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Pigment content is a critical assessment indicator in the study of plant

physiological metabolism, stress resistance, ornamental characteristics, and

forest health. Spectral imaging technology is widely used for rapid and non-

destructive determination of plant physicochemical parameters. To address the

shortcomings of previous models of spectral reflectance prediction of chlorophyll

content of needles only from the perspective of traditional algorithms and

ignoring physical models, this research integrates variable complexity and refined

classification of physical models to validate the increased accuracy of both the

conventional partial least squares (PLS) method and the traditional neural network

algorithm. The results of the conifer chlorophyll models of Picea koraiensis

Nakai with different needle ages based on spectral reflectance and vegetation

index parameters showed that the improved nonlinear state transition algorithm-

backpropagation (STA-BP) neural network model approach (R2 of 0.73–0.89) and

the nonlinear Stacking partial least squares (Stacking-PLS) model approach (R2

of 0. 67–0.85) is slightly more robust than the traditional algorithms nonlinear

BP model (R2 of 0.63–0.82) and linear PLS model (R2 of 0.60–0.76). This finding

suggests that the nonlinear fitting of chlorophyll content in needles of different

needle ages in P. koraiensis Nakai surpasses the traditional linear model fitting

methodology. Furthermore, the model fitting of chlorophyll content in conifers

of different needle ages outperforms the mixed P. koraiensis Nakai model,

suggesting that chlorophyll models using needle refinement classification help

to improve model robustness. This study provides data and theoretical support

for rapid and non-invasive characterization of physiological and biochemical

properties of needles of different needle ages using spectral imaging techniques

to predict growth and community structure productivity of forest trees in the

coming years.
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1. Introduction

Data from the ninth National Forest Resources Inventory show
that the area of plantation forests in China ranks first in the
world at 7,954.28 million hm2 (Cui and Liu, 2020). Picea koraiensis
Nakai, an important timber species in northeastern China, has been
included in the 13th National Five-Year Plan for the cultivation
and management of plantation forests (Zhou L. et al., 2020). This
valuable dark coniferous forest species, belonging to the genus Picea
A. Dietrich genus, thrives in humid climates. It exhibits relative
tolerance to shade, and demonstrates a wide ecological range,
significant ecological adaptability, and effective ecological coupling
(Lan, 2015). As an important greening and plantation species in
northeastern forest areas, P. koraiensis Nakai has ornamental and
economic value.

Due to increasing urbanization, rapid development of
transportation industry and intensification of industrial pollution,
in the context of environmental stress, the irrational distribution
of spatial and non-spatial structures of forest stands has caused
competition for spatial ecological niches within the main species
of P. koraiensis Nakai in plantation forests in northeastern China
(Huang et al., 2023), resulting in unhealthy stands and unstable
structural characteristics. Leaf pigment content, recognized
as an important metric for assessing plant and forest health,
has been identified as a trait intrinsically linked to ecosystem
structure and relationships within its biodiversity (Miraglio et al.,
2019). Phytochromes, with particular emphasis on chlorophyll,
serve as the primary determinants of plant photosynthetic rates
and primary productivity. These elements are widely used to
characterize conditions of plant growth, including nutritional
stress, photosynthetic capacity, and aging processes, thereby
contributing to biogeochemical and nutrient cycles within
ecosystems (Shipley et al., 2006; Ma et al., 2011).

At present, conventional methods used to determine
plant physiological and biochemical indices are characterized
by their time-consuming nature, excessive complexity and
destructive tendencies. In addition, these existing methods require
the development of more sophisticated models for accurate
representation. Additional research is needed to explore longer
time periods and to solve complex multivariate problems. It is
an important goal of forestry research to rapidly monitor the
structural growth status, inclusion content, health assessment,
and other information of large-area forest stands to provide a
scientific basis and theoretical support for decision-making in
forest production management. The rapid development of sensor
technology has made it easier for hyperspectral remote sensing
technology to obtain different target reflectance information. Fine
spectral resolution can fully reflect the characteristics of subtle
changes and differences in vegetation spectra (Tong et al., 2016).
The application of hyperspectral remote sensing technology in
chlorophyll content retrieval offers advantages such as time-saving,

Abbreviations: PLS, partial least squares; SG-Raw, Savitzky-Golay raw
spectra; SG-FD, Savitzky-Golay first derivative; SG-SD, Savitzky-Golay
second derivative; SNV, standard normal variable; MSC, multiplicative
scatter correction; STA, state transition algorithm; BP neural network,
back propagation neural network; R2

CV, coefficient of determination for
cross-validation; R2

V, coefficient of determination for validation; RMSECV,
cross-validation; RMSEV, root mean square error of validation.

labor-saving, non-destructive measurements, comprehensive
coverage, continuous dynamic monitoring, and rapid acquisition
and analysis of regional-scale vegetation dynamic changes.

