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Introduction: Farmland shelterbelts play a positive role in ensuring food security

and ecological safety. The absence or degradation of shelterbelt structures can

lead to fragmentation of the remotely extracted results. Conversely, shelterbelt

maintenance and management system considers these shelterbelts as entire

units, even if they are divided into several parts by the gaps in them. It is essential

to propose a remote extraction method to fill in fragmented results and accurately

represent the distribution of farmland shelterbelts.

Methods: In this study, random forest algorithm was employed to classify

land cover from ZY-3 (ZiYuan-3 satellite from China) imagery. Then, a

thinning algorithm of mathematical morphology was applied to extract farmland

shelterbelts, and the straight-line connection algorithm was used to connect

central lines belonging to the same belt. Finally, the result was validated using

nine uniformly distributed training sample areas across the entire region.

Results and discussion: This method achieved a correct identification rate

of 94.9% within the training areas. Among the different regions, the highest

identification accuracy recorded was 98.4% and the lowest was 87.7%. In

conjunction with cropland information and the shape index of forest patches,

it was possible to remove information for non-farmland shelterbelts without

introducing external information. This approach achieved a more refined

extraction of forestland information. The combination of the thinning algorithm

and straight-line connection algorithm addressed the issue of fragmented

results in farmland shelterbelt extraction, compensating for the limitations of

relying solely on mathematical morphology for belt connectivity. The research

method can provide technical support for the monitoring and management of

farmland shelterbelts.
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1. Introduction

Farmland shelterbelts are linear agricultural ecological landscapes composed of trees.
The purpose of a farmland shelterbelt is to create a corridor network system that can
reduce the wind speed, improve the microclimate and soil conditions in fields, increase the
biodiversity of flora and fauna, and ensure the ecological stability of agricultural fields to
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promote stable and increased food production (Xiao and
Huang, 2016; Zheng et al., 2016; Yang et al., 2018). Since
the implementation of the Three-North Shelterbelt Project,
farmland shelterbelts have become an essential component of the
shelterbelt system, positively impacting food production security,
ecological security, and human living environments (Brandle
et al., 2004; Campi et al., 2009; Zhu, 2010). However, farmland
shelterbelts belong to non-renewable forests. Since the project’s
implementation, partial belt loss and degradation have occurred
due to natural or human factors, resulting in incomplete structure
and a decline in the protective benefits of farmland shelterbelts
(Liknes et al., 2017; Burke et al., 2019; Yu et al., 2021; Liu et al.,
2022). Therefore, information regarding the accurate extraction of
farmland shelterbelt can provide timely and adequate information
support for modern agricultural and forestry management.

There are two main methods for obtaining information
about farmland shelterbelts: field surveys and remote sensing
monitoring. Although field surveys provide comprehensive and
accurate information, they are time-consuming and expensive,
making them unsuitable for large-scale monitoring. On the other
hand, remote sensing technology is macroscopic, comprehensive,
dynamic, and can aid in rapid collection of data (Pippuri et al., 2016;
Li et al., 2018; Fan et al., 2022). It has been widely applied in forestry
monitoring and mapping due to its ability to collect, process, and
update large-scale spatial data quickly (Zhu et al., 2005; Grabska
et al., 2019; Li et al., 2020; Xi et al., 2021).

