1501

8 0.9919 0.9919 0.9908 1.3323 1.4493 1.4873 0.9901 0.9914 0.9915

9 0.9923 0.9920 0.9913 1.2458 1.3519 1.3504 0.9855 0.9804 0.9846

10 0.9927 0.9921 0.9913 1.2645 1.2272 1.3809 0.9855 0.9713 0.9747

11 0.9934 0.9930 0.9916 1.2283 1.2318 1.3009 0.9701 0.9612 0.9645

12 0.9935 0.9929 0.9917 1.1291 1.2245 1.2898 0.9601 0.9413 0.9547

13 0.9940 0.9929 0.9918 1.1225 1.2144 1.2814 0.9698 0.9314 0.9446

14 0.9942 0.9939 0.9918 1.1208 1.1387 1.2792 0.8571 0.9271 0.9447

15 0.9948 0.9939 0.9920 1.1124 1.1332 1.2304 0.8877 0.9131 0.9448

16 0.9956 0.9940 0.9921 1.0265 1.1332 1.2344 0.8105 0.8905 0.9347

17 0.9956 0.9942 0.9921 0.9274 1.0448 1.1734 0.7801 0.7813 0.9346

18 0.9959 0.9949 0.9922 0.8624 0.9454 1.1630 0.7698 0.7713 0.9345

19 0.9968 0.9959 0.9922 0.8226 0.9391 1.1532 0.7196 0.7069 0.9345

20 0.9979 0.9973 0.9934 0.6916 0.8797 1.1201 0.6108 0.6699 0.9253

21 0.9968 0.9959 0.9921 0.8271 0.9354 1.1410 0.7210 0.7048 0.9349

TABLE 6 Performance comparison between different input neurons for the CNN-LSTM.

Variables
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

1 0.9878 0.9835 0.9868 1.5953 2.0201 1.7151 1.2342 1.5109 1.5808

2 0.9892 0.9837 0.9888 1.4319 1.9061 1.5227 1.1196 1.4928 1.4261

3 0.9900 0.9844 0.9893 1.3866 1.5114 1.4835 1.1811 1.3847 1.2068

4 0.9910 0.9862 0.9905 1.4294 1.4419 1.4403 1.1022 1.2848 1.1253

5 0.9919 0.9864 0.9914 1.3723 1.3838 1.3423 1.0802 1.1367 1.0647

6 0.9903 0.9859 0.9895 1.2581 1.2685 1.3283 1.0704 1.0718 1.0512

7 0.9908 0.9885 0.9900 1.2484 1.2509 1.3012 0.9248 0.9978 1.0188

8 0.9925 0.9917 0.9911 1.1322 1.1428 1.2626 0.9194 0.9446 0.9548

9 0.9939 0.9924 0.9914 1.1314 1.1418 1.2313 0.8515 0.9366 0.9462

10 0.9938 0.9928 0.9914 1.1268 1.1354 1.2142 0.8221 0.9205 0.9400

11 0.9939 0.9936 0.9915 1.1238 1.1342 1.1707 0.8149 0.9113 0.9421

12 0.9945 0.9933 0.9915 1.0198 1.1185 1.1657 0.7557 0.8564 0.9331

13 0.9950 0.9935 0.9917 1.0179 1.1136 1.1665 0.7341 0.8670 0.9314

14 0.9950 0.9936 0.9918 0.9647 1.0113 1.1534 0.7178 0.8340 0.9320

15 0.9957 0.9942 0.9922 0.9140 1.0028 1.1404 0.6967 0.7776 0.9301

16 0.9957 0.9947 0.9923 0.8629 0.9717 1.1403 0.6974 0.7901 0.9281

17 0.9966 0.9951 0.9926 0.8676 0.9696 1.1370 0.6814 0.7758 0.9262

18 0.9969 0.9957 0.9934 0.8276 0.9219 1.1320 0.6881 0.7347 0.9244

19 0.9971 0.9968 0.9928 0.7943 0.8732 1.1262 0.6719 0.7294 0.9193

20 0.9981 0.9976 0.9937 0.6803 0.8508 1.1126 0.6060 0.6550 0.9187

21 0.9977 0.9968 0.9925 0.7421 0.8979 1.1262 0.7140 0.7298 0.9214

https://doi.org/10.3389/ffgc.2023.1249300
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Guo et al. 10.3389/ffgc.2023.1249300

Frontiers in Forests and Global Change 09 frontiersin.org

training phase and the prediction phase. The simulated monthly 
average atmospheric temperature is extraordinarily close to the 
actual atmospheric temperature.

