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Introduction: Many factors, such as climate, topography, forest management, or

tree/forest attributes, influence soil organic carbon (SOC) and above-ground tree

biomass (AGTB). This study focuses on assessing relationship between various

predictor variables and response variables (SOC and AGTB) in the perspective of

climate change scenario. The study was conducted throughout in Nepal using

forest resource assessment data (2010–2014).

Methods: Our study applied a random forest model to assess the status of SOC

and AGTB under future climate change scenarios using 19 bioclimatic variables

accompanied by other variables such as altitude, aspect, basal area, crown cover

development status, distance to settlement forest types, number of trees, macro-

topography, management regime, physiographic zones, slope, and soil depth.

The study used 737 (70%) samples as a training data for model development while

312 (30%) samples as a testing data for model validation.

Results and discussion: The respective RMSE, RMSE% and adjusted R2 of the

Random Forest Model for SOC estimation were found to be 9.53 ton/ha, 15% and

0.746 while same for the AGTB were 37.55 ton/ha, 21.74% and 0.743. Particularly,

changes in temperature and precipitation showed an effect on the amount of

SOC and AGTB in the projected scenario i.e., CMIP6, SSP2 4.5 for 2040–2060.

The study found the amount of SOC decreased by 3.85%, while AGTB increased

by 2.96% in the projected scenario. The proposed approach which incorporates

the effect of bioclimatic variables can be a better option for understanding the

dynamics of SOC and AGTB in the future using climatic variables.

KEYWORDS

biomass, carbon, climate change, random forest model, Nepal, precipitation,
temperature

1. Introduction

Forest ecosystems are the largest carbon reservoirs storing ∼2 billion tons of CO2 per
year (UNDESA and UNFFS, 2021). The 2006 Intergovernmental Panel on Climate Change
(IPCC) guidelines for the national greenhouse gas inventories indicate three major carbon
pools (biomass, dead organic matter, and soil) in the forest ecosystem (Eggleston et al.,
2006; IPCC, 2006). Most of the forest carbon is found in soil organic matter (45%) followed
by living biomass (44%) i.e., above-ground tree biomass (AGTB) and root biomass and
remaining in dead organic matter, i.e., in dead wood and litter (FAO, 2020).
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Several climatic and edaphic factors influence forest carbon
storage (Hofhansl et al., 2020). AGTB is influenced by altitude
(Powell et al., 2010; Van der Laan et al., 2014; Rajput et al., 2017),
temperature and precipitation (Yan et al., 2015), water availability,
soil nitrogen content, and tree cover (Requena Suarez et al., 2021).
Similarly, soil organic carbon (SOC) is affected by the amount of
above-ground litter fall and root turnover (Andivia et al., 2016),
temperature and precipitation (Sun et al., 2019), soil conditions and
vegetation (Reyna-Bowen et al., 2019), species diversity (Gamfeldt
et al., 2013), soil properties and moisture (Hounkpatin et al.,
2018), altitude (Zinn et al., 2018), slope aspect, and soil depths
(Zhu et al., 2017).

Climate change is contributing to global warming due to
the steady increase in temperature since the 1960s (NOAA,
2023). It is projected to increase the severity of impacts in
both the natural and human systems (IPCC, 2023). Climate
change, rising temperature particularly, in the future has shown
to have a negative effect on AGTB (Larjavaara et al., 2021;
Li Y. et al., 2022) and SOC (Kirschbaum, 2000; Zhao et al.,
2021) while a positive effect of the rising temperature on AGTB
and SOC has also been studied under different climate change
scenarios (Fu et al., 2017; Azian et al., 2022). The carbon sink
of the forest is sensitive to CO2 emission change resulting from
increasing temperature, hydrological changes, and forest dynamics
(Hubau et al., 2020).

Efficient estimation of above ground biomass and soil organic
carbon is crucial for the study of carbon dynamics in forest
ecosystems. Different assessment methods for the estimation of
AGTB and SOC have been carried out. The 2006 IPCC guidelines
have provisioned simple to robust method for the estimation
of above and below carbon in Tier 1, Tier 2 and Tier 3
categories (IPCC, 2006). Design-based estimation (using ground-
based sample plots) is one of the most used approaches for
estimating AGTB and SOC (DFRS, 2014, 2015a,b; DFRS/FRA,
2014). Though it provides the precise evaluation of changes (stand
structure, tree attributes) due to small standard error (Schadauer
and Gabler, 2007), it is time-consuming, less cost- effective and
difficult to implement in poorly accessible forest areas (Köhl et al.,
2011; Kandel, 2013). Alternatively, a regression model (model-
based estimation) has been used for the estimation of AGTB and
SOC (Tian et al., 2014; Mohd Zaki et al., 2016; Pokhre, 2018;
Li et al., 2019; Malla et al., 2022) that allows more flexibility to
provide estimates outside the sample plots (Ståhl et al., 2016).
Thus, model based estimation (regression model) is cost-effective
and also able to estimate target variables of poorly accessible
areas.