Extensive research efforts have been devoted to the study on
remote sensing extraction of farmland shelterbelts. For example,
Deng et al. (2017) used SPOT5 data and a human–machine
interactive visual interpretation method to extract farmland
shelterbelts, and further estimated belt widths by using computer
algorithms. Amichev et al. (2015) used SPOT5 data as a base
map for human–machine interactions and combined it with the
prairie shelterbelt program database to map shelterbelts. Although
human–machine interactive visual interpretation achieves high
accuracy in information extraction, it is labor-intensive, time-
consuming, and inefficient. On the other hand, computer-based
classification methods are more efficient, cost-effective, and suitable
for large-scale study areas, leading to their widespread application
(Yang et al., 2017). Traditional remote sensing classification
commonly uses methods based on pixel feature values. For
example, Aksoy et al. (2010) extracted linear trees in agricultural
landscapes based on spectral information, texture information, and
granularity features by using QuickBird imagery. Liu et al. (2018)
used GF2 satellite imagery and thresholding based on unique
vegetation index features to rapidly extract information about
afforestation. Hu (2014) used ZiYuan-3 satellite (ZY-3) imagery and
a decision tree classification method to extract farmland shelterbelt
information in Qian Gorlos Mongolian Autonomous County, Jilin
Province. Some researchers have also proposed object-based image
analysis methods, which consider the spatial characteristics of
objects. Wiseman et al. (2009) used high-resolution imagery to
identify shelterbelts. Shi et al. (2012) extracted farmland shelterbelt
information in the central and western regions of Jilin Province
based on SPOT 5 satellite data. Czerepowicz et al. (2012) extracted
shelterbelt information in Canterbury Plains, New Zealand, and
calculated carbon storage by the above-ground biomass method.

Furthermore, in-depth research has also been conducted on
data sources with different resolutions, selection of classification

features, and establishment of classification methods for extracting
farmland shelterbelts by using remote sensing. However, the
extraction results present the common issues. Owing to natural
or human factors, there may be gaps in shelterbelts that result
in discontinuity or fragmentation when using computer-based
classification methods. Moreover, farmland shelterbelts are often
managed and operated based on continuous shelterbelt structures.
The discontinuity or fragmentation caused by shelterbelt extraction
hinders their practical management and the exploration of deeper-
level shelterbelt structure information.

To address the problem of fragmented and discontinuous
identification results, Quackenbush suggested that mathematical
morphology is a practical approach for automated linear feature
extraction (Quackenbush, 2004). Xing et al. (2016) introduced
mathematical morphology and applied basic operations such as
dilation and erosion to obtain continuous shelterbelt networks
in the central part of Jilin Province. Lu et al. (2018) applied
mathematical morphology to process shelterbelt classification
results based on decision trees and obtained a farmland shelterbelt
network framework. These studies offer insights into farmland
shelterbelt network extraction by using remote sensing images;
nonetheless, some limitations remain (Zhang et al., 2015).
Mathematical morphology methods are sensitive to structural
element size, and changes in structural elements can affect the
outcomes of belt connectivity. This may cause significant errors
in areas where shelterbelt networks intersect. Therefore, further
research is required to improve the accuracy and robustness
of extraction methods for farmland shelterbelt networks. This
may involve systematic exploration of alternative algorithms or
integration of mathematical morphology with other approaches to
achieve more reliable and continuous results, in particular, in areas
where shelterbelt networks intersect.

To address this need, the present study focused on the
distribution area of farmland shelterbelts in China, specifically
the Northeast Farmland Shelterbelt Construction Zone. Dehui
and Nong’an Counties in the central-western part of Jilin
Province were selected as the study areas. High-resolution satellite
imagery from ZY-3 was used as the data source. A classification
feature space was constructed by combining the spectral and
texture features of land objects. The random forest algorithm
was employed to classify the entire study area, and forestland
information was selected. A refinement algorithm was applied to
extract the centerlines of farmland shelterbelts. The straight-line
connection algorithm was utilized to connect the discontinuous
centerlines within the same shelterbelts. This study explored a
remote sensing-based method for extracting farmland shelterbelt
information oriented toward shelterbelt structures. It aimed to
solve the issues of forestland confusion and discontinuity in remote
sensing extraction of farmland shelterbelts information, providing
a methodological foundation for identifying shelterbelt structures
and offering data support for reasonable management practices.
Overall, this study contributes to the development of a more reliable
and continuous method for remote sensing-based extraction of
farmland shelterbelt information, mainly focusing on shelterbelt
structures. The research was conducted in the selected areas of Jilin
Province, providing valuable insights into the management and
practice of farmland shelterbelts.

