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Forest operations can cause long-term soil disturbance, leading to environmental

and economic losses. Mobile LiDAR technology has become increasingly popular

in forest management for mapping and monitoring disturbances. Low-cost

mobile LiDAR technology, in particular, has attracted significant attention due to

its potential cost-effectiveness, ease of use, and ability to capture high-resolution

data. The LiDAR technology, which is integrated in the iPhone 13–14 Pro Max

series, has the potential to provide high accuracy and precision data at a low cost,

but there are still questions on how this will perform in comparison to professional

scanners. In this study, an iPhone 13 Pro Max equipped with SiteScape and 3D

Scanner apps, and the GeoSlam Zeb Revo scanner were used to collect and

generate point cloud datasets for comparison in four plots showing variability

in soil disturbance and local topography. The data obtained from the LiDAR

devices were analyzed in CloudCompare using the Iterative Closest Point (ICP)

and Least Square Plane (LSP) methods of cloud-to-cloud comparisons (C2C) to

estimate the accuracy and intercloud precision of the LiDAR technology. The

results showed that the low-cost mobile LiDAR technology was able to provide

accurate and precise data for estimating soil disturbance using both the ICP and

LSP methods. Taking as a reference the point clouds collected with the Zeb Revo

scanner, the accuracy of data derived with SiteScape and 3D Scanner apps varied

from RMS = 0.016 to 0.035 m, and from RMS = 0.017 to 0.025 m, respectively.

This was comparable to the precision or repeatability of the professional LiDAR

instrument, Zeb Revo (RMS = 0.019–0.023 m). The intercloud precision of the

data generated with SiteScape and 3D Scanner apps varied from RMS = 0.015 to

0.017 m and from RMS = 0.012 to 0.014 m, respectively, and were comparable

to the precision of Zeb Revo measurements (RMS = 0.019–0.023 m). Overall,

the use of low-cost mobile LiDAR technology fits well to the requirements to

map and monitor soil disturbances and it provides a cost-effective and efficient

way to gather high resolution data, which can assist the sustainable forest

management practices.
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1. Introduction

Forest operations can have a significant impact on soil structure
and health (Ampoorter et al., 2010, 2012; Koreň et al., 2015). These
changes can adversely affect soil fertility, water retention capacity,
nutrient cycling, and vegetation growth (Frey et al., 2009; Tavankar
et al., 2017; Dudáková et al., 2020). Therefore, monitoring soil
disturbance is essential to mitigate its effects on forest ecosystems
(Nikooy et al., 2020; Mohieddinne et al., 2022), meaning that
estimates on its extent, severity and dynamics are critical for the
effective forest management and conservation efforts (Tavankar
et al., 2017; Nikooy et al., 2020). Traditionally, the estimation of
soil disturbance has been done through manual measurements and
visual assessments (Nichol and Wong, 2005; Frankl et al., 2011)
which can be time-consuming, labor-intensive (Sharma, 2018),
costly, and prone to errors. Additionally, these methods may not
capture spatial and temporal variability in soil disturbance due
to their limited coverage (Coleman, 2005; Cécillon et al., 2009;
Sharma, 2018).

There are several harvesting systems used under the
mountainous conditions (Heinimann, 2000, 2004; Pentek
et al., 2008). Although in sloped terrains cable yarding should
be preferred (Heinimann, 2000, 2004; Heinimann et al., 2001;
Pentek et al., 2008; Spinelli et al., 2021) due to its low impact to
the ground, this kind of technology still accounts for a small share
in the European countries (Heinimann et al., 2001; Spinelli et al.,
2013; Böhm and Kanzian, 2022). The alternatives are ground-based
extraction systems which usually include either a forwarder (Pentek
et al., 2008; Visser and Stampfer, 2015) or a skidder (Pentek et al.,
2008; Jaafari et al., 2014). Their use comes at the expense of some
soil impact such as compaction and rutting (Cambi et al., 2015,
2016, 2017; Pierzchała et al., 2016). In some cases, extraction is
done by skidding after building bladed skid roads (Vinson et al.,
2017) which, in time, may be affected by erosion (Shishiuchi, 1993;
Brown et al., 2013), meaning that soil particles are washed, and the
ruts become more prominent (Brown et al., 2013; Vinson et al.,
2017).

LiDAR is an optical device that utilizes lasers in measuring the
distances and positions of objects (Stovall et al., 2017; Elhashash
et al., 2022). It gives precise individual point measurements on a
3D object, with the collective measurements providing information
about the object’s shape and surface characteristics (Elhashash et al.,
2022). It is highly accurate, quick, provides dense 3D information,
and can penetrate sparse objects like canopies (Stovall et al., 2017;
Elhashash et al., 2022). Hence, Stovall et al. (2017) and Wilkes et al.
(2017) have proposed that LiDAR is a feasible method to offer
fast, precise, and non-invasive assessments of forest biophysical
characteristics. According to Beland et al. (2019), it is crucial in
LiDAR-based research to make decisions about the type of LiDAR
platform that is best for extracting the necessary information, the
provider who will conduct the survey, the protocols that will be
used for the survey, and the tools and processing methods that will
be used to transform raw LiDAR data into useful information. The
five main LiDAR platforms used in forest research are airborne
laser scanning (ALS) from manned aircraft, unmanned aerial
vehicle (UAV) laser scanning (ULS), terrestrial laser scanning
(TLS) from a stationary ground platform, mobile laser scanning
(MLS) from a moving ground platform, and spaceflight lidar

(SLS) (Akay et al., 2009; Beland et al., 2019; Talbot and Astrup,
2021).

The use of LiDAR platforms in studies on forest ecosystem
management has been around since the 1960s and 1970s
(Nitoslawski et al., 2021). Nevertheless, Dassot et al. (2011) and
Mohan et al. (2017) report that it is still one of the most widely used
tools for forest research and management. It is frequently combined
with other remote sensing techniques, such as satellite imaging (Ke
et al., 2010; Tigges et al., 2013), to evaluate tree characteristics and
forest structure. LiDAR methods are frequently used in conjunction
with laser scanning methods for land or airborne platforms for
forest inventory. For instance, MLS has been used in several
forestry applications, including non-destructive estimation, forest
inventory, canopy mapping, crown projection, and evacuation
planning (Novo et al., 2020; Shao et al., 2020). Similarly, UAV
has been used in tree growth models, forest inventory, economic
and ecological stand value, monitoring and detection of forest
fires, and assessment of forest structure and characteristics (Milas
et al., 2018; Krause et al., 2019). TLS has also been used for
automatic tree detection, leaf and wood separation, assessment of
forest structure and characteristics, automated processing chains,
and forest inventories (Cabo et al., 2018; Vicari et al., 2019; Wang
et al., 2020). According to Dassot et al. (2011) and Heinzel and
Koch (2011), ALS can be used for a variety of forestry research
tasks, such as forest inventory, tree crown delineation, assessment
of forest parameters and structure, 3D data collection, ecological
research, transpiration, habitat diversity, and flood modeling.
Spatial resolution, occlusion, and coverage are the three key
opposing features of these five different types of LiDAR platforms,
which make it easier to comprehend the advantages and drawbacks
of each type of platform and choose the best option for a particular
research application (Beland et al., 2019).