Recently, several studies have used a machine learning method
such as random forest model (RFM) and gradient boosting (GB)
for the prediction of AGTB and SOC (Powell et al., 2010; John
et al., 2020; Lee et al., 2020; Li et al., 2020; López-Serrano
et al., 2020; Nguyen and Kappas, 2020; Vorster et al., 2020). The
RFM model uses machine learning algorithms for classification
and regression based on decision trees (Jin et al., 2020). It is
appropriate for large datasets with large numbers of variables, non-
linear responses, both continuous and categorical variables and
is less affected by the multicollinearity problem (Lu et al., 2016).
Several studies found RFM superior to the regression model in
terms of lowering mean squared error (Hounkpatin et al., 2018;
Zhu et al., 2020; Xie et al., 2021), handling non-linear relations

(Pahlavan Rad et al., 2014; Hengl et al., 2015), and indifference
of assumptions of having probability distribution (normality) and
no multicollinearity among independent variables (Lu et al., 2016;
López-Serrano et al., 2016). Moreover, RFM does not require
several numbers of sample plots, as in the case of design-based
estimation, thus it is cost-effective. It can also estimate the target
variable of the poorly accessible area in the presence of readily
available independent variables (i.e., temperature, precipitation,
slope, altitude, etc.).

Previous studies have used spectral values of satellite images
as an independent variable to predict a response variable such
as AGTB and SOC in the past period (Powell et al., 2010;
Vicharnakorn et al., 2014; Angelopoulou et al., 2019; López-Serrano
et al., 2020; Zhu et al., 2020; Kumar et al., 2022). However, the
response of AGTB and SOC against change in climatic variables
(temperature and precipitation) in the future has been lacking in
the national scenario in Nepal. The influence of temperature and
precipitation on the quantity of AGTB and SOC (Mehta et al.,
2014; Bennett et al., 2020; Saimun et al., 2021) helps estimate these
target variables in future climate change scenarios. Therefore, this
study aims to answer the questions (1) Which are the variables
(topographic, forest variables and climatic) significant to influence
AGTB and SOC? (2) Are these variables likely to contribute to the
amount of AGTB and SOC under the climate change scenario? The
study covered all the forest covers of Nepal using forest resource
assessment data. A RFM was used to better examine the influence of
climatic, topographic and forest variables on the amount of AGTB
and SOC. The research will improve our understanding of how
climate change affects AGTB and SOC in the forests.

2. Materials and methods

2.1. Study area

For this study, we selected Nepal (Map 1) as a study site
due to its varied site conditions. In Nepal, hilly region occupies
a higher chunk of the land (∼86% of the total land area) while
lowland (less than 300 m altitude) occupies only 14%. Wide
altitudinal variations (<300–8,848 m), resulting in diverse climatic
conditions, have produced different physiographic zones, i.e., Terai
and Siwalik (lowlands), Mid-hills, High mountains and High Himal
(LRMP, 1986), which influence the composition of flora and fauna
(HMGN/MFSC, 2002). Stainton (1972) classified 35 forest types in
Nepal that were further broadly categorized into 10 major groups
based on the altitudinal range (HMGN/MFSC, 2002).

The climate of Nepal varies seasonally. For the last 30 years
(1991–2020), the average monthly temperature ranges from ∼
5◦C in January to ∼18◦C in July, whereas average rainfall ranges
from ∼20 mm in November to ∼340 mm in July (ADB and
WB, 2021). Nepal is likely to experience a higher rate of warming
in two future periods (2016–2045 and 2036–2065) compared to
the reference period, i.e., 1981 to 2010 (GoN/MoFE, 2021) and
spatiotemporal changes in precipitation over the period from 1981
to 2010 (Karki et al., 2017). Diverse current and future climatic
conditions within comparatively small areas (Dawadi, 2017) make
Nepal an ideal place to study the effects of climate change on
forests.
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MAP 1

Study area map with permanent sample plots within the forest area.

2.2. Data collection

The primary data used in this study were obtained from the
third national forest inventory (NFI), which was carried out during
2010–2014. The NFI adopted a two-phase systematic sampling
design, composed of 450 clusters containing 1,553 Permanent
Sample Plots (PSPs)-after excluding inaccessible PSPs - in the real
ground (See Figure 1). Data were collected only from the accessible
PSPs (slope up to 100 % or 45◦). On the sample plots tree related
attributes such as diameter at breast height (DBH) and tree height
were recorded for the analysis of growing stock, above ground
tree biomass and carbon. The third NFI is the first assessment
in Nepal that collected soil samples to analyze the SOC of the
forests. Four soil pits were established in a cardinal direction in
each PSP to collect soil samples. At each cardinal direction, soil pits
of appropriate size were dug within the 2 m ∗ 2 m area size at a
21 m distance from the PSP center. In each soil pit, soil samples
were collected from three different horizons (1–10 cm, 10–20 cm,
and 20–30 cm) up to the depth of 30 cm and were mixed together
resulting in 3 soil samples representing three different soil horizons
in each PSP (DFRS/FRA, 2014).