Frontiers in Forests and Global Change 02 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1247032
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1247032 August 28, 2023 Time: 17:5 # 3

Deng et al. 10.3389/ffgc.2023.1247032

2. Materials

2.1. Study area

The study area is located in Dehui and Nong’an Counties in the
central–western part of Jilin Province, China, as shown in Figure 1.
The geographic coordinates range from 125◦14′30′′ to 126◦0′39′′E
and from 44◦14′40′′ to 44◦47′27′′N. The study area lies in the
central part of the Songliao Plain and is characterized by flat terrain.
It has a cold temperate semi-humid continental climate.

The region is abundant in agricultural resources; however, it
is prone to wind damage during the spring and the environment
is relatively fragile. Owing to the need for the protection of
agricultural production in this area, the construction of farmland
shelterbelts started early and has been carried out on a large
scale. The establishment of farmland shelterbelts in this region
began in the 1950s, and some farmland shelterbelts were created
during the primary period in the 1970s. In particular, since the
implementation of the Three-North Shelterbelt Project in 1978
(Zhang et al., 2017), the construction of farmland shelterbelts has
become more systematic and comprehensive, achieving a network
of interconnected forest belts (Yu et al., 2006). This area is a typical
demonstration zone for farmland shelterbelts in the Northeast
region.

2.2. Data source

2.2.1. Satellite imagery
For investigating farmland shelterbelts, a ZY-3 multispectral

image taken on May 7th, 2019 with a spatial resolution of 5.8 m
was selected as the data source. It was selected based on the image
resolution, vegetation phenology patterns within the study area,
and data availability. Preprocessing operations such as radiometric
correction, were performed on the satellite image by using ENVI
software, and the Albers equal-area conic projection with dual
standard parallels was used as the geographic reference framework.

2.2.2. Validation data
A training sample dataset was established by visual

interpretation of historical data from Google Earth in 2019
for the random forest classification. Nine validation areas were
selected that were uniformly distributed throughout the study
area and measured 925 km × 925 km. These areas were used
for interactive interpretation of the imagery and to establish
a verification sample dataset for farmland shelterbelts. In this
manner, the accuracy of the extraction results was evaluated.

2.2.3. Sample data
In remote sensing image classification research, the commonly

used methods for selecting sample points include single image
element, seed image element, and polygonal block methods.
Combining the feature situation and research purpose in the study
area, this study uses the sample area of interest of ENVI5.3 software
to randomly select 5,655 image elements as training sample points
and 6,549 as validation sample points in the entire area by irregular
polygonal block as a unit. Furthermore, the sample set of five

categories, namely, forestland, cropland, buildings, water bodies,
and unused land was constructed, as presented in Table 1.

3. Methods

3.1. Technical process

First, a classification feature space was constructed based on the
objects within the study area. By using a training sample dataset,
the random forest classification algorithm was applied to classify
the land cover into five categories; namely, forestland, cropland,
buildings, water bodies, and unused land. Next, forestland area
extraction results were refined by filtering out non-farmland
shelterbelt information, retaining only the farmland shelterbelt
information. Then, a refinement process involving thinning
and line connection was applied to the farmland shelterbelt
information, which connected the fragmented shelterbelt segments.
This process resulted in a continuous vector line representation of
farmland shelterbelts on a shelterbelt-by-shelterbelt basis. Finally,
the accuracy of the extracted results was evaluated by using
the selected validation sample areas. The technical workflow is
illustrated in Figure 2.

3.2. Extraction of land cover information

The Random Forest (RF) classification algorithm is a machine-
learning algorithm that combines multiple decision trees (Del
Río et al., 2014). It offers excellent noise resistance and stable
performance, supports parallel computation, and can handle high-
dimensional data. Numerous studies have shown that ensemble
classifiers such as RF outperform individual classifiers in terms of
accuracy (Dye et al., 2012; Hao et al., 2015; Grabska et al., 2019).

In extracting forest cover information, vegetation indices
that reflect plant growth were selected as classification features.
The most commonly used vegetation indices in remote sensing
are the ratio vegetation index (RVI) and the normalized
difference vegetation index (NDVI) (Gonenc et al., 2019).
Texture features from the study area were calculated by using
the gray-level co-occurrence matrix (GLCM). Based on the
transformation parameters of the MUX sensor (Shi et al., 2019),
the image was transformed into the brightness-component, the
greenness-component, and the wetness-component by tasseled cap
transformation.