For measuring soil impacts using contemporary technology,
several methods, including proximal, mobile, and low-cost remote
sensing, have been proposed recently (Talbot and Astrup, 2021),
but little research has been done on their suitability for use in
research trials or the possibility of use in operational forestry
settings. Proximal remote sensing is a quick and non-intrusive
imaging technique that involves briefly and closely positioning the
target object beneath the camera’s lens to get information on its
transmittance or reflectance (Doetterl et al., 2013; Nansen and
Strand, 2018). According to Talbot and Astrup (2021), proximal
sensing technologies are becoming more and more common
in a variety of environmental sciences sectors, including the
measurement of ground surfaces to analyze how tracked and
wheeled machinery affects the displacement of forest soil. Doetterl
et al. (2013) claim that proximal soil sensors can measure soil
parameters rapidly, precisely, more inexpensively, and directly
in the field, giving the data a more accurate representation of
the soil there, while Liu et al. (2019) describe the mobile laser
scanning (MLS) system as a kinematic platform that includes
a laser scanner, inertial measurement unit (IMU), GPS receiver,
and other equipment mounted on a mobile platform. The MLS
system makes it easy, efficient, and precise to create 3D point
clouds of the immediate surroundings, which are useful for a
wide range of applications, such as 3D landscape visualization for
planning and simulations for environmental management (Vallet
and Mallet, 2016; Liu et al., 2019). On the other hand, low-cost
LiDAR is described as a cost-effective and cost-efficient industrial
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quality sensor technology that reconsiders the use, robustness, and
flexibility of sensor technology (Jeong et al., 2018).

Regarding mobile LiDAR applications, Astrup et al. (2016)
evaluated the use of two low-cost 2D LiDAR scanners, each
installed vertically on the rear forwarder bunk, while Salmivaara
et al. (2018) mounted a robust 2D sensor on both a harvester and
forwarder. Both studies addressed the use of mobile and low-cost
LiDAR scanning platforms in soil impact assessment. Still, there
are very few examples of low-cost LiDAR technology applications
in forest management in high-impact journals (Nitoslawski et al.,
2021). Recent developments in technology have enabled the
integration of sensor systems, such as 3D Time-of-Flight and
laser scanning, onto mobile devices, enhancing augmented reality
capabilities and supporting terrestrial/mobile LiDAR-based soil
characterization and modeling (Apple Inc., 2021a, 2022; Samsung
Group, 2023). According to Silver (2019), as smartphone use
increases internationally, crowdsourcing and citizen science-
based research on forest ecology may become more practical
and trustworthy. The accuracy, precision, and repeatability of
smartphones as a tool for citizen-based environmental research and
monitoring, however, is still uncertain (Andrachuk et al., 2019).

Currently, there are several apps that may be installed and used
on low-cost, proximal-sensing mobile platforms, such as Trnio
(Trnio Inc, 2014), Scandy Pro (Scandy, 2016), Heges App (Simonik,
2018), Capture 3D (Matterport Inc, 2018), Polycam (Polycam Inc,
2017), Canvas (Occipital Inc, 2018), 3D Scanner App (Laan Labs,
2011), and SiteScape (Trimble Inc, 2009; Corke, 2021; SiteScape
FARO Solution, 2023). These can be used to scan various objects of
interest for recreational and professional purposes (Gregurić, 2022;
Hullette et al., 2023). Some of these are coming at a subscription
low-cost while some are for free. Gollob et al. (2021) evaluated eight
applications on forest inventory plots and found that three of them,
namely 3D Scanner, Polycam, and SiteScape were suitable for use
under forest environments.

Usually, the collected point clouds require some post-
processing in external software. Among the existing options,
CloudCompare (Girardeau-Montaut, 2015, 2016) has been
extensively used in point-cloud based research (Girardeau-
Montaut et al., 2005; Ahmad Fuad et al., 2018). C2C
(cloud-to-cloud comparison) has been proved to be a powerful
tool for evaluating the accuracy and precision of LiDAR data
(Girardeau-Montaut et al., 2005; Lague et al., 2013; Kharroubi
et al., 2022). Zhang et al. (2015) demonstrated the effectiveness
of a weighted anisotropic ICP algorithm through experiments on
a dataset of a forested area and a coastal beach, showing that the
algorithm can detect subtle changes in the environment that are
missed by the other methods. This method compares two-point
clouds captured from the same area but using different sensors,
scanning platforms or time frames. In the context of mapping and
estimating soil disturbance in forest operations, this method can be
used to compare low-cost mobile LiDAR technology with high-end
LiDAR systems used for accurate soil disturbance estimation. In
comparison to other methods such as ground-based measurements
or aerial photography, the C2C provides a more comprehensive
and accurate assessment of LiDAR data (Ahmad Fuad et al., 2018;
Cheng et al., 2018). Besides, ground-based measurements are
limited in coverage, while aerial photography may not capture the
fine details necessary for accurate soil disturbance mapping and
monitoring (Coleman, 2005; Cécillon et al., 2009; Sharma, 2018).

Therefore, the cloud-to-cloud comparison method may provide a
useful alternative for checking the capabilities of low-cost mobile
LiDAR systems.

According to Carter et al. (2012), recent advancements in
LiDAR mapping systems and the technology that enables them have
allowed scientists and mapping specialists to investigate natural
environments on a range of scales with greater accuracy, precision,
repeatability and flexibility than ever before. Accuracy is the degree
to which a measurement is near to the correct or true value of that
measurement, while precision of a measurement system refers to
how closely repeated measurements (that are repeated under the
same conditions) agree with one another (Teller, 2013; McLain
et al., 2018). However, precision is independent of accuracy and
therefore, a measurement can be accurate but not precise, precise
but not accurate, not accurate and not precise, or both accurate
and precise (Dodge, 2008; Teller, 2013; Glen, 2023). On the other
hand, repeatability is the variance in measurement obtained by
a measuring instrument or device used by a single appraiser or
operator measuring the characteristics of the same part multiple
times (Nakagawa and Schielzeth, 2010; McLain et al., 2018). The
ability to evaluate repeatability enables the comparison of a specific
result or collection of data to a measurement that was obtained
under identical conditions using the same tool or device in a
short amount of time (McLain et al., 2018). Thus, a new piece
of equipment and the testing methodology that goes with it must
be accurate, precise, repeatable, or reproducible from operator to
operator, in order to have confidence in a method and prevent
disputes between researchers (Downing, 2004; McLain et al., 2018).

Concerning the relevance of this study, accuracy is one of
the main justifications for using LiDAR data. According to Akay
et al. (2009), LiDAR is an accurate and economical approach for
gathering data over large areas. As a result, choosing the necessary
degree of data accuracy and recording the level attained are crucial
steps in both data collection and utilization (Carter et al., 2012).
According to Nitoslawski et al. (2021), researchers have found that
despite the increasing digitalization of our world, there hasn’t been
enough research conducted on the uses and effects of new digital
tools in forestry research. Thus, ensuring accurate and high-quality
data is one of the main challenges associated with applying various
digital technologies to manage forest ecosystems (Nitoslawski et al.,
2021). Additionally, documenting and validating data accuracy and
precision is necessary to increase data utility and assure proper and
widespread use (Carter et al., 2012).