Besides forest inventory data, the study used 19 bioclimatic
variables representing historic data (near current) representing
average figures for the years 1970–2000 at 30 arc sec (∼1 km2)
resolution (Fick and Hijmans, 2017). The study also used future
climate data from the WorldClim data set1 at 30 arc sec (∼1 km2)
resolution. representing Couple Modeled Inter-comparison Project

1 www.worldclim.org

Phase 6 (CMIP6) based on shared socio-economic pathways (SSP2
4.5) scenario from 2041 to 2060 (i.e., 2050 on average) with
resulting global warming of 1.6 –2.5◦C (IPCC, 2021). We used this
scenario in the study because it is an intermediate scenario among
five prescribed by Intergovernmental Panel on Climate Change
(IPCC) and is based on the current level of CO2 emission until the
middle of the century.

2.3. Soil organic carbon analysis

Altogether 1,049 PSPs out of 1,553 PSPs were used for SOC
analysis. Data from 504 PSPs were removed for one or more of
the factors: inappropriateness of the site condition e.g., presence
of rock or boulder instead of soil, and missing data for important
variables such as aspect, distance to settlement, etc. The Black wet
combustion method (Walkley and Black, 1934) was applied in the
Nepalese Department of Forest Research and Survey (DFRS) soil
laboratory to analyze the SOC content. In addition, dry combustion
and LECO CHN Analyzer were used in the Metla Soil Laboratory,
Finland, to assure the quality of the laboratory test.

2.4. Above ground tree biomass analysis

Above-ground tree biomass was also estimated from the same
PSPs used for SOC analysis. DBH of the tree greater than 5 cm was
recorded from the PSPs. The stem volume of the tree was calculated
using the equation given by Sharma and Pukkala (1990a).

ln (v) = a+ b ∗ ln
(
d
)
+ c ∗ ln

(
h
)

(1)
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FIGURE 1

Order of variables based on its importance in the models for the prediction of SOC (A) and AGTB (B).

where,
ln = Natural logarithm to the base 2.71828,
d = DBH in cm.
h = Total tree height in m.
a, b and c are parameters of the volume equation (Annex 1).
To get stem volume in a cubic meter, the model estimation must

be divided by 1,000. According to Sharma and Pukkala (1990b), the
air-dried wood densities of the tree species range from 352 kg/m3

for Trewia nudiflora L. to 960 kg/m3 for Acacia catechu (L.F.) wild.
In order to estimate AGTB, firstly stem biomass was calculated

using following equation.

Stem biomass = Volume ∗ Density (2)

where,
Volume = Stem volume (m3).
Density = Air-dried wood density (kg/m3).
Branch biomass and foliage biomass of the trees were calculated

using branch-to-stem and foliage-to-stem ratios, respectively based
on tree species and three classes of the size of the stem
(small = < 28 cm, medium = 28–53 cm and large = > 53 cm)
at diameter at breast height (Sharma and Pukkala, 1990a). Finally,
above ground tree biomass (AGTB) of each tree in the PSPs was
calculated by using an equation (3). The individual tree biomass
(Kg/m3) within PSP was calculated and it was further converted
into ton/ha using the plot expansion factor.

AGTB = Stem biomass+ Branch biomass+ Foliage biomass (3)

2.5. Partition of data set

In order to have independent data sets for model development
and model testing, the data were partitioned into two sets A total
of 737 (70%) samples were used as training data and 312 (30%)
were used as test data. The partitioning of the data was done
by using the createDataPartition function in the “caret” package

(Kuhn, 2008), which splits data randomly into two different sub-
sets with different proportions.

2.6. Variables selection

Altogether 36 variables were identified for modeling purposes
(Table 1). Out of these 36 variables, we conducted variable selection
based on the importance of the variables in the model. To select
the important variables, the function VSURF from the R package
“VSURF” (Genuer et al., 2010) was used. This package selects
important predictor variables for the model by step-wise analysis
i.e., threshold, interpretation and prediction. Finally, the selected
predictor variables were applied in the model development.