Spectral features reflect the spectral differences among different
objects, whereas texture features describe the visual homogeneity
characteristics in the image. In this study, the spectral and texture
features of a multispectral image were combined to construct a
high-dimensional classification feature space. The RF algorithm
was then used to evaluate the importance of these features and
select the relevant ones. The number and sort of selected features
were controlled based on the out-of-bag error rate (Gao et al.,
2022; Kriese et al., 2022). Finally, the importance of the categorized
features and the correlation among them were integrated, and the
wetness-component, brightness-component, RVI, contrast texture
index, entropy texture index, and correlation texture index were
selected to make up the classification feature space.
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FIGURE 1

Location of the study area.

TABLE 1 Training and validation samples.

No. Typology Training samples/Pixels Validation samples/Pixels

1 Forestland 1,430 1,457

2 Cropland 1,119 1,336

3 Buildings 1,123 1,418

4 Water bodies 1,171 1,333

5 Unused land 813 1,005

Total 5,655 6,549

3.3. Forest information separation

Complex information was extracted from forest classification
results, which required the separation of farmland shelterbelt
information from that of the other forestlands. Considering the
actual conditions of the study area, other forestland mainly includes
patchy forests, forests along riverbanks, and forestland within
urban areas, towns, or villages. In order to maximize the protective
benefits, the optimal planting locations for farmland shelterbelts
are around the cultivated fields or vacant spaces within them (Dai
and Chu, 2010; Liu et al., 2012; Zhu and Zheng, 2019). Based
on the spatial distribution characteristics of farmland shelterbelts,
information on forested land next to rivers and in construction land
could be removed by overlaying the forestland and cultivated land
classification results. The information screening process based on
the spatial location of forestland is shown in Figure 3.

Other forestland information can be removed based on spatial
location by incorporating cultivated land information processing.
However, analysis of the study area indicates that some patchy
forests were planned to be planted near agricultural land. Therefore,

it was necessary to remove patchy forests with spatial distribution
similar to shelterbelts.

Shelterbelts have a directional nature and are typically narrow
and elongated with a belt-like distribution. On the other hand,
patchy forests are often planted in a concentrated manner
and exhibit regular rectangular shapes that are geometrically
distinct from shelterbelts (Li, 1995). This study quantified the
differences between patchy forests and shelterbelts using three
shape parameters; namely, area, fill factor (density), and perimeter–
area ratio (Liknes et al., 2017). The area parameter reflects the size
of forest patches, the fill factor represents the directional nature,
and the perimeter–area ratio indicates the proportion of boundary
pixels. The region-props function was introduced to facilitate the
calculation of shape indices for each forest patch. This function is
commonly used to compute the area distribution of labeled regions,
enabling the identification and measurement of various properties
of regions in an image. The results were compiled, each connected
domain was labeled, and geometric shape indices were calculated.
The calculating area, fill factor, and perimeter–area ratio formulas
are as follows:

Areai = regionpropsi (L, Area) (1)
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FIGURE 2

Technical workflow.

FIGURE 3

Information screening process based on cropland.

Abundancei =
Areai

Boxi 1X×Boxi 1Y
(2)

Perimeter Area Ratioi =
regionpropsi (L, Perimeter)

regionpropsi (L, Area)
(3)

(Note: In the equations, region props represent the array storing
the results of the function operation. Box represents the minimum
bounding rectangle that contains the corresponding region, 1X
represents the horizontal distance, and 1Y represents the vertical
distance. Area and Perimeter represent the commands used to
calculate the area and perimeter in the function).

Owing to the directional nature of forest belts, they tend to
have lower filling levels in their minimum bounding rectangles,
corresponding to lower density values. Moreover, farmland
shelterbelts usually appear as narrow and elongated strips of
forestland, resulting in a higher percentage of boundary pixels
in the forest belt patches and, thus, a larger perimeter-to-area
ratio. Consequently, by considering the area, filling level (density),

and perimeter-to-area ratio of forest patches, it is possible to
effectively screen and remove fragmented forest information from
the extracted forestland information.