Conducting a study to estimate the accuracy and precision of
low-cost mobile LiDAR technology for estimating soil disturbance
is important because one can ascertain the repeatability of results
which is critical for ensuring that they are valid and can be
replicated by others. In this regard, Vogt et al. (2021) assert
that the scanning accuracy of a 3D scanner determines both its
potential applications and usability. In forestry, it is common for
studies to be place-, scale- and time-variant. As such, ensuring that
the LiDAR data remains consistent and accurate is essential for
their success. By conducting a repeatable study, researchers can
assess the variability of LiDAR data and investigate the sources
of error, which are factors that may impact the accuracy of
the soil disturbance estimates (Kedron and Frazier, 2022). This
information can then be used to refine and improve the LiDAR
technology, leading to more accurate and reliable estimates in
the future (Kedron and Frazier, 2022), which will correctly inform
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decision-making in forest operations. Several studies demonstrate
the potential of LiDAR technology for forest operations and soil
research (Akay et al., 2009; Salmivaara et al., 2018; Foldager et al.,
2019; Mohieddinne et al., 2022). The repeatability of studies also
shows the importance of rigorous data collection and processing
protocols in ensuring the validity and reliability of the results
(Kedron and Frazier, 2022).

The purpose of this study was to estimate the scanning
accuracy, precision, and repeatability of an iPhone 13 Pro Max
(Apple Inc., 2021b) equipped with SiteScape and the 3D Scanner
App utilizing a set of LiDAR point clouds collected from the 3D
scanning of soil disturbance in forest operations. As a benchmark
for cloud-to-cloud comparisons with the iPhone scans, LiDAR
point clouds obtained with the GeoSlam Zeb Revo scanner were
used to estimate scan accuracy. The research hypothesis for this
study was that the iPhone 13 Pro Max equipped with SiteScape
and the 3D Scanner App can produce LiDAR point clouds that
are comparable in accuracy, precision, and repeatability to those
obtained with the GeoSlam Zeb Revo scanner for measuring soil
disturbance in forest operations.

2. Materials and methods

2.1. Description of the study area

The study area was located near the Rãcãdãu River in Brasov
County, Romania, at the geographical coordinates of approximately
45◦ 37′ 27′′ N and 25◦ 45′ 46′′ E. The location is covered by a mixed
stand in which some old skidding roads were present, on which four
sample plots (Table 1) were established. The site’s altitude ranges
from roughly 700 to 720 m above sea level, and the dominant tree
species found in the area are the European beech (Fagus sylvatica
L.), Silver fir (Abies alba Mill.), and Norway spruce [Picea abies
(L.) H. Karst]. During the data collection period, the weather was
characterized by light to moderate rainfall and temperatures which
varied between 6 and 11◦C. Dry leaves and organic matter covered
all the sample plots, which were chosen to reflect variations in
terrain, slope, and rut depths (Table 1). The skid roads were very
old and most likely they were used by cable skidders in the past
to extract the wood from the area following selective felling. The
ruts were exposed to weathering and erosion over time, resulting in
different depths and shapes. The ruts varied in depth, from shallow
to approximately 30 cm, while the slope of the plots was between
15 and 22◦ (Table 1 and Figure 1). The ruts found on the sample
plots were not new, but the effect of time and weather factors since
there was a long time from the last use of these skid roads for
timber extraction. Nevertheless, these roads are still used by the
local people seeking leisure in the area.

Data collection process was implemented in April 2022. The
sample plots were rectangular in shape (Figure 1), measuring
approximately 2 by 10 m and were geographically positioned
using a handheld GPS receiver. Ten ground control points (GCP)
were used in each plot, placed on their boundary and spaced at
approximately 2 m each other (Figure 1), so as to form a grid
overlapped on the boundary of each sample plot. GCPs were in
the form of white plastic spheres, measuring 10 cm in diameter,
attached to black stands, which were inserted vertically into the soil

so as the top of each sphere was located at approximately 30 cm
above the ground. These spheres were marked in advance on the
sides with numbers from 1 to 10 by the use of a black permanent
marker.

2.2. Acquisition and processing of LiDAR
data

Two mobile LiDAR-based devices were used for scanning,
namely the GeoSLAM Zeb-Revo (GeoSLAM Ltd et al., 2017)
and the iPhone 13 Pro Max (Apple Inc., Cupertino, CA, USA,
2021). SiteScape and 3DScanner App were installed on the iPhone
platform and used to collect the point clouds. The steps involved in
the data collection process are illustrated in Figure 2. The scanning
procedures used for the Zeb Revo were adapted to those used in
earlier studies (Ryding et al., 2015; Gollob et al., 2021; Marra et al.,
2022), meaning that the operator walked slowly around the edge of
each sample plot, following a closed path while remaining about
1.5 m away from the boundary. This approach aimed to ensure
that the entire area was scanned and to minimize position accuracy
drifts and scanner range noise. After each scanning process and
based on external control, the device automatically processed and
saved the point cloud data on a USB stick. For the mobile phone
and associated apps, scans were done at medium-density (MD), for
which the clouds showed a good representation of the ground. The
LiDAR sensor collected the 3D point cloud data as the operator
walked along the plot’s axis. In each plot, two scans were taken
by the Zeb Revo device; the iPhone platform was used to take
two scans by 3D Scanner app, and another two by the SiteScape
app. After each measurement day, the point clouds produced by
both LiDAR platforms were transferred into a computer. Table 2
describes the point cloud datasets and their corresponding settings
used in the C2C and data analyses.

Point clouds produced by scans had various sizes after pre-
processing. Typically, the ZR files had between approximately 1.0
and 1.7 million points, SA between approximately 0.2 and 0.8
million points and SS between approximately 0.7 and 2.3 million
points, respectively.

2.3. Cloud-to-cloud comparisons (C2C)
of the point clouds

2.3.1. Point-cloud pre-processing and processing
The Cloud-to-Cloud comparison method (C2C) computes the

distances between two LiDAR point clouds, and is a widely used
technique (Ahmad Fuad et al., 2018). The C2C method compares a
reference point cloud generated from a highly accurate surveying
method to a test point cloud generated from the LiDAR system
under test. This is done by aligning and comparing the point
clouds to identify any discrepancies or potential errors in the data,
and to estimate the accuracy and precision of the LiDAR system
under test (Lague et al., 2013; Ahmad Fuad et al., 2018; Kharroubi
et al., 2022). The accuracy and precision of the low-cost LiDAR
platforms used for mobile scanning were estimated in this study
using the C2C approach. Feature-based and Iterative Closest Point
(ICP) options were combined as a part of the coarse-to-fine (C2F)
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TABLE 1 Description of the sample plots.

Name Coordinates Slope (deg.) Leaf
coverage

(%)

Mean rut depth (m) State

Mean Standard
deviation

Mean Standard
deviation

P1 45◦ 37′ 20.5′′ N,
25◦ 35′ 44.7′′ E

19.83 ± 10.38 70 0.313 ± 0.056 Moist

P2 45◦ 37′ 17.9′′ N,
25◦ 35′ 43.0′′ E

15.20 ± 11.11 80 0.122 ± 0.015 Moist

P3 45◦ 37′ 20.6′′ N,
25◦ 35′ 46.0′′ E

19.60 ± 16.57 90 0.152 ± 0.036 Moist

P4 45◦ 37′ 19.0′′ N,
25◦ 35′ 42.0′′ E

21.84 ± 18.17 90 0.135 ± 0.039 Moist

FIGURE 1

An example of color-coded point cloud (A) and histogram (B) showing slope in sample plot 1 (P1).

registration strategy (Besl and McKay, 1992; Cheng et al., 2018).
The feature-based method was used to identify the corresponding
ground control points (GCPs) between the test and reference point
clouds and align them accordingly as an initial coarse registration,
while the ICP algorithm was used to find the closest point pair
between the two-point clouds and align them together in a fine
registration (Besl and McKay, 1992; Cheng et al., 2018). Cheng et al.
(2018) claim that the fine registration approach is used to alter
the results of coarse registration to acquire a satisfactory starting
position. This is the main justification for using the two options in
this study. Nevertheless, due to the iterative nature of point cloud
registration, the ICP technique is slower in identifying connected
points between two-point clouds and less effective at registering
large, high-density point cloud files (Cheng et al., 2018).