Traditional inversion methods mainly include statistical model
methods and physical model inversion methods. The vegetation
index method, the most widely used statistical model method,
establishes a regression model of vegetation index and chlorophyll
content measurement value to perform chlorophyll inversion.
Although this method is simple and convenient, it has weak
mechanisms and is susceptible to vegetation types, weather, climate,
and other objective conditions, resulting in poor universality (Liu
et al., 2020). The physical model approach inverts chlorophyll by
establishing a correlation between the chlorophyll content value,
basic parameters, and canopy reflectance. This method, which
has a solid mechanistic basis and reasonable universality, is not
constrained by vegetation type. However, its complicated model
structure requires a larger number of input parameters (Tawhid
and Savsani, 2018). With the growing demand in remote sensing
for the refinement of nonlinear physical models, optimized neural
networks, which offer significant advantages in nonlinear model
fitting, along with improved PLS models, have gradually emerged
as a standard approach for the inversion of physiological indicators.

With the proliferation of high-throughput spectral data,
the analysis of high-dimensional data and physiological and
biochemical indicators, where the characteristic variables exceed
the number of samples, has become increasingly critical for
forest management. Partial least squares (PLS) is a commonly
used technique for high-dimensional data analysis (Wold et al.,
1984). However, traditional PLS linear regression models often
lack precision when compared to nonlinear relationship fitting
(Baffi et al., 1999). The accuracy of traditional PLS models can be
improved by stacking integration (Li et al., 2005). The concept of
stacking integration is similar to the neural network fitting mode
(Akyol, 2020). It allows the selection of models with different
regularity terms for integration, thereby improving the sensitivity
of the model to parameters and mitigating overfitting. The
stacking partial least squares (Stacking-PLS) model can facilitate
the nonlinear fitting process from multivariate to multivariate
under high-dimensional data conditions (Zheng and Zhang, 2021).

Backpropagation (BP) neural networks, which are
multilayer feedforward neural network models trained via
error backpropagation algorithms (Wang, 2009), have exceptional
multidimensional function mapping capabilities. These capabilities
allow them to address complex problems that are beyond the reach
of simple perceptrons (Kaviani and Sohn, 2020). However, the
initial weight threshold for each neuron in the traditional BP neural
network is quantified randomly, leading to slow convergence and
unstable models. As a result, the algorithm often easily succumbs
to local optima. Currently, many researchers choose traditional
optimization algorithms such as genetic algorithms (GA) to
optimize BP neural networks (Zhou et al., 2022). However, these
traditional optimization algorithms tend to underperform in
high-dimensional variables and are prone to problems such as
premature convergence (Liu et al., 2011; Zheng et al., 2017).
Therefore, in this paper, the state transition algorithm (STA) is
employed. This algorithm is less prone to stagnation compared to
traditional optimization algorithms and exhibits high scalability
for intelligent global optimization (Zhou X. et al., 2020; Han et al.,
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2021). This improves the accuracy of BP neural network models
based on the STA algorithm.

In this experiment, the chlorophyll content and spectral
reflectance of P. koraiensis Nakai needles at different ages
(annual, biennial, and triennial) were measured. The Savitzky-
Golay algorithm (Luo et al., 2005) with a second order polynomial
and a window size of 13 was used to calculate the first and
second derivatives. Four preprocessing methods were employed:
first derivative (FD), second derivative (SD), standard normal
variable (SNV) (Bi et al., 2016), and multiple scattering corrections
(MSCs) (Garhwal et al., 2020). In addition, eight optimized spectral
vegetation indices and the spectral band and vegetation index
with the highest correlation coefficient with chlorophyll were
incorporated into BP neural network models, traditional PLS
modeling methods, improved state transition algorithm-BP neural
network (STA-BP) models (Zhou X. et al., 2020), and optimized
Stacking-PLS models (Zheng and Zhang, 2021) to construct needle
chlorophyll inversion models for different ages of P. koraiensis
Nakai. The main research objectives are as follows:

1. To compare the correlation between the four pre-
processing methods, optimized spectral indices and
chlorophyll content at different needle ages.