3.4. Belt-oriented connection

After the information screening, the extracted forest belts
from the classified forestland results became discontinuous and
fragmented. Therefore, a straight-line connection algorithm
was applied to connect the fragmented portions and remove
breakpoints in the extracted forest belts. In conventional
linear feature extraction processes, boundary detection and
line connection are typically performed to achieve straight-line
connections (Shao et al., 2011; Yan and Meng, 2017; Zhang, 2020).

Edge detection is crucial in effective suppression of
noise, extraction of actual edges, and accurate location of
edges for successful line connections (Zhou et al., 2013). In
extracting farmland shelterbelt information, noise was already
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eliminated through post-processing steps such as classification
and information screening. Furthermore, due to the belt-like
distribution of shelterbelts, performing edge detection introduced
complexities and resulted in obtaining belt boundaries, which
might have deviated from the actual spatial positions of the
forestland.

Alternatively, a thinning algorithm based on mathematical
morphology can be employed to progressively remove the
boundaries of a forest belt without compromising image
connectivity (Serra, 1986; Haralick et al., 1987; Li et al., 2017).
This process abstracts the centerline of the image, allowing for the
extraction of line-shaped features. It serves as an image “thinning”
procedure, highlighting the target’s shape characteristics and
topological structures while reducing redundant information.
When this method was applied to the forest belt patches of
farmland shelterbelts, the boundaries gradually stripped away,
which resulted in a centerline that accurately represented the
shelterbelt trend using a single pixel. Forest belt centerline
positions have high accuracy and are unbiased, requiring only the
recording of start and end coordinates of each centerline to achieve
edge localization. The principles of the image thinning algorithm
are as follows:

W = A− A↑B (4)

Where W is the set of pixels after refinement of the binary image;
A is the set of pixels after binarization of the original image; and
B is the binary structure element used for refinement, which is an
arbitrarily shaped graph with a center.

(Note: In the equation, “↑” denotes hit-and-miss
transformation; hit indicates that A contains B, and miss indicates
that A does not contain B).

Connection of fracture lines in forest belts involves merging
and connecting the same forest belt patches. The raster centerlines
extracted by using thinning algorithms do not alter connectivity
and require fracture line connection processing. When extracting
forest belt centerlines, forest patch information was gradually
simplified and the endpoint coordinates of the centerlines replaced
the edge coordinates of the patches. By generating connecting lines
based on the coordinates of each endpoint and connecting the
centerlines end to end, fracture line connection was achieved.

The extraction results of farmland shelterbelts were in raster
data format, where raster data were used to assign values to
represent entity images of the grid cells. To update the image, it
was necessary to reassign pixel values along the connecting lines.
During the image processing, the Bresenham line algorithm was
used to generate a connecting line between two points by tracking
an error term and incrementally calculating the coordinates of
the next point on the line in the X and Y directions (Bresenham,
1965). This allowed for the rapid generation of straight lines.
The coordinates calculated by using this algorithm were directly
matched to the row and column numbers of the raster data
for indexing and reassigning the pixels along the lines. The
specific principles of the Bresenham line connection algorithm are
illustrated in Figure 4.

In this study, farmland shelterbelt data were extracted
separately through information filtering. Thinning operations
were applied to the forest patches to identify shelterbelt trends
by using the patch centerlines. This approach preserved the
topological relationships while removing redundant information.

FIGURE 4

The coordinate calculation of the i + 1 pixel point.

The endpoint coordinates of the thinned patch centerlines were
extracted, and straight-line connections were established based
on a threshold for fracture width. Through these operations, the
fracture lines in the shelterbelts were connected, addressing the
issue of fragmented extraction results and achieving the extraction
of farmland shelterbelt information focusing on belt structure.