The RMSE, R, and MAE values of the ANN utilizing trainbr and 
trainlm for the training stage are 0.8233°C and 1.2422°C; 0.9964 and 
0.9918; and 0.6456°C and 0.9790°C, respectively.

3.4 Hyperparameter information of the ML 
models

In this study, six types of ML models are proposed. The 
convergence speed, generalization ability, and prediction accuracy of 
the ML models are significantly affected by hyperparameters. 

TABLE 7 Performance comparison between various neurons in the hidden layer for the ANN.

Nodes
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

1 0.9911 0.9876 0.9821 1.2919 1.4976 1.2880 1.0135 1.1614 1.0099

2 0.9912 0.9880 0.9832 1.2812 1.4756 1.2485 1.0028 1.1331 0.9821

3 0.9921 0.9882 0.9843 1.2152 1.4607 1.2277 0.9495 1.1476 0.9607

4 0.9924 0.9891 0.9864 1.1899 1.4088 1.2185 0.9100 1.0919 0.9528

5 0.9933 0.9914 0.9875 1.1160 1.2500 1.2174 0.8904 1.0089 0.9521

6 0.9935 0.9915 0.9885 1.1029 1.2421 1.2170 0.8602 0.9678 0.9516

7 0.9938 0.9920 0.9896 1.0775 1.2128 1.2160 0.8345 0.9604 0.9507

8 0.9937 0.9926 0.9902 1.0834 1.1721 1.2153 0.8390 0.9109 0.9595

9 0.9944 0.9929 0.9903 1.0287 1.1451 1.2158 0.8158 0.8783 0.9606

10 0.9949 0.9947 0.9903 0.9767 1.0118 1.2157 0.7828 0.8053 0.9605

11 0.9947 0.9947 0.9904 1.0028 1.0145 1.2157 0.7920 0.7922 0.9595

12 0.9950 0.9952 0.9905 0.9654 0.9482 1.2156 0.7587 0.7409 0.9505

13 0.9944 0.9930 0.9907 1.0239 1.1447 1.2159 0.8065 0.9206 0.9507

14 0.9964 0.9952 0.9921 0.8233 0.9432 1.2147 0.6456 0.7204 0.9495

15 0.9960 0.9955 0.9920 0.8672 0.9538 1.2157 0.6762 0.7224 0.9594

16 0.9948 0.9937 0.9917 0.9873 1.0877 1.2167 0.7853 0.8387 0.9592

17 0.9951 0.9937 0.9916 0.9656 1.1051 1.2246 0.7612 0.8518 0.9595

18 0.9942 0.9925 0.9914 1.0380 1.1855 1.2154 0.8159 0.9272 0.9502

19 0.9947 0.9932 0.9915 0.9947 1.1436 1.2152 0.7727 0.9005 0.9499

20 0.9932 0.9915 0.9916 1.1260 1.2396 1.2243 0.8945 0.9886 0.9496

21 0.9940 0.9923 0.9919 1.0638 1.1909 1.2242 0.8409 0.9390 0.9498

22 0.9954 0.9952 0.9918 0.9303 0.9443 1.2212 0.7410 0.7293 0.9549

23 0.9931 0.9909 0.9911 1.1511 1.3517 1.2245 0.9098 1.0687 0.9594

TABLE 8 Comparative performance of various ANN training algorithms in Zhengzhou city.