In this study, C2C involved five stages: raw point cloud
data pre-processing and processing, point cloud alignment, point
cloud fine-registration, cloud-to-cloud distance computation, and
surface deviation analysis in CloudCompare software (version 2.12
beta; Girardeau-Montaut, 2015). CloudCompare is a widely used
software for point cloud processing, analysis, and visualization
(Girardeau-Montaut, 2015; Ahmad Fuad et al., 2018). It provides
a range of tools for cleaning, segmentation, filtering, aligning,
registering, computing distances, and comparing point clouds
(Biber and Strasser, 2003; Ahmad Fuad et al., 2018; Kharroubi
et al., 2022). The raw point cloud data pre-processing and

processing involved cleaning and segmentation. The point clouds
were first imported from the LiDAR scans in a LAZ file format
(.laz) (Thomson, 2018). The raw point cloud data acquired from
all the mobile LiDAR scanning platforms were then processed
by cleaning the 3D point cloud using the noise filter tool in
CloudCompare, which removes unnecessary data associated with
the scanned surface (Ahmad Fuad et al., 2018). After cleaning the
clouds, the data were segmented using the interactive segmentation
tool (Girardeau-Montaut, 2015), exported, and saved in PLY
MESH (.ply) file format (Thomson, 2018). According to Rajendra
et al. (2014), point cloud pre-processing and processing involve
converting the initial raw LiDAR-derived point cloud into a final
deliverable. For the purposes of this study, the final deliverables
were fully cleaned and segmented LiDAR scans of the soil surfaces
for the C2C.

2.3.2. Alignment of the processed LiDAR-derived
point cloud

The ground control points (GCPs) found on each of the
two clouds were first selected and then used for alignment
(Maté-González et al., 2022). Iterative Closest Point (ICP), a
popular approach that iteratively discovers the transformation
parameters that minimize the distance between matching points
in the two clouds, was used in CloudCompare to align pairs
of point clouds (Besl and McKay, 1992). A rotation, translation,
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FIGURE 2

Flow chart of LiDAR data collection, processing, analysis and cloud-to-cloud comparison in CloudCompare software. Designed with ClickCharts
diagram flowchart software Version 6.98. © NCH software.

and scaling factor make up the rigid transformation. The
objective was to identify the transformation parameters that
would best align the point clouds (Besl and McKay, 1992).
To create a statistically fair comparison, all point clouds used
in the C2C were subsampled to 50,000 points (Costantino
et al., 2022). Once the optimal transformation parameters were
found, the clouds were aligned, and the registration process
was complete. Then the RMS values, mean distance, and their
standard deviations were recorded. The alignment quality was
then assessed using various tools provided by CloudCompare,
including color-coded deviation maps, distance histograms, and
visualization of the aligned clouds. These tools enabled the
evaluation of the accuracy and precision of the alignment and
refinement of the alignment parameters if necessary. Figure 3
shows the ICP alignment process and results provided by
the CloudCompare software. Typically, a satisfactory beginning
position is initially attained using the point cloud alignment
approach, and then registration is fine-tuned using the fine
registration method (Biber and Strasser, 2003; Cheng et al.,
2018).

2.3.3. Fine registration
The ICP registration method was used for the fine registration

of the datasets. This method iteratively matches points in two

datasets to find the optimal transformation that aligns the datasets
(Segal et al., 2009). The ability to automatically complete the ICP
registration process is provided by the CloudCompare program
(Ahmad Fuad et al., 2018). However, the value for the point sample
unit and the number of iterations were specified prior to starting
the ICP registration procedure. Figure 4 shows an example of the
CloudCompare’s results and the ICP registration options.

The registration method consisted of several steps, including
point selection, point matching, transformation estimation, and
transformation refinement. The first step was to select a subset
of points from the two datasets. Here again, all point clouds
used in the ICP method were those subsampled to 50,000 points
(Figure 4B). These points were used as the initial correspondence
between the two datasets. The point matching step involved
finding the closest points in the second dataset for each point
in the first dataset. This was done using the more robust Point-
to-Plane distance measure (Rusinkiewicz and Levoy, 2001). For
the accuracy and precision analyses, the number of iterations of
the algorithm was fixed to the default value of 20, the optimum
threshold for minimizing the root mean square (RMS) difference
was 1.0 E-05 m, and the theoretical overlap was set 100%
(Figure 4A). Following the establishment of the correspondences,
the transformation estimation process involved determining the
transformation that would best align the two datasets. This
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TABLE 2 Description of the datasets used in the C2C and data analyses.

Abbreviation Dataset

SA1 1st LiDAR-derived point cloud data based on 3D
scanner App. Scanning settings: advanced, low area,
medium density. Export: medium density. Collected
in each plot.

SA2 2nd LiDAR-derived point cloud data based on 3D
scanner App. Scanning settings: advanced, low area,
medium density. Export: medium density. Collected
in each plot.

SS1 1st LiDAR-derived point cloud data based on
SiteScape. Scanning settings: maximum area, medium
density. Export: medium density. Collected in each
plot.

SS2 2nd LiDAR-derived point cloud data based on
SiteScape. Scanning settings: maximum area, medium
density. Export: medium density. Collected in each
plot.

ZR1 1st LiDAR-derived point cloud data based on
GeoSlam Zeb Revo. Scanning settings: as provided by
device. Export: as provided by the dedicated software.
Collected in each plot.

ZR2 2nd LiDAR-derived point cloud data based on
GeoSlam Zeb Revo. Scanning settings: as provided by
device. Export: as provided by the dedicated software.
Collected in each plot.

transformation was rigid, consisting of a rotation, a translation, and
scale factor (Ahmad Fuad et al., 2018; Cheng et al., 2018). A least-
square optimization was used to compute the transformation,
minimizing the distance between equivalent points in the two
datasets (Besl and McKay, 1992; Cheng et al., 2018).

Following the initial transformation, the transformation
refinement step iteratively refined the transformation by repeating
the point selection, point matching, and transformation estimation
steps. The refinement process continued until convergence criteria
were met, such as the change in the transformation parameters
or the distance between corresponding points falling below a
certain threshold. To align the two datasets, the approach iteratively
matched points in each of the two datasets before computing the
best rigid transformation (Zhang, 1994; Zhang et al., 2015).

To estimate the accuracy of the low-cost LiDAR technology in
this study, the point clouds collected by SiteScape and 3D Scanner
App were compared against those collected by Zeb Revo, using
the Zeb Revo LiDAR point clouds as reference point clouds. For
simplicity, the comparisons were done for each plot by matching
the repetitions taken by iPhone with those taken by Zeb Revo,
namely SA1 against ZR1, SS1 against ZR1, SA2 against ZR2 and SS2
against ZR2. Furthermore, the precision of each LiDAR platform
was estimated in each plot by comparing the first repetition against
the second one taken by the same platform and software, namely
SA1 against SA2, SS1 against SS2 and ZR1 against ZR2. The RMS
values, mean distances and their standard deviations were recorded
once the registration process was complete.