3.5. Precision evaluation

A validation dataset for farmland shelterbelts was created
through visual interpretation of high-resolution imagery over
the validation area. The accuracy of the information extraction
results was evaluated by using metrics such as the extraction
length matching rate, extraction omission rate, and identification
redundancy rate. The evaluation formulas are as follows:

P = Tr/(Tr + L)×100% (5)

F = L/(Tr + L)×100% (6)

R = Tf /
(
Tr + Tf

)
×100% (7)

Where P is the coincidence rate, %; F denotes the miss rate, %; R is
the redundancy rate, %; Tr is correct extraction; L denotes omission
extraction; Tf and is redundant extraction.

4. Results and analysis

4.1. Forest classification results

The training dataset was constructed by randomly selecting
sample points from the entire area. By using the bootstrap
resampling technique, RF was employed to extract multiple
sub-samples from the sample set. Decision tree modeling was
performed on each sub-sample, and the final classification result
was obtained by voting. Figure 5 shows that the classification
accuracy of the study area was 94.82%, and there was improved
identification of shelterbelts in areas with dense planting and good
management, whereas in other areas it was more fragmented.
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FIGURE 5

Regional classification results.

Although the overall extraction of forest information in the entire
area was relatively sound, the extraction results included other
forest information, and there were noticeable fractures in the
shelterbelts.

4.2. Forest information filtering results

The above-mentioned method was employed to extract
farmland shelterbelt information in response to the issue of
complex forest information in the preliminary identification
results. The results are shown in Figure 6, wherein the extracted
forest information is represented in yellow and the filtered-
out forest information is represented in red. The marked
rectangular area in Figure 6 indicates that the overlaying cultivated
land information with forest information helped remove forest
information within urban and village areas. In the marked elliptical
area in Figure 6, the shape parameters of each forest patch were
utilized to filter out fragmented forest information. These two
steps of information filtering eliminated other forest information,
ensuring the retention of farmland shelterbelt information.
However, some errors were encountered, such as the area marked
by the dotted line in Figure 6, where the forest land was wrongly
screened out. After analysis, it was concluded that the features
near the forestland were not classified as cropland, which led to
the missing information when screening based on spatial location
information.

4.3. Shelterbelt continuity connecting
results

To address the fragmented and discontinuous extraction of
farmland shelterbelt information, morphological thinning and line
connection operations were performed on the filtered patches.
Finally, connected centerlines were subjected to smooth boundary
processing to extract farmland shelterbelt information. The results
are shown in Figure 7, which shows the formation of two common
“false fractures” in extracting farmland shelterbelt information.
Figure 7A exhibits that artificial road intersections can cause
interruptions in the shelterbelts. Figure 7C demonstrates that due
to natural factors and sparse planting, shelterbelts are prone to
damage in the extraction results due to road interference. By using
the methods described above, the shelterbelts were connected,
which aided in addressing the issue of fragmented extraction results
and achieving information focusing on the farmland shelterbelts.
Figures 7B, D exhibit that although the forest belt vector data are
polylines with more inflection points, the accurate spatial position
accuracy is good.

4.4. Accuracy evaluation results

Distribution maps of farmland shelterbelts in nine validation
areas were generated by combining visual interpretation of
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FIGURE 6

Results of forest land information screening. (A) Initial categorization results. (B) Information screening results.

FIGURE 7

Results of farmland shelterbelt connection. (A,C) Discrete forest lands, (B,D) vector forest belts.

historical imagery with survey data. The farmland shelterbelt
extraction results were accurately evaluated regarding quantity and
spatial distribution. Three representative regions were selected for
presentation, as shown in Figure 8.

The shelterbelt information extracted by the proposed method
was compared with the actual observed data to determine the
lengths of correctly extracted shelterbelts, redundant extractions,
and missed extractions. Statistical analysis shows that the total
length of correctly extracted shelterbelts (Tr) was 689,200.7 km,

the total length of redundant extractions (L) was 37,195.5 km, and
the total length of missed extractions (Tf ) was 10,320.22 km. Based
on these values, the precision (P) was calculated to be 94.88%, the
F-value (F) was 5.12%, and the recall (R) was 1.48%. The accuracy
evaluation was conducted in uniformly distributed sample areas
across the entire region, covering various terrains. The evaluation
parameters for each area are listed in Table 2. Shelterbelt extraction
accuracy results for all nine validation areas were greater than
85%. In areas with regular shelterbelt planting, the accuracy was
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FIGURE 8

Farmland shelterbelt extraction results and validation.

