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Soluble sugars are critical determinants of fruit quality and play a significant role

in human nutrition. Chestnuts, rich in soluble sugars, derive their sweetness from

them. However, their content varies with cultivar, location, and environmental

conditions. Traditional methods for determining soluble sugar content in

chestnuts are time-consuming, laborious, and destructive. Therefore, there is

a pressing need for rapid, non-destructive, and straightforward methods for

determining soluble sugars in chestnuts to expedite genetic selection. This study

aimed to develop a hyperspectral imaging-based prediction model for soluble

sugar content in Chinese chestnuts. Firstly, abnormal samples were eliminated

using ensemble partial least squares for outlier detection. We then compared

the average original and block scale (BS) spectra, with the latter demonstrating

significant differences. The BS pretreatment exhibited two small absorption peaks

in the 403.7 ∼ 429.1 nm band and 454.7 ∼ 500 nm band, less fluctuation in the

spectral curves from 503.2 to 687.2 nm, and a substantial increase in spectral

absorption between 690.6 and 927.8 nm. Subsequently, we developed a partial

least squares (PLS) model using BS pretreatment and regularized elimination (rep)

variable selection, which showed better accuracy in predicting chestnut soluble

sugar content than other variable selection methods. The model fitting accuracy

after the spectra treatment was marginally better than that of the original spectra,

with a calibration set correlation coefficient (R2) of 0.59 and root mean square

error (RMSE) of 1.02, and a validation set R2 of 0.66 and RMSE of 0.94. The

wavelengths at 464.3, 503.2, 539.3, 579, and 711.3 nm were identified as critical for

developing the soluble sugar content prediction model. The study demonstrated

the potential of Near-Infrared Spectroscopy (NIS) as a rapid and non-destructive

method for predicting chestnut soluble sugar content, which could be beneficial

for quality control and sorting in the food industry.

KEYWORDS

regression, plant growth, tree production, spectroscopy, Chinese chestnuts, soluble
sugar content

1. Introduction

Chinese chestnuts, members of the Fagaceae family, provide ecological and economic
benefits and have been cultivated in China for over three millennia (Barakat et al., 2009).
Because of their distinctive taste, chestnuts are highly sought after in international markets,
which contain lower levels of fat and protein but higher amounts of water and carbohydrates
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compared to other nuts (Desmaison et al., 1984; Ümran et al.,
2006). This unique property allows chestnuts to be consumed either
raw or cooked, as well as processed into various forms such as
canned foods, cakes, and confectioneries (Senem et al., 2021).

Sweetness is a crucial component of fruit flavor and plays
an integral role in fruit quality formation (Wang et al., 2022).
Soluble sugar content and composition are the main determinants
of fruit sweetness, which not only effectively modulates the
human taste system but also provides beneficial carbohydrates to
humans (Vânia et al., 2021; Alessandra et al., 2022). Therefore,
the content and composition of soluble sugars are essential for
the evaluation of fruit quality (Li M. et al., 2018). Chestnuts
are rich in soluble sugars, mainly consisting of sucrose, fructose
and glucose, and their sweetness also depends on the content
of these three sugars. However, their content is influenced by
factors such as variety, growing location, and other environmental
conditions (Freinkel, 2009; Pereira-Lorenzo et al., 2010). Genetic
selection is necessary to obtain good quality chestnuts and to reduce
the impact of environmental factors on soluble sugars. However
genetic selection usually depends on extensive experiments and
large sample sizes (Couture et al., 2016). While traditional
methods for determining soluble sugar content in chestnuts yield
accurate measurements, they require kernel peeling and drying,
rendering them time-consuming, laborious, and destructive,
thereby rendering them unsuitable for large-scale genetic selection.
Therefore, there is a pressing need to develop rapid, non-
destructive, and straightforward methods for determining soluble
sugars in chestnuts to expedite the progress of genetic selection.

With the advancements in chemometric methods and
spectroscopic instrument hardware technology, spectroscopic
analysis has become a mainstream technique for non-destructive
detection of the internal quality of fruits (Maria et al., 2021).
Hyperspectral imaging technology is a rapid, eco-friendly, non-
destructive, and efficient detection method (Yu et al., 2009; Yang
et al., 2020). It reflects the absorption information of molecules,
such as hydrogen-containing groups like C-H, O-H, and N-H, in
the ensemble and multiplicity frequencies. When combined with
chemometric methods, spectroscopy can perform qualitative and
quantitative analysis of relevant chemical components (Luypaert
et al., 2007; Shi and Yu, 2017), it has been widely used in various
fields.

However, the spectral information obtained directly using
spectral analysis techniques often contains noise and other
irrelevant information that can affect model building. To filter
out useful spectral information and ensure model stability,
preprocessing of the spectra is necessary (Du et al., 2020; Albanell
et al., 2021). Commonly used spectral preprocessing methods
include smoothing, first-order derivative, second-order derivative,
standard normal variable transformation, batch normalization and
so on (Gai et al., 2022; Xiao et al., 2022).