2.3.4. Cloud-to-cloud distance computation and
surface deviation analysis

The 3D surface deviation analysis was carried out using
CloudCompare software with the C2C distance computation

method (Zhang, 1994; Zhang et al., 2015; Ahmad Fuad et al., 2018).
The software first estimates the results for the distance computation
between the chosen datasets using the reference dataset and the
compared dataset. Local surface model option from the local
modeling menu of the CloudCompare was chosen to increase the
accuracy of analysis. Computation was done by the Least Square
Plane C2C distance with the default values. The appropriate Octree
level value for the process was automatically determined (Zhang,
1994; Zhang et al., 2015; Ahmad Fuad et al., 2018). By activating
the data in the layer panel, it was simple to see the resulting 3D
surface deviation that was displayed and saved in the test datasets.

The outcome of the 3D surface deviation analysis was then
used to identify any alterations resulting from the differences
in the compared LiDAR datasets. The CloudCompare software
comes equipped with a color scale that displays the value of the
C2C distance computation to provide a better understanding of
the result. The aligned and registered point clouds were then
compared using various metrics, such as the root mean square
(RMS), mean distances, and their standard deviations. The RMS
error is the square root of the mean square error (MSE) between
two clouds (Chai and Draxler, 2014; Brassington, 2017). These
metrics help quantify the differences between the point clouds
and provide insight into the accuracy and precision of the LiDAR
data. However, the C2C distance computation process using
CloudCompare software was susceptible to errors, such as the
inclusion of unnecessary point cloud data that did not belong to
the computed surfaces. To mitigate this for the low-cost LiDAR
datasets, the point cloud cleaning and segmentation tools were
used. Additionally, the most suitable filtering method was used to
produce the point clouds datasets that only belonged to the soil
surface (Ahmad Fuad et al., 2018). It is important to note that the
accuracy of the analysis was improved by carefully selecting the
appropriate filtering methods and settings.

3. Results and discussion

3.1. Accuracy of low-cost derived point
clouds

The results on the accuracy of low-cost mobile LiDAR scans
using the C2C in the studied plots are summarized in Figure 5
and Table 3. Figure 5 gives only a limited amount of information
on the accuracy comparisons. For more graphical information, see
the Supplementary material. For the comparison of SS1 against
ZR1 in Plot 1 (Figure 5), these metrics were computed on 47,372
points out of 50,000 subsampled from approximately 1.37 million
sampling units of the SS test point cloud (Figures 5A, C). The
results indicated that the mean distance was 0.010 m, with standard
deviation of 0.009 (Figure 5E). Additionally, the final RMS errors
during point cloud alignment and fine registration were 0.030 and
0.093 m, respectively (Table 3). For the C2C of SA1 against ZR1
point clouds in the same sample plot (Figures 5B, D, F), however,
the metrics were computed on 46,828 points out of the 50,000
points selected from 337,086 sampling points of the SA test point
cloud (Figures 5B, D). The results indicated that the mean distance
was 0.004 m at a standard deviation of 0.005 (Figure 5F). Moreover,
the final RMS error of the registration phase was 0.018 m, while the
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FIGURE 3

An example of ICP alignment and results using low-cost LiDAR-derived data collected by SiteScape (compared) and Zeb Revo (reference) point
clouds for Plot 1: (A)–the point clouds before role selection, (B)–the selected test and reference point clouds, (C)–the point clouds ready for
alignment after GCP picking, (D)–the aligned point clouds, (E)–the aligned point clouds with the alignment information, (F)–the alignment
information on the final RMS error and transformation matrix.

final RMS error obtained during the alignment phase was 0.042 m
(Table 3).

Similar results on accuracy were obtained in the remaining
C2Cs of SS and SA against the ZR reference point cloud. Table 3
provides a summary of all the results on accuracy of the LiDAR
scans with SS and SA by considering the sample plot under
question, RMS error obtained at the alignment and registration
phases, as well as the mean and standard deviation of distance
calculations between point clouds. As shown, the SA had lower
RMS errors, mean distances and standard deviations compared
to the SS, indicating that it may be more accurate in measuring
distances with better repeatability. From these results, the range of
final RMS errors of SS vs. ZR was 0.016–0.035 m (Range = 0.019 m).
Additionally, the average final RMS error of SS vs. ZR was
0.023 m. In terms of the mean cloud-to-cloud absolute distance,
the values varied from 0.004 to 0.039 m (Range = 0.035 m). The
corresponding the standard deviation values varied from 0.003
to 0.081 (Range = 0.078). However, the average cloud-to-cloud
distance and average standard deviation of SS vs. ZR were 0.016 m
and 0.032, respectively.

For SA vs. ZR, the final RMS errors varied from 0.017–0.025 m
(Range = 0.007 m). Moreover, the average final RMS error of SA
vs. ZR comparisons was 0.020 m; the mean distance varied from
0.004 to 0.042 m (Range = 0.038 m). The corresponding standard
deviation varied from 0.006 to 0.081 (Range = 0.075). However,
the average cloud-to-cloud absolute distance and average standard
deviation values of SA vs. ZR comparisons were 0.011 m and
0.021, respectively.

Overall, both SA and SS produced relatively accurate point
clouds with low RMS errors, but SA appeared to have a slight
edge in terms of consistency (repeatability) and smaller errors. The
overall average final RMS error for SS was slightly higher than
the overall average for SA (0.023 vs. 0.020 m). Besides, the SA
has a slightly lower average mean distance and standard deviation
compared to the SS, indicating that on average, the SA may be
slightly more accurate than SS for cloud-to-cloud comparisons
using the ZR as the reference point cloud. The results also suggest
that the SA has less variability in its measurements than the SS and
therefore greater repeatability by comparing the average standard
deviations (0.021 vs. 0.032 m). The difference in accuracy between
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FIGURE 4

An example of ICP registration and results using low-cost LiDAR-derived data collected by SiteScape (compared) and Zeb Revo (reference) point
cloud for Plot 1: (A)–the number of iterations and final overlap, (B)–the default number of sampling points, (C)–the final RMS error and the
transformation matrix, (D)–the registered point cloud.

the two apps is relatively small, so it may not be a significant
difference and thus suggesting that both apps are comparable in
terms of overall accuracy.

3.2. Intercloud precision of the
LiDAR-derived point clouds

Figure 6 and Table 4 show the results of the precision of low-
cost mobile LiDAR scans. Figure 6 shows the results graphically
only for the sample plot 1. The rest of the graphical results are
given in the Supplementary material. The final RMS errors, mean
distance, and standard deviation were used to evaluate the precision
of the scans during both the alignment and registration phases.
For instance, the comparison of SS1 and SS2 in Plot 1 (Figure 6)
was based on 46,091 points out of 50,000 points subsampled from

approximately 1.37 million of sampling units of SS test point cloud
(Figures 6A, D). The results indicated that the mean distance was
0.006 m at a standard deviation of 0.009 m (Figure 6G). The final
RMS error in registration was 0.017 m, whereas the final RMS
error obtained during the alignment phase was 0.074 m (Table 4).
Similarly, the statistical metrics for the C2C of SA1 and SA2 in the
same sample plot 1 (Figure 6) were computed on 44,378 points out
of 50,000 subsampled from approximately 0.83 million sampling
units of the SA test point cloud (Figures 6B, E). The mean distance
was 0.005 m with a standard deviation of 0.014 m (Figure 6H).
Additionally, the final RMS error at fine registration was estimated
at 0.012 m, whilst the final RMS error at the alignment phase was
0.039 m (Table 4). Regarding ZR1 and ZR2 C2C in the same sample
plot 1 (Figure 6), the metrics were computed on 39,273 points out
of 50,000 points selected from approximately 1.23 million sampling
units of the ZR test point cloud (Figures 6C, F). The mean distance
was 0.057 m, and the standard deviation was 0.185 m (Figure 6I);

Frontiers in Forests and Global Change 09 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1224575
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1224575 July 31, 2023 Time: 13:37 # 10

Forkuo and Borz 10.3389/ffgc.2023.1224575

TABLE 3 Summary statistics of C2C showing the accuracy of the LiDAR scans.