2. To evaluate the predictive accuracy of traditional and
improved models for needle chlorophyll and mixed needle
chlorophyll at different needle ages in P. koraiensis Nakai
and to identify the optimal combination model.

3. To investigate the long-term multivariate chlorophyll
model and discuss the limitations and drawbacks of
traditional PLS and BP models.

4. To provide theoretical support for the future application of
remote sensing technology in analyzing physiological and
biochemical indicators and evaluating the health status of
coniferous forests in Northeast China.

2. Materials and methods

2.1. Overview of study area and test
materials

The study was conducted at the Mopan Mountain Training
Base located in Jilin City, Jilin Province. This region is
characterized by a northern temperate continental climate, with
an average annual temperature of 4.5◦C, an annual rainfall
of 668 mm, a relative humidity of 70%, and a frost-free
period of 130 days. The vegetation in this region is part of
the Changbai Mountain Flora, which is characterized by a
wide variety of wild plants and a forest cover that covers
90% of the area. The main tree species include Juglans
mandshurica, Fraxinus mandshurica, P. koraiensis Nakai, and
Quercus mongolica. The dominant shrub species are Malus baccata,
Schisandra chinensis, and Euonymus alatus, while the dominant
herbs are Pteridium aquilinum, Adenocaulon himalaicum, Carex
remotiuscula, and Glechoma hederacea. The soil in this region is
mainly dark brown loam.

The annual, biennial, and triennial needles of P. koraiensis
Nakai plants at the Mopanshan practice site were used in this
experiment. High pruning shears facilitated the sampling of needles
from 25 to 30 cm diameter plants at the top, middle, and bottom of
the canopy. Healthy and undamaged annual, biennial, and triennial
needles were collected from four directions: southeast, southwest,
northeast, and northwest. Each plant was sampled three times to
ensure replication.

2.2. Determination of chlorophyll
content of needles

For the determination of needle chlorophyll content, a sample
of 0.3 g of P. koraiensis Nakai needle was collected, cut into pieces
and placed in a mortar. The addition of a small amount of quartz
sand and 95% ethanol facilitated the grinding of the mixture into a
homogenate. This homogenate was then transferred to a test tube
and diluted with 95% ethanol to a final volume of 10 ml. The
test tube was sealed and left to soak for 24 h in a dark, light-free
environment. The sample was then filtered and the absorbance of
the chlorophyll extract was measured at wavelengths of 649 and
665 nm using an Agilent Cary 60 UV-Vis spectrophotometer.

Chlorophyll a = (13.95D665− 6.88D649) V/M/1, 000 (1)

Chlorophyll b = (24.96D649− 7.32D665) V/M/1, 000 (2)

Chlorophyll = chlorophyll a+ chlorophyll b (3)

In Equations 1, 2, D665 and D649 are the absorbance of the
chlorophyll extracts at 649 and 665 nm, respectively; V is the total
volume of the extracts (ml); M is the mass of the needles (g).

2.3. Spectrum acquisition and processing
method

Needle reflectance was measured using a Finnish SPECIM
handheld intelligent AISA hyperspectral camera with a wavelength
range of 400–1,000 nm, spectral resolution of 7 nm, image
resolution of 512× 512 pixels, and 204 spectral bands.

Using K-fold cross-validation, the allocation of samples was
such that 80% served as the modeling data set, with the remaining
20% split evenly between the validation and test sets. Data analysis
was performed using R software (version 4.2.1). The prospectr
package (Mullen and Stokkum, 2007) was used for spectral
processing to effectively avoid errors caused by noise and baseline
translation (Divya and Gopinathan, 2019). FD and SD spectral
calculations were performed using the Savitzky-Golay function
(Steinier et al., 1972) with a window size of 13. The standard Normal
Variate function and MSC function (Rogers et al., 1995) were used
to obtain SNV and MSC spectral data, respectively.

The formula for calculating the first-order difference of the
spectra is:

R′λn =
Rλn+1 − Rλn

1λ
(4)
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In Equation 4, R′λn is the first-order differential of the spectrum in
the band from n to n + 1,Rλn+1 and Rλn are the reflectance values of
the original spectrum at n + 1 and n, respectively, and 1λ denotes
the interval between wavelengths λn−1 and λn.

The formula for calculating the second-order differential of
spectra:

R′′λn =
R′λn+1 − R′λn

1λ
(5)

In Equation 5, R
′′

λn is the second-order differential of the spectrum
in the band from n to n + 1, R′λn+1, R′λn are the reflectance values
of the original spectrum at n + 1, n, respectively, and 1λ denotes
the interval between the wavelengths λn − 1 to λn. Differential
processing can effectively eliminate the influence of system error
and background noise on the spectral values.

