AUTHOR=Liu Peisong , Cheng Fan , Wang Xinlong , Liu Zhipeng , Cheng Liping , Tong Weishuang , Qi Guang , Kou Lixuan
TITLE=Tree growth as an effect indicator of silvopastoral systems in the low hilly area of western Henan province, China
JOURNAL=Frontiers in Forests and Global Change
VOLUME=6
YEAR=2023
URL=https://www.frontiersin.org/journals/forests-and-global-change/articles/10.3389/ffgc.2023.1244303
DOI=10.3389/ffgc.2023.1244303
ISSN=2624-893X
ABSTRACT=
The low hilly area is a major landform in the west of Henan province, China, and it is suffering soil and water loss because of human activities. The silvopastoral system that combines trees and grasses has been widely used to restore this fragile area. We conducted in situ field experiments in 2011 in the low hilly area of Henan province involving pure forests of Populus simonii (PS; Salicaceae), Platycladus orientalis (PO; Cupressaceae), Quercusvariabilis (QV; Fagaceae), and Robinia pseudoacacia (RP; Fabaceae), and also with each forest tree species being combined with Medicago sativa (MS; Fabaceae) as silvopastoral systems, i.e., PS-MS, PO-MS, QV-MS, and RP-MS, respectively. We recorded tree diameter at breast height (DBH) and tree height (TH) in the years 2014–2016, 2018, 2020, and 2022 for all the different vegetation types. Tree biomass load (TBL, i.e., tree biomass per unit area) was estimated based on DBH and TH using allometric equations for each tree species. Generally, the results showed that the DBH, TH, and TBL were promoted in the silvopastoral systems PS-MS, PO-MS, and QV-MS. Specially, the DBH and TBL of PS-MS and PO-MS tended to be higher and were significantly higher than the pure forests of PS and MS, respectively, in 2014–2016; the silvopastoral systems were not significantly different from the pure forests for DBH in 2018 and 2022, and for TBL in 2018 and 2020. TH was lower in PS-MS and PO-MS than that in PS and PO in 2014–2016, while there was no difference of TH between PS-MS and PS in 2018 and 2022, and TH was higher in PO-MS than that in PO in 2018, 2020 and 2022. The DBH, TH, and TBL were all higher in QV-MS than QV. The TBL in RP-MS was non-significant or lower compared to that in RP. Moreover, TBL tended to be lower in upslope positions than downslope in the pure forests, while there was no difference in most silvopastoral systems. In summary, PS and PO may be suggested as the tree species selection in vegetation restoration processes for about five years, QV may be a better alternative for a long term, while RP is not recommended.