Plot Compared point
clouds

Final RMS Error (m) Mean
cloud-to-cloud

distance (m)

Standard
deviation

Alignment Registration

P1 SS1 vs. ZR1 0.093 0.030 0.010 0.009

SS2 vs. ZR2 0.105 0.033 0.012 0.012

SA1 vs. ZR1 0.042 0.018 0.004 0.005

SA2 vs. ZR2 0.058 0.030 0.021 0.025

P2 SS1 vs. ZR1 0.104 0.035 0.012 0.012

SS2 vs. ZR2 0.033 0.018 0.004 0.006

SA1 vs. ZR1 0.045 0.018 0.004 0.003

SA2 vs. ZR2 0.078 0.017 0.005 0.016

P3 SS1 vs. ZR1 0.037 0.019 0.005 0.007

SS2 vs. ZR2 0.023 0.019 0.005 0.006

SA1 vs. ZR1 0.045 0.020 0.006 0.006

SA2 vs. ZR2 0.035 0.020 0.007 0.010

P4 SS1 vs. ZR1 0.057 0.016 0.039 0.080

SS2 vs. ZR2 0.069 0.016 0.042 0.081

SA1 vs. ZR1 0.088 0.025 0.028 0.040

SA2 vs. ZR2 0.042 0.016 0.024 0.055

the final RMS error at fine registration was estimated at 0.019 m,
while the final RMS error obtained during the alignment phase was
0.053 m (Table 4). A summary of all the comparisons is presented
in Table 4.

The results presented in Table 4 show the final RMS errors
at point cloud alignment and registration, and the mean C2C
(cloud-to-cloud) absolute distances and their standard deviations
of the point clouds generated by the iPhone 13 Pro Max (Apple
Inc., 2021b) equipped with SS and SA and the professional mobile
LIDAR platform of ZR for the four sample plots. From these results,
the final RMS error values at fine registration when comparing
ZR1 with ZR2 varied from 0.019 to 0.023 m (Range = 0.004 m).
Additionally, the average final RMS error of ZR1 vs. ZR2 was
0.021 m. In terms of the range of values for the mean distance
and standard deviation for ZR1 vs. ZR2, the mean distance varied
from 0.005 to 0.201 m (Mean distance range = 0.197 m), and the
standard deviation varied from 0.008 to 0.441 (Standard deviation
range = 0.028). Similarly, the average cloud-to-cloud distance and
standard deviation of these comparisons were 0.074 and 0.181 m,
respectively.

For the comparison between SS1 and SS2, the final RMS
error values varied from 0.015 to 0.017 m (Range = 0.002). The
average RMS error of SS1 vs. SS2 was 0.017 m. Furthermore,
the mean distance varied from 0.006 to 0.011 m (Mean distance
range = 0.004 m), while the standard deviation varied from
0.009 to 0.037 m (Standard deviation range = 0.028); the average
cloud-to-cloud distance was 0.008 m with a standard deviation
of 0.023 m. Regarding the comparison between SA1 and SA2,
the final RMS error values varied from 0.012 to 0.014 m
(Range = 0.002 m). Moreover, the average RMS error of SA1
vs. SA2 was 0.013 m. Additionally, the mean distance ranged

from 0.001 to 0.008 m (Mean distance range = 0.007), and
the standard deviation ranged from 0.001 to 0.014 m (Standard
deviation range = 0.012). However, the average cloud-to-cloud
distance and standard deviation of these comparisons were 0.004
and 0.009 m, respectively.

Generally, these results suggest that the precision of the low-
cost mobile LiDAR technology in estimating soil disturbance in
forest operations is high. The final RMS errors, mean distances
and standard deviations observed during the C2C comparison were
generally low, indicating a high degree of precision. However, the
results also show that the final RMS errors during the alignment
phase were higher than during the registration phase. Overall, these
results suggest that the SA app installed on the iPhone was the best
option in terms of precision and consistency (repeatability).

3.3. Discussion

This study aimed to estimate the accuracy and precision of the
low-cost mobile LiDAR technology in estimating soil disturbance
in forest operations using a cloud-to-cloud comparison approach
(C2C), and on that basis, to give indications on repeatability.
Regarding the metrics for estimating the accuracy and precision
in this study, the RMS error and standard deviation are very
similar statistical measures of variability (accuracy, precision,
and repeatability) used in LiDAR research (Carter et al., 2012).
However, studies show that the two values will be equal in a non-
biased data set, when the error is normally distributed above and
below zero (Carter et al., 2012). The closer the average RMS error
values to zero, the better the performance, as it indicates a smaller
deviation from the actual values (Girardeau-Montaut et al., 2005;
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FIGURE 5

An example of accuracy in terms of observed differences between SS1 and ZR1 in Plot 1 (A,C,E) and between SA1 and ZR1 in Plot 1 (B,D,F):
(A,B)–color-coded deviation map of absolute distances, (C,D)–histogram of absolute distances, (E,F)–histogram of the mean distance and standard
deviation.

Ahmad Fuad et al., 2018). Similarly, the lower the average cloud-
cloud distance values, the better the accuracy and precision of the
scanning device and technology used (Girardeau-Montaut et al.,
2005; Ahmad Fuad et al., 2018). According to MacMillan et al.
(2023), the standard deviation provides a sense of how close the
complete collection of data is to the average value; data sets with
modest standard deviations contain precisely organized data, while
those with big standard deviations have data dispersed throughout
a wide range of values. For example, if the standard deviation
of a measurement is very small, it means that repeating that
measurement will give similar results. Thus, lower values of the
average standard deviation in this study indicate less variability in
the precision and accuracy of the scanning devices and therefore
greater repeatability.

In this study, the final alignment and registration RMS
errors represent the error in aligning the SS and SA scan point
clouds and registering them to the reference ZR point cloud,
respectively. These errors were used to quantify the difference
between test and reference point clouds, and subsequently estimate
the accuracy and precision. These values gave us an idea
of the variability of the registration and alignment accuracy
and precision for each application and device. Nonetheless,
the average standard deviation values showed how much the
scanned data was spread out from the mean cloud-to-cloud
distances, which were used to assess the repeatability of this
method. Additionally, the mean cloud-to-cloud distance is the
average displacement between the SS or SA point clouds and
the reference model of ZR in each plot, which also gave us
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FIGURE 6

An example of precision in terms of observed differences of SS1 and SS2 (A,D,G), between SA1 and SA2 (B,E,H) and between ZR1 and ZR2 (C,F,I) in
Plot 1: (A–C)–color-coded deviation map of absolute distances, (D–F)–histogram of the C2C absolute distances, (G–I)–histogram of the mean
distance and standard deviation.

TABLE 4 Summary statistics of C2C showing the precision of the LiDAR scans.