TABLE 2 Precision statistics.

Area no Matching
length/km

Redundant
length/km

Missing
length/km

Correct rate/% Missing rate/% Redundancy
rate/%

1 74937.30 1342.49 6228.57 92.33% 7.67% 1.76%

2 80434.07 967.33 1235.13 98.49% 1.51% 1.19%

3 78236.72 1462.93 3762.67 95.41% 4.59% 1.84%

4 43917.74 337.95 2978.65 93.65% 6.35% 0.76%

5 53605.42 1562.99 2535.87 95.48% 4.52% 2.83%

6 65395.57 726.312 9150.89 87.72% 12.28% 1.10%

7 114602.08 1261.82 1856.89 98.41% 1.59% 1.09%

8 99581.11 1691.16 3897.82 96.23% 3.77% 1.67%

9 78490.69 967.22 5549.02 93.40% 6.60% 1.22%

Among them, the redundancy error of validation area No. 5 was found to be larger, and the missing error of validation area No. 6 was larger. By overlaying the extraction results with the
original ZY-3 images, it was found that redundancy errors were caused by counting line forest belts near villages and towns and forestland next to rivers in area 5. However, in area 6, the poor
quality of the results of the cropland classification led to missing information when filtering the forestland information based on location.

greater than 98%. Overall, the extraction of farmland shelterbelt
information shows promising results.

5. Discussion

5.1. Comparison of related studies

When extracting land cover information at the pixel level
by using computer classification, only the spectral and texture
features of the land cover were considered. The preliminary

extraction results still contained other land cover information.
Therefore, filtering was required to obtain only farmland shelterbelt
information. In this study, during the forestland information
filtering process, the farmland shelterbelt information was filtered
based on shelterbelt spatial location by overlaying the classified
land cover information with the extraction results obtained for the
entire region. Compared to previous studies (Hu, 2014; Lei et al.,
2020), this study introduced auxiliary land cover data extracted
from the same image, which was cost-effective and operationally
simple. Moreover, in the process of further removal of information
from mature forests, this study extracted forestland shape indices
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to make full use of the unique spatial geometric features of
protected forest belts (Liknes et al., 2017). Furthermore, using
building extraction results for information filtering along with
shelterbelt information would have erroneously excluded farmland
shelterbelts near roads. In contrast to the studies reported by Xing
et al. (2016) and Lu et al. (2018), this study aimed to minimize
information filtering errors by selecting cropland information as
auxiliary data.

This study proposed a method for extracting farmland
shelterbelt information based on the concept of shelterbelts to
resolve the issue of fragmented and discontinuous results. The
forest land extraction results belonging to the same shelterbelt
were connected. The connection of shelterbelt fragments was
achieved by using thinning and line connection algorithms,
which resolved extraction result breakpoints and fragmented
patches. Furthermore, the abstraction and quantification of
farmland shelterbelt identification results were achieved, making
their linear features more prominent. This approach ultimately
obtained refined farmland shelterbelt identification results based on
shelterbelts, facilitating further in-depth research.

In contrast to studies by Zhang et al. (2015) who used boundary
detection operations based on the Canny operator to extract linear
agricultural features, this study used shelterbelt centerlines to
represent land cover patches. Furthermore, herein, by removing
unnecessary pixels along the patch boundaries, information
simplification was thus achieved to improve computational
efficiency (Valero et al., 2010; Zhou et al., 2013; Zhang et al.,
2015). Moreover, instead of fitting straight lines to each fragment
individually, traditional line connection algorithms; specifically,
the Bresenham algorithm, were used, based on data structure
and spatial characteristics of the shelterbelts. The fragmented
lines, representing the actual positions of each shelterbelt segment,
accurately depicted the distribution of farmland shelterbelts
without bias (Zhang, 2020; Ahlswede et al., 2021).