Training 
functions

R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

Trainbr 0.9964 0.9952 0.9921 0.8233 0.9432 1.2147 0.6456 0.7204 0.9495

Trainlm 0.9918 0.9888 0.9910 1.2422 1.4250 1.3540 0.9790 1.1049 0.9506

Traingdx 0.9779 0.9753 0.9873 2.0471 2.2065 1.6560 1.5842 1.8122 1.3092

Traingd 0.9142 0.9056 0.9862 3.9613 4.6061 7.6341 3.4026 3.8422 6.7248

Traingdm 0.9446 0.9444 0.9828 3.2157 3.3116 8.4301 2.7383 2.6775 7.4668

Traingda 0.8655 0.8639 0.9909 4.8823 4.9127 1.4668 4.0903 4.0987 1.1248

Trainrp 0.9821 0.9764 0.9905 1.8436 2.1071 1.3371 1.3489 1.6826 1.0609

Traincgp 0.9894 0.9865 0.9855 1.4547 1.7825 2.0294 1.1643 1.4048 1.6414

Traincgf 0.9208 0.9096 0.9914 3.7729 4.2121 1.2667 3.1307 3.3833 0.9989

Traincgb 0.9872 0.9836 0.9911 1.5590 2.0183 1.2917 1.2462 1.6137 1.0226

Trainscg 0.9872 0.9836 0.9913 1.5590 2.0183 1.2748 1.2462 1.6137 1.0048

Trainbfg 0.9708 0.9655 0.9917 2.3534 2.7599 1.2485 1.8639 2.2762 0.9770

Trainoss 0.9142 0.9056 0.9910 3.9613 4.6061 1.3018 3.4026 3.8422 1.0242
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Therefore, to achieve optimal model performance, it is necessary to 
select appropriate hyperparameters. The specific hyperparameters in 
the ML models after model training and validation are shown in 
Table  9. A CNN with nine layers was constructed to capture the 
features of the input climate data. Afterward, LSTM and GRU 
containing a hidden layer (HL) with 100 neurons are used to learn the 
features of the output data from the CNN layer. The activation 
functions (AFs) of LSTM and GRU were tanh and sigmoid, the 
learning rate (LR) was 0.001, the number of epochs was set to 100, the 
batch size (BS) was 6, the kernel size (KS) of the CNN was 3, the 
max-pooling (MP) was 2, the convolution filters (CFs) were 16 and 
32, and the Adam Optimizer was used.

3.5 Prediction of monthly average and 
extreme atmospheric temperatures in 
Zhengzhou city

In the predicting period, average and extreme atmospheric 
temperatures in the coming month were predicted utilizing the 
atmospheric temperature data of the previous 22 months. Table 10 
demonstrates the predicting performance utilizing trainbr and trainlm 
for the optimized ANN model. For the monthly average atmospheric 
temperature in Zhengzhou during the predicting stage, the R, RMSE, 
and MAE for trainbr were 0.9952, 0.9432°C, and 0.7204°C; and those 
for trainlm were 0.9888, 1.4250°C, and 1.1049°C, respectively. 
Table  10 shows the prediction results of average and extreme 
temperatures for the ANN during the training phase and the 
prediction phase. For the monthly minimum atmospheric temperature 
in Zhengzhou during the predicting stage, the R, RMSE, and MAE for 
trainbr were 0.9899, 1.4034°C, and 1.0787°C, respectively. For the 
monthly maximum atmospheric temperature in Zhengzhou during 
the predicting stage, the R, RMSE, and MAE for trainbr were 0.9721, 
2.0505°C, and 1.6224°C, respectively.

Figures 3A,B displays the predicted monthly average atmospheric 
temperature (AAT) in Zhengzhou from 2001 to 2022 using trainbr. In 
the predicting phase, the predicted values and the measured values 
were very close, especially in the simulated peak values. Figures 3C,D 

displays the predicted monthly minimum atmospheric temperature 
(MINAT) using trainbr. In the predicting phase, the forecasted 
minimum atmospheric temperature was similar to the measured 
minimum atmospheric temperature, especially in the simulated peak 
values. These results showed that tranbr had the best prediction effects.