SNV calculation formula:

SNVi =
xi − x̄i

si
(6)

In Equation 6, xi is the spectral reflectance of the i-th observed
value, x̄i is the mean, and si is the standard deviation. SNV
normalizes each spectrum to eliminate dimensional effects and the
influence of variation in the magnitude of the variable, that is, the
magnitude of the value (Garhwal et al., 2020).

MSC calculation formula:

MSCxi =
ai − (mixr + ai)

mi
(7)

In Equation 7, xi is the spectral reflectance of the i-th observed
value, xr represents the average of all spectral data as the ideal, and
c is a constant term. MSC eliminates scattering levels that cause
spectral differences and corrects baseline translation and offset
phenomena in spectral data by using ideal spectra.

2.3.1. Optimization of spectral indices
Using the spectral data acquired by the hyperspectral camera,

Carter indices (Ctr1 and Ctr2), Vogelmann indices (VOG1, VOG2,
and VOG3), blue/green indices (BGI1 and BGI2), and blue/red
indices (BRI2) were selected as the basis for spectral analysis. These
indices were chosen with vegetation types and needle physiological
characteristics to reflect subtle changes in vegetation physiological
indicators and health status (Table 1). The Carter indices refer to
the narrow spectral bands near the red (695 nm) and blue (420 nm)
regions and the strong chlorophyll absorption bands (760 nm) at
the edge of the chlorophyll absorption characteristics in needles
(Carter, 1994). The Vogelmann indices, with spectral bands also
near the red edge, aim to enhance the pigment signal and correct
for leaf water content (Vogelmann et al., 1993). The blue/green
and blue/red indices represent the ratio of visible, blue-green, and
blue-red light and serve as indicators for early monitoring of needle
stress (De Jong et al., 2012).

2.4. Model building and validation

2.4.1. Stacking partial least squares
The PLS method, which fits individual chemical compositions

to reflectance spectra for model calibration, identifies the optimal
function of the data by minimizing the sum of squares of the errors

TABLE 1 Selected vegetation index and calculation method.

Spectral parameters Calculation formula

Ctr1 R695 / R420

Ctr2 R695 / R760

VOG1 R740 / R720

VOG2 (R734− R747) / (R715 + R726)

VOG3 (R734− R747) / (R715 + R720)

BGI1 R400 / R550

BGI2 R450 / R550

BRI2 R450 / R690

(Tran et al., 2014; Li et al., 2019). While previous literature (Wang
and Hu, 2006; Karaman et al., 2013; He et al., 2021) has primarily
discussed accuracy in the context of linearity and nonlinearity, the
fundamental challenge in improving the accuracy of PLSR models
lies in their struggle to model and predict long-period, multivariate
functions. Despite the difficulty PLSR faces in accounting for
issues such as variable correlation, its wide application in modeling
statistical analysis and its advantages within a given period and
range of variables are undeniable. Therefore, a systematic summary
and comparison of traditional modeling approaches is warranted.

Single models often face challenges in fitting complex data
and have low anti-interference capabilities. Therefore, integrating
multiple models can improve the generalization ability of the model
(Dolk and Kottemann, 1993). There are two main strategies for
learning integration: Boosting architecture, which builds robust
learners through serial connections between base learners, and
Bagging architecture, which builds robust learners by constructing
multiple independent models through weighting (Grosse-Rhode,
2004; Zhang and Moller-Pedersen, 2013). The concept of stacking
integration combines both boosting and bagging strategies. To
circumvent problems such as low accuracy, poor robustness, and
overfitting of PLS fitting models, this study refines the PLS model
fitting process based on the stacking integration concept. In
essence, the Stacking-PLS model is a nonlinear PLS regression
model that uses the stacking integration concept to explore
the nonlinear relationship between independent and dependent
variables (Zhang and Moller-Pedersen, 2013). To enhance the
generalizability of stacking integration (Figure 1), the dataset in this
study is partitioned into a training set (Dtrain) and a test set (Dtest)
using K-fold cross-validation (Rooney and Patterson, 2007).