Plot C2C Final RMS Error (m) Mean cloud-to-cloud
distance (m)

Standard deviation

Alignment Registration

P1 ZR1 vs. ZR2 0.053 0.019 0.057 0.185

P2 ZR1 vs. ZR2 0.063 0.019 0.005 0.008

P3 ZR1 vs. ZR2 0.074 0.023 0.031 0.092

P4 ZR1 vs. ZR2 0.266 0.020 0.201 0.441

P1 SS1 vs. SS2 0.074 0.017 0.006 0.009

P2 SS1 vs. SS2 0.073 0.016 0.007 0.017

P3 SS1 vs. SS2 0.056 0.015 0.011 0.037

P4 SS1 vs. SS2 0.073 0.016 0.007 0.026

P1 SA1 vs. SA2 0.039 0.012 0.005 0.014

P2 SA1 vs. SA2 0.139 0.014 0.008 0.011

P3 SA1 vs. SA2 0.047 0.012 0.002 0.006

P4 SA1 vs. SA2 0.016 0.014 0.001 0.001

an idea of the accuracy and precision of the low-cost mobile
LiDAR technology.

Overall, the performance of each application in terms of
accuracy varied plot wise. SA consistently had the smallest final
RMS error values, indicating that it was more accurate in capturing

the geometry of the reference model. However, SA had considerably
higher final RMS error values, especially in P4, which suggests
that it may have some limitations in capturing more complex
geometries (see Supplementary material). SS had the lowest
overall mean cloud-to-cloud distance and standard deviation in P2.
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However, it had considerably larger final RMS error values in P1
and P4, suggesting that it is less accurate in capturing certain types
of geometries. Similarly, based on the ranges of RMS errors, SA
performed slightly better in terms of accuracy compared to SS. SA
had a narrower range of RMS errors, which means that the errors
varied less between different test point clouds. In contrast, SS had
a wider range of RMS errors, indicating that its accuracy varied
more between different test point clouds. However, SA’s RMS errors
were generally smaller than SS’s RMS errors. SA’s lowest RMS error
(0.017 m) was smaller than both of SS’s RMS errors, and SA’s highest
RMS error (0.025 m) was still smaller than SS’s highest RMS error
(0.035 m). This suggests that SA may be more consistently accurate
across different test conditions, while SS may be less predictable in
terms of accuracy.

In general, the registration error was smaller than the alignment
error across all plots for all applications, suggesting that the
registration process was generally more accurate. Overall, these
results suggest that both applications can be useful for capturing
3D geometry of soil disturbance in forest operations. However, the
accuracy of each application may vary based on the complexity
of the soil geometry being captured as well as the complexity of
space surrounding the sample plots. Further research could focus
on identifying the limitations of each application and developing
methods for improving the accuracy of 3D scanning.

Based on the average (mean) distance and standard deviation,
SA had a slightly lower average mean distance and standard
deviation compared to SS, indicating that it may be slightly more
accurate. Overall, the average standard deviations for both apps
were relatively low, indicating that they may have good repeatability
on average. However, the standard deviations for some of the
individual comparisons were relatively large (e.g., SS2 vs. ZR2 in
P4 with a standard deviation of 0.081 and SA2 vs. ZR2 in P2 with
a standard deviation of 0.016), indicating a lower repeatability in
those cases. This suggests that while the studied apps may have
good repeatability on average, there are some individual cases
where the results could be less reliable. It is possible that this is
due to differences in the underlying algorithms or hardware used
by each application and device (Gollob et al., 2020, 2021). Further
analysis, such as statistical testing or confidence interval estimation,
could be used to better understand the variability of the results
and their implications for the application being studied. Besides,
comparing the average standard deviation values with the average
RMS error values, it is evident that for all applications and plots, the
standard deviation values were significantly lower. This suggests a
good consistency and repeatability in the measurements, and a low
uncertainty in the obtained results (Downing, 2004; Nakagawa and
Schielzeth, 2010).

The overall accuracy and performance of each application and
device may vary depending on the specific use, precision of the
data, and other factors. Based on the results of this study, it
appears that both applications can achieve a reasonable level of
accuracy for cloud-to-cloud comparisons. Therefore, the choice of
a given application may ultimately depend on other factors such
as precision, user preferences, cost, and ease of use (Wang and Qi,
2021).

Similarly, the study found that the precision of SS, SA, and
ZR point clouds was high. The ranges in the descriptive statistics
indicated the variability in the final RMS error values, mean cloud-
to-cloud absolute distances, and their standard deviation values for

each application and device across all four plots; they shown that
comparisons between SA1 and SA2 had the least variability in RMS
error values, while the ZR1 vs. ZR2 comparisons had the highest
variability. Moreover, the SA1 vs. SA2 C2C had the lowest range of
values for both mean distance and standard deviation, indicating
that the SA application was a consistent (repeatable) and reliable
option. The ZR1 vs. ZR2 C2C had the highest range of values for
both mean distance and standard deviation, indicating that ZR was
the least consistent (repeatable) option. The SS1 vs. SS2 C2C falls
somewhere in between with moderate performance in terms of
precision and consistency (repeatability).

However, the range alone does not provide enough information
about the overall precision; the average of the final RMS error
values, mean distance and standard deviation may give a more
accurate representation. Consequently, both the range and the
average values were combined in the overall evaluation of the
performance of the LiDAR platforms. From the results, SA1 vs.
SA2 C2C had the lowest average RMS error (0.013 m), indicating
that 3D Scanner app was the most precise option. The SA1 vs. SA2
had also the lowest average mean distance (0.004 m), and standard
deviation value (0.009), indicating that 3D Scanner app was the
most consistent (repeatable) option. On the other hand, the ZR1
vs. ZR2 C2C had the highest average RMS error (0.021 m), which
suggests that it was the least precise option. Moreover, the ZR1
vs. ZR2 has the highest average mean distance (0.074 m), and the
highest standard deviation (0.181), which suggests that this option
was the least consistent (repeatable).

There is limited information available on similar studies for
direct comparisons of these findings. For instance, SiteScape is
supposed to enable users to easily take 3D scans that are accurate
to within± 1 inch, on average (Corke, 2021). Findings of this study
are consistent with some previous research that also used LiDAR
systems and/or C2C comparison methods to estimate the accuracy
and precision of LiDAR technology. For instance, Milenković et al.
(2015) evaluated the accuracy and potential of terrestrial laser
scanning (TLS) for soil surface roughness assessment. Their study
found that TLS provided highly accurate measurements of soil
surface roughness with a mean difference of 0.52 mm between
TLS data and ground truth measurements. Furthermore, Mikita
et al. (2022) investigated the use of different types of laser scanning
methods, including the iPhone 12 Pro Max LiDAR scanning apps,
for assessing damage to forest road wearing courses. The study
found that the root mean square error (RMSE) of the iPhone
LiDAR scanning method was 0.023 m and the coefficient of
variation (CV) for the vertical accuracy of the iPhone LiDAR
scanning method was 0.25%. They compared these values to those
obtained using a terrestrial laser scanner (TLS) and a mobile
laser scanning system (MLS). They found that the RMSEs and
CVs of the iPhone LiDAR scanning method were comparable to
those of the TLS and MLS, indicating that the iPhone LiDAR
scanning method can provide accurate and precise measurements.
Additionally, the study suggested that the iPhone apps have the
potential to streamline the data acquisition process and reduce
costs compared to traditional terrestrial laser scanning methods.
Similarly, Luetzenburg et al. (2021) evaluated the Apple iPhone 12
Pro LiDAR for its potential application in geosciences. The study
found a mean horizontal error of 0.03 m and a mean vertical
error of 0.05 m in a vegetation-dominated environment, making
it suitable for high-resolution topographic mapping applications.
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Additionally, Jaboyedoff et al. (2009) used terrestrial laser scanning
for the characterization of retrogressive landslides in sensitive
clay and rotational landslides in riverbanks, finding that this
method was highly accurate and precise for monitoring landslide
movement and deformation. The study reported accuracy values
generally less than 5 cm and precision values ranging from 1 to
2 cm. Ahmad Fuad et al. (2018) also found that the Iterative Closest
Point (ICP) registration method and the Least Square Plane cloud-
to-cloud distance approach were more accurate than other methods
for spotting changes in 3D landslide surfaces utilizing Mobile Laser
Scanning data between two periods.