Figures  3E,F displays the predicted monthly maximum 
atmospheric temperature (MAXAT) using trainbr. In the predicting 
phase, the forecasted maximum atmospheric temperature was similar 
to the measured maximum atmospheric temperature, especially in the 
simulated peak values. These results showed that tranbr had the best 
prediction effects.

The ANN and DL models were also compared. Table 11 lists the 
R, RMSE, and MAE achieved by each model when simulating the 
monthly average atmospheric temperature (AAT). Although the DL 
model performed better than the ANN, all models met reasonable 
prediction requirements. Table 11 lists the results of all the models for 
the monthly minimum atmospheric temperature (MINAT). Similarly, 
the DL model performed better than the ANN. Table 11 lists the 
simulated effects of each model for the monthly maximum 
atmospheric temperature (MAXAT). Similarly, the simulation results 
of the DL model were better than those of the ANN.

The results showed that the monthly atmospheric temperatures 
(i.e., average temperature, minimum temperature, and maximum 
temperature) simulated by the CNN-LSTM model had the best 
correlation with actual measurements during the forecast period (i.e., 
R = 0.9976, 0.9955, and 0.9907, respectively). Furthermore, the results 
indicated that when simulating monthly average atmospheric 
temperature, the CNN-GRU model was more effective than the CNN 
and the GRU models but less effective than the CNN-LSTM model. 
When simulating values of monthly minimum atmospheric 
temperature and maximum atmospheric temperature, the CNN-GRU 
model also performed better than the CNN and the GRU models. Our 
results suggested that the CNN-LSTM model had superior 
performance and better accuracy than the ANN and other DL 
prediction models, making it a promising and useful tool to accurately 
predict climate change.

Figures  4A,B compares the temporal variations in the 
observed values and predicted values of monthly average 

TABLE 9 Hyperparameter information of the machine learning models.

Models Inputs HL Units of HL Outputs AF LR BS Epochs Optimizer KS MP CF

ANN 22 1 14 1 logsig-purelin 0.001 6 100

GRU 22 1 100 1 tanh-sigmoid 0.001 6 100 Adam

LSTM 22 1 100 1 tanh-sigmoid 0.001 6 100 Adam

CNN 22 9 100 1 ReLU 0.001 6 100 Adam 3 2 16–32

CNN-GRU 22 11 100 1 ReLU 0.001 6 100 Adam 3 2 16–32

CNN-LSTM 22 11 100 1 ReLU 0.001 6 100 Adam 3 2 16–32

TABLE 10 Comparison of simulation results for the ANN model.

Atmospheric 
temperature

R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

Average temperature 0.9964 0.9952 0.9921 0.8233 0.9432 1.2147 0.6456 0.7204 0.9495

Minimum temperature 0.9878 0.9899 0.9728 1.5754 1.4034 2.3300 1.1893 1.0787 1.8924

Maximum temperature 0.9732 0.9721 0.9443 1.9470 2.0505 2.9319 1.5021 1.6224 2.5057
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atmospheric temperature for the CNN-LSTM model in 
Zhengzhou city during the forecast stage. The CNN-LSTM model 
could efficiently capture the monthly average atmospheric 
temperature trends as well as peaks.

Figures  4C,D shows a comparison of the monthly minimum 
atmospheric temperature time series between the observations and 
predictions. The magnitudes of the values predicted by the 
CNN-LSTM model were approximately consistent with 
the observations.

Figures  4E,F displays the monthly maximum atmospheric 
temperature predicted using the CNN-LSTM model. In the predicting 
phase, the forecasted maximum atmospheric temperature was similar 
to the measured maximum atmospheric temperature. The 

CNN-LSTM model captured the maximum atmospheric temperature 
trends and outperformed the CNN, LSTM, and CNN-GRU models.

3.6 Projection of future climate change 
between 2030 and 2040

Figures  4G,H shows the projected average, minimum, and 
maximum atmospheric temperatures using the CNN-LSTM model. In 
2030, these values were 17.23°C, −5.06°C, and 42.44°C, and in 2040, 
they were 17.36°C, −3.74°C, and 42.68°C, respectively. These results 
suggest that the future climate is projected to continue warming, which 
requires us to achieve carbon neutrality as soon as possible.