2.4.2. STA-BP neural network
The BP neural network algorithm, as shown in Figure 2,

operates on the principle of minimizing the objective function,
which is the squared network error. This minimization is achieved
through the gradient descent method, which adjusts network
weights and thresholds through backpropagation. The algorithm
has self-learning and generalization capabilities that facilitate
the handling of complex and nonlinear mapping functions.
These capabilities contribute to improved prediction accuracy for
problems such as nonlinear function approximation (Keiner and
Yan, 1998). The BP neural network, a multilayer feedforward neural
network, is trained using the error backpropagation algorithm. This
training includes signal feedforward and error backpropagation.
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Schematic diagram of stacking integration algorithm.
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BP neural network model algorithm flow chart.

The forward process consists of three layers, with neurons in each
layer influencing only the state of the next layer. If the output
of the training neural network does not meet the desired output
value, the error backpropagation process is initiated. This process
adjusts the weights and thresholds layer by layer until the expected
error range is reached (Faal et al., 2015; Li and Cao, 2019). The BP
neural network can streamline the processing of high-throughput
data and accurately identify the intricate intrinsic relationships
within the data (Huang et al., 2009; Jia et al., 2015). However, the
stochastic quantification of the initial weight threshold of the BP
neural network can be challenging. When the model is used to
predict the refined classification model of chlorophyll content in
needles of different ages in red bark spruce, it can easily fall into
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Flow chart of improved STA-BP neural network.

a partial optimization solution, thus failing to achieve the desired
prediction results (Zhou and Cheng, 2014; Wang et al., 2016).

In this study, the state transition algorithm (STA) is used
to improve the BP neural network model (Figure 3), which can
integrate local search, global search, and heuristic search into an
intelligent global optimization algorithm (Gu et al., 2021; Zou
et al., 2022). A statistical approach was used to select the STA
parameters, and then a quadratic difference technique was used
to enhance their local exploitation and improve the solution
accuracy (Hu et al., 2023). The state transfer algorithm uses an
alternating rotation mechanism to adapt to different structural type
optimization problems, i.e., rotation, telescoping transformation,
and axial search are performed alternately, which has the advantage
of avoiding wasting too much time on local search when the global
optimal solution domain is not reached, thus increasing the activity
of the search process.

3. Results

3.1. Chlorophyll content statistics and
spectral preprocessing

Table 2 shows the statistical analysis of chlorophyll content
in P. koraiensis Nakai needles of different ages, which were used
for both modeling and validation in this study. The range of
chlorophyll content for the annual needle set was 0.245–0.960 mg/g,
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TABLE 2 Statistics of chlorophyll content in needle leaves of Picea koraiensis Nakai at different ages.

Needle age Dataset Number of
samples

Max
value

Min
value

Mean
value

Standard
deviation

Coefficient of
variation

Annual Modeling 576 0.960 0.245 0.596 0.162 0.272

Validation 72 0.937 0.302 0.589 0.161 0.273

Testing 72 0.995 0.311 0.632 0.175 0.277

Biennial Modeling 576 1.219 0.283 0.693 0.186 0.268

Validation 72 1.223 0.290 0.701 0.193 0.275

Testing 72 1.243 0.294 0.721 0.205 0.284

Triennial Modeling 576 1.231 0.343 0.780 0.198 0.254

Validation 72 1.223 0.351 0.774 0.193 0.249

Testing 72 1.304 0.349 0.783 0.206 0.263

Mixed Modeling 576 1.137 0.290 0.690 0.262 0.380

Validation 72 1.128 0.314 0.688 0.289 0.420

Testing 72 1.181 0.318 0.712 0.301 0.423

with a coefficient of variation of 27.2%. For the biennial needle
set, the chlorophyll content range was 0.283–1.219 mg/g, with a
coefficient of variation of 26.8%. The triennial needle set showed
a chlorophyll content range of 0.343–1.231 mg/g and a coefficient
of variation of 25.4%. The mixed conifer model set showed a
chlorophyll content variation interval of 0.290–1.137 mg/g, and
a coefficient of variation at 38%. The sequence of chlorophyll
content in P. koraiensis Nakai leaves of different ages followed
the order: triennial > biennial > annual. The dispersion of the
standard deviation and coefficient of variation data indicated a
well-represented sample.