In general, the quality of the scan would depend on various
factors such as the type of soil, its moisture content, and the texture
but when it comes to scanning soil, one important consideration
is the resolution of the scanner (Jaboyedoff et al., 2009; Milenković
et al., 2015). According to a study by Milenković et al. (2015), the
accuracy of laser scanning for soil surface roughness measurement
was affected by the point density of the laser scanner. TLS was
also found to have high spatial resolution and could be used as a
valuable tool for monitoring soil erosion and other environmental
changes (Milenković et al., 2015). Similarly, a study by Jaboyedoff
et al. (2009) found that increasing the point density resulted in a
significant reduction of the error in comparisons between terrestrial
laser scanning datasets which was approximately 3 to 6 cm in their
study. Therefore, a higher resolution scanner is likely to provide
more accurate results when scanning soil surfaces. Another factor
that could have affected the accuracy and precision of the low-
cost LiDAR scans in this study was the presence of vegetation or
other objects on the soil surface (Salmivaara et al., 2018). Several
studies indicated that the presence of small vegetation and litter
on the soil surface caused errors in the determination of soil
surface elevation and roughness, compaction and rutting using
LiDAR and TLS methods (Milenković et al., 2015; Salmivaara
et al., 2018; Mohieddinne et al., 2022). According to Magtalas et al.
(2016), the meter level distances and standard deviations in their
study were produced by the fact that both point clouds’ whole
contents including vegetation were used to calculate the cloud-
to-cloud distance when they employed distance computations to
further compare their findings. However, the descriptive statistics
they used to assess accuracy and precision reduced when the C2C
was performed on non-vegetation point clouds using the same
procedure. Thus, the vegetation growing on the soil’s surface, which
exhibited elevation differences of a few meters between the two
datasets, might be the source of the meter level deviations (Magtalas
et al., 2016). The accuracy and precision values from their study
cannot, however, be directly compared to those from this study,
because their technique of assessing the accuracy and precision
differs from that used herein. Thus, further research is necessary
to explore the effects of vegetation on the accuracy and precision of
these low-cost LiDAR systems.

Despite being a useful method for analyzing LiDAR data, the
C2C has important limitations in its use (Girardeau-Montaut et al.,
2005; Cheng et al., 2018; Kharroubi et al., 2022). One of the main
limitations is the assumption that the point clouds being compared
are of the same geographic location. The comparisons may be
inaccurate if there are any variations in the position or orientation
of the point clouds during scanning (Girardeau-Montaut et al.,
2005; Lague et al., 2013; Kharroubi et al., 2022). Additionally, the
accuracy and precision of the cloud-to-cloud comparison method

depend on the quality and resolution of the point clouds generated
by the LiDAR systems (Cheng et al., 2018; Kharroubi et al., 2022).
The C2C method is not robust to changes in point density and
point cloud noise (Girardeau-Montaut et al., 2005; Lague et al.,
2013), which may affect the accuracy and precision of the results.
The accuracy of the method can be reduced if the clouds from
different LiDAR systems have different point densities (Cheng et al.,
2018; Kharroubi et al., 2022). These problems were addressed in
this study by modeling the soil surfaces locally to prevent problems
with density change.

Moreover, this study is constrained by the small sample size
because it only included four rectangular plots, each measuring
around 20 m2. More studies may be necessary to evaluate the
suitability of this technology in different forested landscapes.
Furthermore, the studies cited in this research paper are case studies
and may not be generalizable to other locations or forest types. As
such, additional research may be necessary to test the applicability
of low-cost mobile LiDAR technology in other forested areas. In
addition, the cost of high-end LiDAR systems for soil disturbance
estimation may not be justifiable for small-scale forest operations.
The potential benefits of low-cost mobile LiDAR technology for
these operations may be limited by their accuracy and dependence
on mobile platforms.

Numerous studies demonstrate that attaining accurate results
with low-cost LiDAR technology depends on several variables,
including the calibration parameters of the LiDAR platform
components, the underlying point cloud density, the scanning
settings, and the data processing methods used. Therefore, it is
necessary to keep exploring new low-cost LiDAR technologies as
they appear. Future studies might consider integrated low-cost
LiDAR systems that can potentially offer enhanced capture options
with a greater spatial resolution and a longer effective range in
forest environments. Additionally, increasing plot coverage while
maintaining low operational costs can potentially be achieved
by designing and implementing a multiplatform LiDAR sensor
solution using Apple’s iPhones. For instance, the use of selfie sticks
in future research can potentially increase plot coverage and point
cloud capture. Moreover, incorporating a multiple-iPhone strategy
for the capturing of LiDAR point clouds may be able to shorten
the time required for data collection. However, future studies
should assess how quickly (time efficiency) point cloud data can be
captured and processed using low-cost LiDAR technology. Besides,
it will be necessary for extra caution to be taken in using the point
picking tool in CloudCompare to ensure that the exact centers
of the GCPs are hit to ensure proper alignment and subsequent
registration of the point clouds.

Additionally, both the procedures and protocols used in low-
cost LiDAR scanning and the experience of the operator are
relevant factors that can impact the quality (accuracy, precision,
and repeatability) of the resulting LiDAR data (Rathore, 2017).
Several studies suggest that that optimizing the scanning procedure,
by carefully planning the survey area, selecting appropriate
scanning parameters and designing efficient scan paths, choosing
the scanning pattern and processing of the data collected are
essential steps in the process and can improve the quality of the
data while reducing costs (Rathore, 2017; Wang and Menenti,
2021). The experience of the operator is also critical in ensuring
the quality of data collected by low-cost LiDAR systems. An
experienced operator can anticipate problems that may arise during
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the survey and adjust the scanning plan accordingly. Additionally,
an experienced operator can make a significant difference in the
accuracy of the data collected, particularly in areas with dense
vegetation cover by understanding the limitations of the technology
and taking appropriate corrective actions.

4. Conclusion

This study aimed to evaluate the accuracy and precision of three
LiDAR options for estimating small-scale soil disturbance in forest
operations. The three LiDAR options used can generate highly
accurate and precise point clouds for small-scale soil disturbance
estimation. The cloud-to-cloud distances (C2C) between the point
clouds were generally small, indicating a high degree of similarity
and agreement between the different options. However, some
differences in accuracy and precision may exist between these
options depending on the specific test conditions. Additionally,
the precision of the LiDAR scans generated by the three options
was generally good for all plots tested. The C2C distances between
point clouds generated from the same option were also small,
indicating a high degree of repeatability and consistency of the
LiDAR scans for small-scale soil mapping. Overall, the study
suggests that LiDAR scans generated by the three options are highly
accurate and precise for small-scale soil disturbance mapping.
Additional research is necessary to further validate the applicability
of low-cost mobile LiDAR technology for mapping and monitoring
forested landscapes.
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