FIGURE 3

Monthly average, minimum, and maximum atmospheric temperatures in Zhengzhou from 2001 to 2022 predicted by the ANN: (A) Predicted vs. 
observed values. (B) Scatter plots. (C) Predicted vs. observed values. (D) Scatter plots. (E) Predicted vs. observed values. (F) Scatter plots.
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4 Discussion

Various models have been used to simulate and predict the 
average, minimum, and maximum atmospheric temperatures in 
several studies. The comparison of measured and forecasted 
atmospheric temperature determined the accurate training of the 
ANN for the forecast of air temperature for cities (Chania, Granada, 
Ancona, and Mollet) (Papantoniou and Kolokotsa, 2016). The ANN 
model had an accuracy of approximately 75.6% in forecasting the air 
temperature for the next 24 h in the Ararat Valley of Armenia 
(Astsatryan et  al., 2021). The deep neural network (DNN) model 
(DNNM-3) for temperature prediction in New Delhi outperformed 
other models, with an accuracy rate of approximately 96.4% 
(Shrivastava et  al., 2022). The ST-Net model (deep spatial and 
temporal network) was used to predict the future 1 hour air 
temperature at Baihetan Hydropower Station, China. The 
experimental results showed that the R2, RMSE, and MAE of ST-Net 
were 0.98, 0.63, and 0.45, respectively (Wu et al., 2022). The ANN was 
trained by 90% of the monthly land surface air temperatures from 
ERA5 and validated with the remaining 10%. The validation step 
showed the obvious improvements of the ANN over the empirical 
orthogonal teleconnection technique: The global spatial R increased 
from approximately 65% to 80%, and the RMSE difference decreased 
from approximately 0.99°C to 0.57°C during 1850–2020 (Huang et al., 
2022). The U-net neural network forecasting surface air temperature 
over Xinjiang displayed the best correction performance with the 
highest R and the lowest MAE (Zhu et al., 2022). ANN was utilized to 
forecast the surface atmospheric temperature anomalies of the winter 
months in Japan. The results were validated in terms of R2. The ANN 
forecasts had higher skill scores compared to the North American 

Multi-Model Ensemble model skill scores (Ratnam et al., 2021). After 
comparing the atmospheric temperature forecast results with those of 
LSTM-Attention, BiLSTM, and LSTM, the symmetrical BiLSTM-
Attention model had the best forecast effect in Beijing, with an MAE 
value of approximately 0.013 and an R2 value of 0.9618 (Hao 
et al., 2022).

Long-term monthly atmospheric temperatures in Turkey were 
modeled using the Elman neural network (ENN) and the feed-forward 
neural network (FNN) approaches with longitude, latitude, altitude, 
and the month number. The Levenberg–Marquardt algorithm was 
chosen as the learning algorithm. The FNN model gave better air 
temperature results than the ENN model. For the monthly minimum 
air temperature prediction, the FNN model showed the best result for 
the testing process in terms of a minimum MAE value of approximately 
0.8848°C, and the RMSE and R2 values for the testing process were 
calculated as 1.0907°C and 0.9819, respectively. For the monthly 
maximum air temperature prediction, the best result for the testing 
process was obtained in terms of a minimum MAE value of 
0.7202°C. The R2 value for the testing processes was calculated as 
0.9928, whereas the RMSE value was 0.9136°C. For the prediction of 
mean air temperature, the best result for the testing process was 
obtained in terms of a minimum MAE value of 0.6248°C. The R2 value 
for the testing processes was calculated as 0.9918, whereas the RMSE 
value was 0.9918°C (Bilgili et al., 2023). Thus, the ANN model is a 
promising tool for forecasting the winter air temperature. Furthermore, 
it is feasible to predict atmospheric temperature using ANNs. Although 
ANN could simulate climate, its accuracy is not as high as that of DL 
models. Through the above analysis, we can see that the DL model 
performed better than the general ANN model, and our simulation 
results also supported this viewpoint.

TABLE 11 Comparison between various models for simulating average, minimum, and maximum atmospheric temperatures.