5.2. Limitations of this study

Indeed, this study offers some limitations as follows: (1)
The constructed classification feature space can be continuously
optimized. When constructing the classification feature space,
the single reliance on the classification feature importance
ranking selection has certain limitations. If there exists a linear
correlation between the categorized features with high importance,
it can lead to the classification results of the model being
overly inclined to a certain class of features. In this study, the
importance and correlation of categorized features were considered
comprehensively, and the most important categorized features in
each class of features were selected to construct the categorized
feature space, and the categorization accuracy reached 94.87%.
The classification feature space could be further optimized by
combining factor analysis, searching for the uncorrelated list
of variables and particle swarm optimization to optimize the
selection of classification features (Menze et al., 2009; Deng
et al., 2023). (2) The effectiveness of the land cover information
filtering in this study depended on the land cover extraction
accuracy. Preliminary land cover information filtering was based
on the spatial relationship between agricultural land and forestland,

aiming to remove forest information near rivers and urban areas
by retaining the information that was obtained from areas adjacent
to agricultural land. However, if multiple crops were planted
within an agricultural area, there could be variations in the land
cover classification features or uneven selection of training samples
for agricultural land. In that case, it might have resulted in
omission or misclassification of land cover, leading to significant
extraction errors when using agricultural land information for
filtering the forestland identification results. This was observed
in validation zones 5 and 6 shown in Figure 8. (3) The vector
representation of the extracted shelterbelt data also exhibited
limitations. During the thinning process and conversion from
raster to vector data, algorithm limitations might have introduced
errors such as jaggedness and discontinuity in the extracted
vector lines. Furthermore, when multiple continuous shelterbelts
were well-planted and the preliminary extraction results appeared
continuous, it was challenging to separate them, resulting in the
misidentification of multiple shelterbelts as a single continuous
shelterbelt.

5.3. Application value of this
methodology

Despite these limitations and the possibility of some omissions
or misidentifications in the extracted farmland shelterbelt
information, the proposed method provided continuous vector
shelterbelt lines. Moreover, the refined shelterbelt lines, resulting
from pixel-by-pixel extraction, were located precisely at the
shelterbelt centers with high positional accuracy. In subsequent
operations, it was speculated that incorporation of a small amount
of visual interpretation could significantly reduce redundancy
errors and improve identification accuracy. Therefore, the method
proposed in this study can serve as a foundation for shelterbelt
structure identification in the context of farmland shelterbelts
and provide data support for farmland shelterbelt management
practices. Furthermore, it holds some reference value in studying
linear features such as field roads, irrigation channels, and rivers
(Liu et al., 2014; Gu et al., 2018; Supriyasilp et al., 2021).

6. Conclusion

This study used the Chinese-constructed ZY-3 multispectral
imagery with a resolution of 5.8 m as the data source. The RF
algorithm was employed for land cover classification. Through
information filtering, feature refinement, and fractured line
connection operations, continuous vector farmland shelterbelt
information was extracted from the classified results, addressing
the issue of fragmented and discontinuous results by extracting
strip-shaped farmland shelterbelts based on remote sensing
imagery. Accuracy evaluation was conducted in nine validation
zones established throughout the study area, with a spatial
coincidence of shelterbelt extraction exceeding 85% and an
overall identification accuracy of 94.88%. This method resolved
the issue of farmland shelterbelt fragmentation when relying
solely on morphological connection, which can be susceptible
to the influence of structural elements. It is characterized by
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simple operation and efficiency and provides a foundation for
structural identification in farmland shelterbelts, opening up new
possibilities for extracting linear features from remote sensing
imagery. To resolve the limitations discussed above, improvements
can be made by exploring alternative classification methods to
enhance accuracy, in order to optimize the backbone extraction
algorithm for shelterbelts to reduce errors caused by jaggedness
and discontinuity, and incorporating land tenure information or
human–computer interactions to achieve the segmentation of long
shelterbelts. These measures would thereby optimize the accuracy
of farmland shelterbelt information extraction.
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