2.7. Estimation of SOC and AGTB using
random forest model

Estimation of the SOC and AGTB was conducted (including
all predictor variables and only important predictor variables)
using a random forest model (RFM) by a function randomForest
under the “randomForest” package in R software (version 4.2.1).
RFM is a machine learning tool using bootstrap aggregating
to develop models with an improved prediction (Jin et al.,
2020). It is based on two parameters i.e., Number of predictor
variables (Mtree) and the number of decision trees (Ntree).
The random selection of predictor variables and the records
in the data set to generate one decision tree helps to achieve
higher accuracy in subsequent iterations. In this way, the RFM
function generates many decision trees and averages to give
an estimation for the response variable. Averaging a large
number of decision trees helps to increase accuracy. Moreover,
RFM generates IncNodePurity which is a total decrease in
node impurities when splitting the predictor variables. An
increase in the IncNodePurity value of the predictor variables
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TABLE 1 Variables to be used for the modeling of SOC and AGTB under random forest model.

Variables Type Unit Source

Topographic
Variables

Altitude Numerical m FRA, 2010–2014

Slope Numerical degree

Aspect Numerical degree

Forest related
variables

Crown cover Numerical Percent

Basal area Numerical m2/ha

Number of trees Numerical No./ha

Above ground tree biomass Numerical Ton/ha

Development status (4 types) Categorical –

Distance to settlement Numerical m

Physiographic zone (5 types) Categorical –

Macro-topography (6 types) Categorical –

Forest type (16 types) Categorical –

Management regime (9 types) Categorical –

Soil depth (5 types) Categorical –

Origin (4 types) Categorical –

Organic layer (5 types) Categorical –

Soil organic carbon Numerical Ton/ha

Bioclimatic variables Bio1 = Annual Mean Temperature Numerical 0C World clim data
1970–2000

Bio2 = Mean Diurnal Range (Mean of monthly (max temp - min temp)) Numerical 0C

Bio3 = Isothermality (BIO2/BIO7) (× 100) Numerical 0C

Bio4 = Temperature Seasonality (standard deviation× 100) Numerical 0C

Bio5 = Max Temperature of Warmest Month Numerical 0C

Bio6 = Min Temperature of Coldest Month Numerical 0C

Bio7 = Temperature Annual Range (Bio5-Bio6) Numerical 0C

Bio8 = Mean Temperature of Wettest Quarter Numerical 0C

Bio9 = Mean Temperature of Driest Quarter Numerical 0C

Bio10 = Mean Temperature of Warmest Quarter Numerical 0C

Bio11 = Mean Temperature of Coldest Quarter Numerical 0C

Bio12 = Annual Precipitation Numerical mm

Bio13 = Precipitation of Wettest Month Numerical mm

Bio14 = Precipitation of Driest Month Numerical mm

Bio15 = Precipitation Seasonality (Coefficient of Variation) Numerical mm

Bio16 = Precipitation of Wettest Quarter Numerical mm

Bio17 = Precipitation of Driest Quarter Numerical mm

Bio18 = Precipitation of Warmest Quarter Numerical mm

Bio19 = Precipitation of Coldest Quarter Numerical mm

indicates the higher importance of the variables. Furthermore,
the partial dependence plot was plotted using the partialPlot
function under the “randomForest” package in the R program.

The plot shows the marginal effects of predictor variables on
the response variable in the model (Friedman, 2001). It is
generally used to evaluate whether the relationship between the
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predictor and response variable is linear, non-linear, or more
complex.

2.8. Model validation

Observed data (test data) was plotted against predicted data
(model output) to see their relationship for visual interpretation.
Moreover, RMSE, RMSE% and R2 value was calculated to
determine the efficiency of the model developed using the
rmse function (“ModelMetrics” package), rmse_per function
(“forestmangr” package) and summary function in the R program.
The RMSE and RMSE% were calculated as follows.

RMSE =
√∑n

i=1
(ŷi−yi)

2

n
(4)

RMSE% =
RMSE

yi
× 100 (5)

Where,
ŷi = the predicted SOC or AGTB on the ith plot,
yi = the observed SOC or AGTB on the ith plot,
ȳi = the average value of SOC or AGTB.
n = Number of samples.

3. Results

3.1. Variables used in the model

Altogether 35 independent variables were used for the
prediction of SOC or AGTB in the study. Of which, nine variables
were selected for the prediction of SOC (Bio1, Bio4, Bio7, Bio8,
Bio10, Bio12, Forest type, Distance to settlement and Crown cover)
and four variables for the prediction of AGTB (Basal area, Altitude,
Bio5 and Bio14).

3.2. Variables importance in the model

The selected 9 and 4 Predictor variables for estimating SOC
and AGTB, respectively showed different importance values in
the models. The predictor variable “Bio8” was found to be the
most important variable for the prediction of SOC followed
by Bio1, Bio10, Forest type, Bio7, Bio4, Distance to settlement,
Bio12 and Crown cover (Figure 1A) whereas Basal area showed
its importance highest for the prediction of AGTB followed by
Altitude, Bio5, and Bio14 (Figure 1B).