The spectral data collected by a hyperspectral camera from
P. koraiensis Nakai needles of different ages, although influenced
by factors such as noisy environment, light scattering, and
diffuse reflectance, showed similar trends in spectral reflectance
changes. These trends were observed in the raw spectrum without
preprocessing (Raw), standard normal variable (SNV), and MSC
(Figure 4). The visible band showed “blue valley” and “green
peak” phenomena near 500 and 560 nm, respectively. A significant
increase in spectral reflectance was observed from 680 to 760 nm,
showing “red valley” and “red edge” phenomena near 680 and
760 nm, respectively. Raw spectral reflectance values for annual
needles exceeded those of biennial and triennial needles in the
513–616 and 720–988 nm bands (p < 0.05). Systematic errors
can be eliminated by differential processing of the original spectra
(Figures 4B–D) and form extreme points around 711 and 690 nm.
However, the reflectance of the FD and SD spectra of annual needles
near 690 nm was still significantly higher than that of biennial and
triennial needles (p < 0.05).

3.2. Correlation analysis between
optimized spectral vegetation index and
chlorophyll content of needles at
different ages

Figure 5 shows the correlation analysis between the optimized
spectral vegetation index and the chlorophyll content in needles

of different ages. A remarkable positive correlation is observed
between the chlorophyll content and the spectral vegetation indices
VOG1 and BGI1 (with correlation coefficients R = 0.63 and
0.74, respectively) in the case of annual needles (Figure 5A).
Conversely, the spectral vegetation index Ctr2 shows a significant
negative correlation (correlation coefficient R = −0.77). In the
context of biennial (Figure 5B) and triennial needles (Figure 5C),
the chlorophyll content shows significant positive correlations
with the spectral vegetation indices Ctr1 (R = 0.59, 0.63), Ctr2
(R = 0.79, 0.71), VOG2 (R = 0.61, 0.83), and VOG3 (R = 0.62,
0.82). However, there is a significant negative correlation with
the spectral vegetation indices VOG1 (R = −0.69, −0.78), BGI1
(R = −0.53, −0.79) and BRI2 (R = −0.60, −0.77) (p < 0.01).
For mixed needles (Figure 5D), the correlation coefficient between
chlorophyll content and the spectral vegetation index VOG1 is 0.55,
while for the spectral vegetation index Ctr2 it is −0.67. Figure 5
shows an increasing correlation between chlorophyll content and
each spectral vegetation index with increasing age of P. koraiensis
Nakai. However, the correlation between chlorophyll content and
the spectral index of mixed needles is the lowest. A more nuanced
classification of plant leaves could improve the correlation between
chlorophyll content and spectral vegetation index.

Figure 6 shows the correlation between the spectral reflectance
of the original spectra, four spectral pretreatments, and chlorophyll
content in conifer leaves of different ages. A remarkable negative
correlation is observed between the original spectral reflectance
and the chlorophyll content in needles of different ages at
the wavelengths 540–566 and 702–717 nm (p < 0.05). As
shown in Figure 6B, the correlation coefficients between FD
spectral reflectance and chlorophyll content in biennial needles
at wavelengths of 563, 680, and 712 nm exceed those in annual,
triennial, and mixed needles. The correlation coefficients between
SD spectral reflectance and biennial needle chlorophyll content
peak at wavelengths 672–684 and 708 nm, with R values of −0.64
and 0.65, respectively. The correlation coefficients between spectral
reflectance treated with SNV and MSC and chlorophyll content of
needles of different ages remain consistent in the 413–780 nm band.
In the 420–620 and 690–720 nm bands, the correlation coefficients
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FIGURE 4

Pretreatment curves of needle spectra from different ages of P. koraiensis Nakai. (A) Raw, (B) FD, (C) SD, (D) SNV, and (E) MSC.

between spectral reflectance and chlorophyll content of biennial
needles significantly exceed those of annual, triennial, and mixed
needles. However, the correlation coefficients between spectral
reflectance and chlorophyll content of needles of different ages after
different spectral pretreatments are significantly lower than those of
the optimized vegetation index and chlorophyll content of needles
of different ages.

3.3. Establish chlorophyll content
inversion model based on optimized
spectral index and characteristic band

3.3.1. PLS and Stacking-PLS inversion models
The original spectra of needles of different ages and the

spectral reflectance (with chlorophyll correlation greater than
±0.5) and spectral vegetation index (with chlorophyll correlation
greater than ±0. 6) of the four spectral pretreatments were
substituted into the traditional algorithm PLS model, the improved
Stacking-PLS model for chlorophyll of needles of different ages,
respectively, and the optimal PLS and Stacking-PLS models were
determined by the cross-validation method (RMSEcv) for annual
needles (NcompPLS = 5, NcompStacking-PLS = 3), biennial
needles (NcompPLS = 5, NcompStacking-PLS = 2), triennial
needles (NcompPLS = 5, NcompStacking-PLS = 2), mixed needles
(NcompPLS = 6, NcompStacking-PLS = 3), and the optimal
number of components (Ncomp) (Figure 7).