T Models
R RMSE (°C) MAE (°C)

Training Testing 10-fold Training Testing 10-fold Training Testing 10-fold

AAT ANN 0.9964 0.9952 0.9921 0.8233 0.9432 1.2147 0.6456 0.7204 0.9495

GRU 0.9973 0.9968 0.9923 0.7937 0.9249 1.1941 0.6434 0.7175 0.9313

LSTM 0.9976 0.9969 0.9926 0.7674 0.9146 1.1620 0.6417 0.6968 0.9307

CNN 0.9978 0.9972 0.9929 0.7159 0.9133 1.1599 0.6338 0.6703 0.9267

CNN-GRU 0.9979 0.9973 0.9934 0.6916 0.8797 1.1201 0.6108 0.6699 0.9253

CNN-LSTM 0.9981 0.9976 0.9937 0.6803 0.8508 1.1126 0.6060 0.6550 0.9187

MINAT ANN 0.9878 0.9899 0.9728 1.5754 1.4034 2.3300 1.1893 1.0787 1.8924

GRU 0.9929 0.9914 0.9761 1.3933 1.3742 2.2406 1.0212 1.0346 1.7151

LSTM 0.9934 0.9926 0.9752 1.2974 1.3502 2.2684 1.0187 1.0240 1.7557

CNN 0.9944 0.9934 0.9796 1.0151 1.3423 2.0524 1.0094 1.0140 1.6196

CNN-GRU 0.9957 0.9950 0.9883 0.9913 1.2512 1.9669 0.9987 1.0014 1.5255

CNN-LSTM 0.9961 0.9955 0.9911 0.9384 1.1737 1.3525 0.9325 0.9426 1.0671

MAXAT ANN 0.9732 0.9721 0.9443 1.9470 2.0505 2.9319 1.5021 1.6224 2.5057

GRU 0.9855 0.9781 0.9535 1.7144 1.9805 2.6066 1.3975 1.5690 2.0610

LSTM 0.9870 0.9885 0.9531 1.6667 1.9368 2.6369 1.3741 1.5425 2.0983

CNN 0.9872 0.9893 0.9619 1.6525 1.9210 2.9288 1.3623 1.5372 2.3806

CNN-GRU 0.9909 0.9906 0.9625 1.4724 1.9127 2.3488 1.1928 1.0999 1.8378

CNN-LSTM 0.9918 0.9907 0.9827 1.3171 1.2565 1.5888 0.9960 0.9974 1.2421
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5 Conclusion

This research employed multiple models to address the issue of 
local minima in neural networks and select the optimal one among 
them. Based on the results, we have proposed six artificial intelligence 
methods for predicting atmospheric temperature, exploring the 

potential improvement in prediction performance through variations 
in model parameters. Our findings suggest that enhancing the input 
variables could further improve the prediction performances of the six 
models. The CNN-LSTM model is found to outperform the ANN, 
GRU, LSTM, CNN, and CNN-GRU models. Therefore, we recommend 
using the CNN-LSTM model to predict atmospheric temperature in 

FIGURE 4

Prediction of monthly average, minimum, and maximum atmospheric temperatures in Zhengzhou from 2001 to 2022: (A) Predicted vs. observed 
values. (B) Scatter plots. (C) Predicted vs. observed values. (D) Scatter plots. (E) Predicted vs. observed values. (F) Scatter plots. Projection of future 
atmospheric temperature in Zhengzhou from 2023 to 2040. (G) Average temperature. (H) Minimum temperature, and maximum temperature.
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other forest areas, facilitating a better evaluation of the impact of 
climate change on forest ecosystems. However, future work will involve 
predicting atmospheric temperature using BiLSTM and BiGRU, with 
a focus on optimizing model parameters. Additionally, we will strive to 
improve the reliability and adaptability of the ANN model by 
incorporating various factors such as longitude, latitude, altitude, 
atmospheric circulation, underlying surface properties, greenhouse 
gases, solar radiation, and the number of months as inputs, thereby 
expanding the applicability of the models to other regions.
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