3.3. SOC and AGTB estimation

The random forest model was run in two ways. Firstly, all 35
predictor variables (RFM1 and RFM3) were used in the model
(RMF1 and RMF3) for the estimation of SOC and AGTB. Secondly,
only predictor variables with high-importance values were used in
the model (RFM2 and RFM4) for the same estimation (Table 2).
The root mean square error (RMSE), RMSE% and coefficient of

determination (R2) were found similar for using all 35 predictor
variables and using only 9 predictor variables for the estimation
of SOC. On the other hand, the performance of the model for
the estimation of AGTB was found slightly better while using 35
predictor variables compared to 4 predictor variables (Table 2).

3.4. Relation between number of
decision trees and error in the model

The number of decision trees (or “trees”) in the Random forest
model represents the number of sub-samples selected randomly
from the original data set. Increasing the number of decision trees
helps to reduce the error in the model. The error was sharply
reduced when the number of sub-samples selected from the sample
population increased from 1 to 100 and slowed down afterward in
both the SOC (Figure 2A) and AGTB (Figure 2B) models.

3.5. Accuracy assessment

Model performance varied in the estimation of SOC (RFM2)
and AGTB (RFM4) using test data. RMSE% was found lower in
the estimation of SOC as compared to the estimation of AGTB
(Table 3).

Moreover, the degree of fitness of the model calculated from
the predicted value against the observed value for the estimation of
SOC was found to be strong i.e., R2 = 0.759 and the relation was
found significant (p < 0.05) (Figure 3A). A similar degree of fitness
was also found in the case of AGTB estimation i.e., R2 = 0.762 and
(p < 0.05) (Figure 3B).

3.6. Partial dependence plots (Response
plots)

Partial dependence plots for each important predictor variable
were plotted for both SOC (RFM2) and AGTB (RFM4) models.
Our study found that the response variable SOC responded
positively with Crown cover, Distance to settlement and Bio12, and
responded negatively with Bio1, Bio7, Bio8 and Bio10, whereas it
responded both ways (non-linear relation) with Bio4.

An increase in distance to settlement from the forests up to
8,000 m contributed to the increase in SOC, while for longer
distances no effect on SOC was found. Similarly, an increase in
crown cover and Bio12 also contributed to the increase in SOC.
Furthermore, Bio1, Bio8 and Bio10 did not contribute to SOC up
to the temperature of 12, 17, and 19◦C, respectively. However, the
increase in temperature after those limits contributed to a decrease
in SOC. In contrast, Bio4 contributed to a decrease in SOC up
to 500 mm and afterward, it contributed to an increase in SOC.
Lastly, The comparison of forest types revealed that 1, 11, and 17
contributed more to SOC than the other forest types (Figure 4).

Above-ground tree biomass responded differently with the four
predicted variables (Basal area, Altitude, Bio5 and Bio14). Basal
area and Bio5 showed a positive relation with AGTB, while Bio14
and Altitude showed both positive and negative (Figure 5). Basal
area up to 80 m2/ha of the forests increased AGTB, and then the
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TABLE 2 Summary of the models for the estimation of SOC and AGTB.

Model Response
variable

No. of predictor
variable

Ntry Mtry RMSE RMSE% R2

RFM1 SOC 35 500 12 9.53 15.00 0.746

RFM2 SOC 9 500 3 10.66 16.77 0.742

RFM3 AGTB 35 500 12 37.55 18.51 0.779

RFM4 AGTB 4 500 2 44.10 21.74 0.743

In the Table, Ntry, number of trees to grow, Mtry, number of variables randomly sampled as candidates at each split, RMSE, root mean square error, R2 , coefficient of determination.

FIGURE 2

Reduction of error as the increase of number of decision trees (“trees”) in the RFM2 and RMF4 models for the estimation of SOC (A) and AGTB (B),
respectively. “Trees” is a number of sub samples selected randomly from the sample population.

amount of AGTB stayed more or less stable, while an increase
in Bio5 further increased AGTB. In contrast, altitude and Bio14
decreased AGTB up to 2,000 m and 7 mm, respectively, and after
those limits, these variables increased AGTB.

3.7. Amount of soil organic carbon (SOC)
and above ground tree biomass (AGTB)
using climate change scenario (CMIP6,
SSP2 4.5 for 2050)

The CMIP, SSP2 4.5 scenario showed an effect of climate change
on SOC and AGTB, assuming other predictors to be the same. An
average SOC stock of 63.6 tons/ha was found in the near current
period, while it would decrease to 61.15 tons/ha in the future
scenario. Unlikely, an average AGTB would increase to 210.57
tons/ha in the future scenario compared to the near current period
(204.51 ton/ha). Our result shows that the amount of SOC would
likely decrease by 3.85% while AGTB would likely increase by
2.96% in the future climate change scenario (Table 4).