As shown in Figure 8, the fitting accuracy of the Stacking-
PLS model is significantly better than that of the traditional
PLS model, and the root mean square error (RMSE) is
correspondingly lower. The fitting accuracy of the triennial
needle model exceeds that of the biennial and annual needle
models, regardless of whether the traditional PLS algorithm or
the improved Stacking-PLS is used. The model fitted by mixed
needles (traditional PLS algorithm R2 = 0.6, improved Stacking-
PLS R2 = 0.67) generally falls below the model accuracy of annual
needles (traditional PLS algorithm R2 = 0.69, improved Stacking-
PLS R2 = 0.76), biennial needles (traditional PLS algorithm
R2 = 0.71, improved Stacking-PLS R2 = 0.83), and triennial needles
(traditional PLS algorithm R2 = 0.76, improved Stacking-PLS
R2 = 0.85).

3.3.2. BP and STA-BP neural network inversion
models

As shown in Figure 8, the robustness of the traditional neural
network model is lower than that of the STA-BP model. The
chlorophyll models of different ages fitted by the STA-BP neural
network show the following accuracy: 3-year chlorophyll model
(R2 = 0.81) > 2-year chlorophyll model (R2 = 0.87) > annual
chlorophyll model (R2 = 0.89) > mixed chlorophyll fitting model
(R2 = 0.73). The accuracy of the STA-BP model exceeds that
of the traditional BP neural network algorithm, the traditional
PLS algorithm, and the stacking PLS model. Although the
stacking integration idea is similar to the neural network fitting
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FIGURE 5

Correlation analysis of optimized spectral index with chlorophyll content of annual needles (A), biennial needles (B), triennial needles (C), and mixed
needles (D).

method, it still needs to be improved to the improved STA-
BP neural network method. The mixed needle fitting model of
chlorophyll STA-BP is significantly lower than the different age
needle fitting model, while the refinement of classification fitting
significantly improves the accuracy of the STA-BP neural network
model. According to Figure 8, the models fitted by these four
methods consistently show higher accuracy for biennial needles
and annual needles, which is consistent with the spectral vegetation
index and the correlation law of needle chlorophyll at different
ages.

3.4. Model screening and validation

The STA-BP model was screened as the optimal model. To
evaluate the stability and adaptability of the STA-BP model, R2 and
RMSE were used as evaluation criteria to validate its predictive
performance using the test set. The scatter plots of the fit of the
measured and predicted values of needle chlorophyll content at
different ages are shown in Figure 9. The results indicated that
the STA-BP model had a better simulation effect with higher
precision in predicting chlorophyll content in triennial needles
(R2 = 0.7991) compared to biennial needles (R2 = 0.8176), annual
needles (R2 = 0.8355), and mixed needles (R2 = 0.6615).

4. Discussion

China, known for its exceptional biodiversity, is home to a
wide range of forest germplasm resources and diverse genetic
resources. These resources play an important role in the sustainable
development of forestry and the advancement of biological genetic
engineering (Priyanka et al., 2021). Among the valuable coniferous
evergreen tree species in the forest region of Northeast China,
P. koraiensis Nakai is considered to be instrumental in restoring
forest ecosystems, maintaining ecological balance, and providing
industrial materials (Wang et al., 2023).

The importance of chlorophyll content in assessing plant
health and growth performance is well established (Wendong
et al., 2016; Croft et al., 2017). Spectrometry is a rapid,
nondestructive, and efficient method for determining plant
physiological parameters and has been widely adopted in plant
science research (Buddenbaum et al., 2015; Arellano et al., 2017).
However, full-spectrum analysis can generate noisy and redundant
information, which may compromise the predictive performance
of the model and increase its complexity (Gente et al., 2016; Raddi
et al., 2022). In this experiment, a pretreatment of needle spectra
at different ages (Figure 4) was performed. This process effectively
eliminated background noise and baseline drift interferences,
enhanced spectral signals, highlighted practical information of the
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FIGURE 6

Correlation analysis of spectral reflectance between Raw (A), FD (B), SD (C), SNV (D), and MSC (E), and chlorophyll content of needles at different
ages.
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Evaluation of the predicted chlorophyll PLS model (A) and the Stacking-PLS (B) model for coniferous leaves of different ages using cross-validation
(RMSEcv).

maps, and selected spectral bands and vegetation indices with high
correlation with chlorophyll content. As a result, the construction
of the traditional algorithm PLS model, the improved stacking PLS
model, the traditional BP neural network model, and the improved
STA-BP neural network model was facilitated.