The SOC and AGTB were plotted over the individual PSP.
The blue lines in both figures represent SOC/ATGB in the near
current period (1970–2000) whereas red lines represent them
in the future scenario (2040–2060). The blue line has exceeded
the red line indicating decreasing trend of SOC in the future
scenario (Figure 6A). But, for the amount of AGTB, a red line has

TABLE 3 Error assessment of the models (RFM2 and RFM4) developed to
predict soil organic carbon (SOC) and above ground tree biomass
(AGTB).

Errors SOC AGTB

RMSE 20.32 90.11

RMSE % 32.63 44.44

RMSE, root mean square error and RMSE%, root mean square error percentage.

exceeded the blue line indicating the trend of AGTB in the future
(Figure 6B).

4. Discussion

4.1. Performance of the random forest
models

A random forest model has been used in this study to estimate
SOC and AGTB in the current and future climate change scenario.
The RFM has been popular and considered to produce better
accuracy than the multiple linear regression (Powell et al., 2010;
Hounkpatin et al., 2018). The multiple linear regression approach is
though popular, it does not well capture the complex relationships
between the forest variables; and soil-landscape relationships
subject to non-linear dynamics (Grimm et al., 2008; Chen et al.,
2012). The coefficient of determination (R2 value) produced by
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FIGURE 3

Validation of the models for Soil organic carbon (SOC) prediction (A) and Above ground tree biomass (AGTB) prediction (B) using predicted data and
observed data with the help of independent data set.

FIGURE 4

Predictor variables responding to Soil organic carbon (SOC) in the partial dependence plot of the random forest model (RFM2) where forest type
represented by 1 = Abies spectabilis forest, 2 = Betula utilis forest, 3 = Cedrus deodara forest, 4 = Cupressus torulosa forest, 5 = Junifer wallichiana
forest, 7 = Acacia catechu/Dalbergia sisso forest, 8 = Lower mixed hardwood (LMH) forest, 9 = Pinus roxburghii forest, 10 = Pinus wallichiana forest,
11 = Quercus sps forest, 12 = Shorea robusta forest, 13 = Picea smithiana forest, 14 = Shorea robusta TMH forest, 15 = Tsuga dumusa
forest,16 = Terai mixed hardwood (TMH) forest, 17 = Upper mixed hardwood (UMH) forest.

our model for the estimation of AGTB is found strong, i.e., 0.74,
which is higher than or similar to the other previous studies that
used different predictor variables to predict AGTB using RFM
(Powell et al., 2010; López-Serrano et al., 2020; Nguyen and Kappas,
2020; Li Z. et al., 2022). Similarly, the RMSE percent of the AGTB

model in our study is slightly higher than the results reported by
Musthafa and Singh (2022), Wai et al. (2022) and slightly lower
than result of Zhu et al. (2020). These studies completely used other
predictors (Image pixel value, age, crown density etc.) compared to
our studies (especially temperature and precipitation). Moreover,
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FIGURE 5

Predictor variables responding to above ground tree biomass (AGTB) in the partial dependence plot of the random forest model (RFM4).

TABLE 4 Changes in the amount of soil organic carbon (SOC) and above ground tree biomass (AGTB) in the near current period (1970–2000) and
future scenario (2040–2060).

Response
variables

Near current period (1970–2000) Future scenario (2040–2060) Loss/Gain

Min Mean Max Min Mean Max

SOC (ton/ha) 12.54 63.6 194.97 18.22 61.15 172.4 −3.85%

AGTB (ton/ha) 5.56 204.51 1121.42 6.04 210.57 1100.14 +2.96%

FIGURE 6

Amount of Soil organic carbon (SOC) changes in the future against near current period i.e., 1970–2000 (A) and amount of Above ground tree
biomass (AGTB) changes in the future against near current scenario (B).

Frontiers in Forests and Global Change 09 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1209232
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1209232 August 30, 2023 Time: 14:24 # 10

Malla et al. 10.3389/ffgc.2023.1209232

R2 and RMSE% of the model for the estimation of SOC is smaller
and higher, respectively than other studies (Hounkpatin et al., 2018;
Lee et al., 2020). The possible reason could be the use of different
independent variables in those studies than our study.

If we compare the estimated quantity of SOC and AGTB of the
Random forest model with the forest resource assessment result
(DFRS, 2015c) based on design based estimation, the quantity is
found similar. The estimated average of SOC (63.6 ton/ha) in this
study is 4.9% lower than the forest resource assessment result (66.88
ton/ha) whereas the average of AGTB (204.51 ton/ha) is 5.14%
higher than the forest inventory result (i.e., 194.51 ton/ha). Though
number of samples used in the model is lower than the samples
used in design based approach, the Random forest model seems to
be capable to produce better accuracy.