An increase in spectral index with age of P. koraiensis Nakai
needles and its correlation with chlorophyll content were observed.
The correlation between chlorophyll content and the spectral

indices of Ctr1, VOG2, and VOG3 in 3-year-old needles exceeded
0.8. The Carter indices, which refer to the narrow spectral bands
near the red (695 nm) and blue (420 nm) absorption bands and
the strong chlorophyll absorption band (760 nm) at the edge
of the chlorophyll absorption characteristics of needles (Carter,
1994), and the Vogelmann indices, whose spectral band is also
located at the red edge and aims to enhance the pigment signal
and correct for leaf water content (Vogelmann et al., 1993), were
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used. This indicates that chlorophyll content is a factor influencing
the correlation between spectral indices and chlorophyll content.
Furthermore, a commonality was found in the relationship between
spectral reflectance and chlorophyll content of needles in Figure 6,
which consistently showed a peak in the band around 680–720 nm
for chlorophyll content and a significant correlation coefficient.
This finding is consistent with the study results of Merzlyak et al.
(1999), who indicated that 680 nm was the most sensitive to
changes in chlorophyll content caused by leaf senescence. This
has been attributed to the strong absorption of phytochromes in
different bands (Fedotov et al., 2018).

The traditional PLS algorithm, a regression method capable of
reducing numerous measured common spectral factors to a few
unrelated potential factors, has been noted to have a tendency
to overfit when misapplied (Atzberger et al., 2010). Due to its
design for linear regression models, the traditional PLS algorithm
is unsuitable for nonlinear relationships (Baffi et al., 1999; Li
et al., 2005). In response to this limitation, an improved nonlinear
stacking PLS model based on the stacking integration concept was
proposed. This improved model demonstrated superior accuracy
compared to the traditional linear PLS model (Figure 8). Previous
research supports this finding. Wang et al. (2017) highlighted the
superiority of nonlinear fitting in the characteristic dry edge (severe
moisture deficit) and wet edge (sufficient soil moisture) space
of surface temperature and vegetation index over the traditional
linear fitting accuracy. Similarly, Li et al. (2007) and Wang
et al. (2015) constructed nonlinear PLS models based on neural
networks and extreme learning machines, respectively, both of
which outperformed traditional algorithms. In this study, the
nonlinear BP neural network model fitting of the traditional
algorithm showed higher accuracy than the linear PLS model
of the traditional algorithm. Despite the similarity between the
stacking integration concept and the neural network fitting mode,
the improved nonlinear STA-BP model still outperformed the
nonlinear stacking PLS model. This suggests that the nonlinear
fitting of chlorophyll content in needles of different ages of
P. koraiensis Nakai is superior to the traditional linear model fitting
methods, a finding consistent with Chen et al. (2016). Regardless
of whether the traditional linear and nonlinear method or the
improved nonlinear method was used, the fitting accuracy of the
triennial needle model was found to be greater than that of the
biennial needle model, which in turn was greater than that of the
annual needle model, and finally the mixed needle fitting model.
This pattern is consistent with the spectral vegetation index and the
chlorophyll content law of needles of different ages. This may be
due to the fact that needles with higher chlorophyll content absorb
more solar energy and release clearer spectral signals. Furthermore,
the chlorophyll content model with mixed needle fitting had the
lowest accuracy, confirming that a model with fine classification can
improve its robustness.

5. Conclusion

This study focused on improving the prediction models of
chlorophyll content in P. koraiensis Nakai needles of different
ages, an important evergreen species in Northeast China.

Improvements were made to traditional linear PLS regression
and nonlinear BP neural network models, taking into account
the complexity of variables and refined classification. The
research found that the correlation between chlorophyll content
and each spectral index increased with the age of the needles.
However, spectral reflectance pre-processed with different
spectra showed lower correlation coefficients with chlorophyll
content compared to the optimized vegetation index. The
improved nonlinear stacking PLS model showed superior accuracy
compared to traditional models, suggesting that nonlinear
fitting methods are more effective for predicting chlorophyll
content. The study also confirmed that fine-needle fitting can
improve model robustness. These advances provide a basis for
future predictions of plant physiological indicators and forest
health status, contributing to the sustainable development of
forestry in China.
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