4.2. Factors influencing above ground
tree biomass (AGTB)

Based on the previous studies, altitude, stand characteristics
(tree age, density), slope, aspect, temperature and precipitation
affect the AGTB (Powell et al., 2010; Van der Laan et al., 2014;
Yan et al., 2015; Zhang et al., 2016; Rajput et al., 2017; Shen et al.,
2018). Similar to the other studies (Wang et al., 2017; Bennett et al.,
2020; Larjavaara et al., 2021), our study reports the effect of climate
attributes on AGTB, particularly due to the maximum temperature
of the warmest month (Bio5) and precipitation of the driest month
(Bio14).

The RFM used in this study helps understand AGTB as
functions of predictors such as altitude and climatic variables.
Previous studies also used RFM to estimate AGTB, but were
confined to a few predictor variables such as image pixel value,
canopy height, topography, vegetation indices, and texture feature
(Li Z. et al., 2022; Musthafa and Singh, 2022; Wai et al., 2022).

Our model shows an increase of AGTB under future climate
change scenarios, a finding that is consistent with the results
reported by Day et al. (2008), Saeed et al. (2019), Wang et al.
(2019). Temperature is the most determining climatic factor that
helps in accumulation of tree biomass particularly in the growth
season (Devi et al., 2020). Similarly, an increase in precipitation
in the driest months (Bio14) helps increase AGTB by lengthening
the growing season that supports plant growth (Vaganov et al.,
1999). Our results show a positive effect of Bio14 and warmer in the
summer (similar to Bio5) with AGTB is consistent with the study
conducted by Lewis et al. (2013), Devi et al. (2020), Noguchi et al.
(2022). Unlike the forests in Nepal, rising temperature is likely to
decrease above-ground biomass in the old-growth tropical forests
(Larjavaara et al., 2021).

4.3. Factors influencing soil organic
carbon (SOC)

Nine predictor variables, including topographic variables,
climatic variables, forest types, distance to settlement and crown
cover, are important to influence SOC distribution. Previous studies
also report similar influencing variables for SOC, topography
(altitude, slope and aspect), above-ground biomass, basal area,

canopy cover, climate and forest types (Kara et al., 2008; Song et al.,
2012; Mohammad and Rasel, 2013; Liu et al., 2016; Bangroo et al.,
2017; Chaturvedi and Sun, 2018; Jakšić et al., 2021; Shapkota and
Kafle, 2021). Apart from other variables, distance to settlement has
also an effect on SOC. Our result shows that an increase in distance
to settlement- which is likely to reduce human disturbances- results
increase in SOC stock (Figure 4). SOC distribution is likely to be
more in the area with less human disturbance (Mehta et al., 2008;
Eshaghi Rad et al., 2018). Human disturbance such as logging and
tree harvest result in a decrease in soil carbon and organic matter
(Latty et al., 2004; Moreno et al., 2007).

Our study shows the mean temperature of the wettest quarter
(Bio8) as a major predictor variable to estimate SOC in particular.
In general, climatic variables are dominating other variables for
the prediction of SOC. Similar to our study, previous studies
have reported the effect of climate (temperature and precipitation)
on SOC (Chen et al., 2015; Alani et al., 2017; Sun et al., 2019;
Odebiri et al., 2020; Fang et al., 2022). But, other studies also
found altitude as a major variable for SOC prediction (Dieleman
et al., 2013; Odebiri et al., 2020). This is also true because altitude
though does not directly influence SOC but is an indicator of
various climatic functions that govern different vegetation and soil
formation processes (Hanawalt and Wittaker, 1976). Thus, altitude
can be used as a proxy of climatic variables (Malla et al., 2022).

Furthermore, our model shows a decrease in SOC amount in
the future climate change scenario which is similar to the finding
reported by Dimobe et al. (2018). Owing to global warming, surface
temperature will continue to increase, at least, until 2050 under all
emission scenarios (IPCC, 2021). The result shows an increase in
temperature (in the future scenario) leads to a decrease in SOC
amount, which is supported by other studies (Liu et al., 2021;
Zhao et al., 2021). The possible reason could be an increase of
soil microbial decomposition due to higher temperature resulting
less SOC amount (Dong et al., 2021; Song et al., 2021). Similarly,
the negative association of precipitation (in the future scenario)
with SOC in our result is similar to the result reported by Alani
et al. (2017). The higher amount of precipitation possibly causes
to leach dissolved organic carbon of the soil resulting less SOC
accumulation.

4.4. Implications of the study

4.4.1. Model implications
Our model shows the effect of climatic variables, topographic

variables, forest variables, and distance to settlements on the
amount of SOC and AGTB. Particularly, climatic variables
(temperature and precipitation) have a direct relation with the
formation process of SOC and AGTB. Mean annual precipitation
is a driver of the amount of SOC and AGTB (Mehta et al., 2014).
Precipitation influences soil moisture and hydrological processes
(Heisler and Weltzin, 2006) which is an important factor in
SOC cycling (Aanderud et al., 2010) and affects AGTB through
functional traits (Cheng et al., 2021). Similarly, temperature also
affects the amount of SOC (Zinn et al., 2018; Zhang et al.,
2021) and the amount of AGTB (Poudel et al., 2011; Larjavaara
et al., 2021). An increase in temperature helps soil microbial
decomposition resulting in higher carbon emission or lower SOC
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accumulation (Dong et al., 2021; Song et al., 2021) whereas
warming temperature enhances tree growth resulting in an increase
in AGTB (Way and Oren, 2010).

However, most of the previous studies were focused on forest
inventory data accompanied by satellite imageries to estimate
AGTB and SOC of the latest period (Angelopoulou et al., 2019;
López-Serrano et al., 2020). But for the future prediction of AGTB
and SOC under climate change scenario, projected bioclimatic
variables are necessary as input variables to produce a precise
result. These projected bioclimatic variables have been widely used
in species distribution modeling, and habitat suitability under
different climate change scenarios (Fyllas et al., 2022; Khan et al.,
2022; Shrestha et al., 2022) however, the use of these variables
have been very limited for SOC prediction (Liu et al., 2021;
Zhao et al., 2021).

Inclusion of Bio2 and Bio6 bioclimatic variables with inventory
data helps estimate AGTB and SOC, respectively in a better
way. Readily available bioclimatic variables not only improve
the performance of the model but also reduce the cost of the
model. Combining bioclimatic variables with other variables for the
prediction of SOC and AGTB can be a viable option to understand
the present scenario.

Moreover, using easily available projected bioclimatic variables
under different climate change scenarios see text footnote 1 has
benefited us in getting a better understanding the trend of SOC
and AGTB in the future. Thus, our model shows an advantage
over previous model to assess AGTB and SOC in the future climate
change scenario using freely available climatic data.

4.4.2. Implications to Nepal
The forest policy of Nepal emphasizes managing forest

resources largely through community participation. Almost half of
the total forests have been managed under the broad regime of
community-based forest management (Ghimire and Lamichhane,
2020). After the involvement of local people in forest resource
management, Nepal has received positive changes in the forest
condition. The forest cover of Nepal has been in an increasing
trend reported by different assessments, i.e., 29% (DFRS, 1999),
40.36% (DFRS, 2015c), 41.69% (FRTC, 2022). Despite these
facts, our model shows the amount of SOC is likely to be
decreased in the future, whereas there will be a slight gain
in the AGTB. In order to increase SOC in the future, the
result highlights the need of management intervention to reduce
forest degradation and deforestation through sustainable forest
management in all the forests of Nepal to deal with climate change
impact.

5. Conclusion

Climatic variables (temperature and precipitation) show an
effect on the amount of SOC and AGTB in the future climate
change scenario. However, the effect of climate on the SOC and
AGTB is opposite (positive with AGTB while negative with SOC).
Therefore, management intervention through sustainable forest
management is crucial in all forest types to maintain SOC level in
the future climate change scenario.

Our study proposed an approach for estimating the AGTB
and SOC of Nepal using forest inventory data combined with

world climate data (bioclimatic variables). Integrating readily
available bioclimatic variables along with other predictor variables
helps estimate SOC and AGTB in the near current and
future scenario, leading to a better understanding of AGTB
and SOC dynamics.
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ANNEX

ANNEX 1 Parameters a, b, and c of the volume equation i.e.,
ln(v) = a + b*ln(d) + c*ln(h).

Species a b c

Abies pindrow −2.4453 1.7220 1.0757

Acacia catechu −2.3256 1.6476 1.0552

Adina cordifolia −2.5626 1.8598 0.8783

Albizia spp. −2.4284 1.7609 0.9662

Alnus nepalensis −2.7761 1.9006 0.9428

Anogeissus latifolia −2.2720 1.7499 0.9174

Bombax malabaricum −2.3865 1.7414 1.0063

Cedrela toona −2.1832 1.8679 0.7569

Dalbergia sisso −2.1959 1.6567 0.9899

Eugenia jambolana −2.5693 1.8816 0.8498

Hymenodictyon excelsum −2.5850 1.9437 0.7902

Lagerstroemia parviflora −2.3411 1.7246 0.9702

Michelia champaca −2.0152 1.8555 0.7630

Pinus roxburghii −2.9770 1.9235 1.0019

Pinus wallichiana −2.8195 1.7250 1.1623

Quercus spp. −2.3600 1.9680 0.7469

Schima wallichii −2.7385 1.8155 1.0072

Shorea robusta −2.4554 1.9026 0.8352

Terminalia tomentosa −2.4616 1.8497 0.8800

Trewia nudiflora −2.4585 1.8043 0.9220

Tsuga spp. −2.5293 1.7815 1.0369

Miscellaneous in Terai −2.3993 1.7836 0.9546

Miscellaneous in Hills −2.3204 1.8507 0.8223
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