Furthermore, spectral data often exhibit problems such as
wide spectral bands, overlapping absorption peaks, serious co-
linearity between adjacent bands, and contain a large amount
of redundant information (Webb et al., 2020). To reduce
the modeling wavenumber, simplify the model, and improve
model prediction accuracy, it is necessary to select spectral
variables and remove noise and interference variables that
are independent of the target attribute before establishing the
model (Li and Zhao, 2019). Successive projections algorithm (SPA),

Monte Carlo uninformative variable elimination (MCUVE),
uninformative variable elimination (UVE) and randomized tests
(RT) are common variable selection algorithms (Li P. et al., 2018;
Cheng et al., 2020).

The establishment of a stable and accurate quantitative
analysis model is of utmost importance in the application of
spectral analysis techniques. Commonly used methods for model
establishment include PLS, principal component regression (PCR),
multiple linear regression (MLR), and artificial neural networks
(ANN) (Hein, 2010; Yang et al., 2018). Among these methods, PLS
is widely used and is particularly effective in handling regression
relationships between multiple variables when variables are highly
correlated. It is able to effectively solve the problem of many
variables and small sample size (Keshav, 2021). The PLS method
combines the advantages of principal component regression
and multiple linear regression methods, with the smallest sum
of squares of errors and a relatively simple model with high
predictive accuracy (Mehmood et al., 2020; Beyaztas and Lin,
2022).

In recent years, hyperspectral imaging techniques have been
widely used to detect quality parameters in fruits and vegetables,
such as apples (Zhang Y. et al., 2021), peaches (Jiang et al.,
2021), carrots and tomatoes (Roberto et al., 2018). However, no
hyperspectral techniques have been reported for the detection of
quality parameters in chestnuts to date.

In the present study, a model for the prediction of soluble
sugars in chestnuts was developed using hyperspectral imaging
combined with chemometrics. The aims of the study were to (1)
investigate the potential of spectroscopic techniques in quantifying
the soluble sugar content of chestnuts and establish an optimal
prediction model; (2) identify the best pre-treatment method for
soluble sugars during model building; and (3) determine the most
important wavelengths associated with the soluble sugar content of
chestnuts for non-destructive detection during model calibration.

2. Materials and methods

2.1. Samples collection

In this study, a total of 112 chestnut varieties were collected
from the provincial chestnut germplasm nursery in Lanxi county,
Zhejiang Province, China in August 2022. The chestnut trees were
planted in 2012 with a spacing of 3 × 4 m and consisted of 6
plants per variety, which were meticulously maintained each year
and have now reached full maturity. Ten to fifteen chestnut bracts
of consistent size and appearance were harvested from each variety
and kept at room temperature for 5 days. Afterward, the bracts and
shells were removed, and three kernels of uniform size and color
were selected as experimental material. The samples were stored at
−20◦C until further analysis.

2.2. Spectroscopic data acquisition

Spectral and image data were collected using a hyperspectral
imager (GaiaSkyMini2-VN) with 176 spectral bands, a spectral
range of 400–1000 nm and a spectral resolution of 3 ± 0.5 nm,
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FIGURE 1

Simplified schematic of the hyperspectral imaging system.

manufactured at JiangSu Dualix Spectral Image Ltd., China. Prior
to the acquisition of the hyperspectral images, the chestnuts were
removed from the −20◦ refrigerator and left at room temperature
for 4 h to bring the chestnuts to the same room temperature as
the images were acquired and to dry the moisture on the surface
of the chestnuts.

In addition, black and white correction is required prior to
image acquisition. The calibration process involved obtaining a
black and white corrected reference reflectance spectrum. This was
achieved by scanning a white plate (0% reflectance) to acquire an
all-white calibration image R1, covering the camera lens with a
cap (100% reflectance) to obtain an all-black calibration image R2,
and scanning the sample to obtain the original diffuse reflectance
spectrum R3. The calibrated diffuse reflectance spectrum R was
then calculated using equation (1), as described by Guo et al. (2019).

R =
R3 − R2

R1 − R2
(1)

Figure 1 depicts the experimental setup used for collecting
hyperspectral information. The hyperspectral camera is mounted
on a tripod, with the optical axis oriented perpendicular to the
carrier table located below. The imaging lens is positioned 60cm
away from the carrier table, and the scanning range is 45◦ left
and right. An illumination system consisting of halogen lamp light
sources is placed on each side of the camera lens, positioned at a 30◦

angle in the vertical plane. The samples are labeled with numbers
and placed on the carrier table.

2.3. Destructive measurements of soluble
sugars

After the spectral data collection, the chestnut kernel was
ground into fine powder. A sample of 0.02 g was weighed to
correspond with the kernels from which the spectral data was
collected. The soluble sugar content of the samples was determined
using the anthrone colorimetric method.

2.4. Data processing

2.4.1. ROI determination
The spectral images corrected for black and white references

were imported into the ENVI 5.3 software and regions of interest
(ROI) were selected using the Region of Interest Tool on the
software toolbar. ROI were randomly cropped on the kernels, with
the shaded edges excluded, to obtain a total of 336 ROI for 112
species of chestnuts, depending on the chestnut species. Figure 2
illustrates the process where (a) shows an image of a chestnut kernel
captured by the hyperspectral camera, while (b) and (c) depict the
randomly selected green ROI regions, and the red areas indicate the
background to be removed.

2.4.2. Spectral pre-processing and selection of
characteristic wavelengths

To improve the accuracy and reliability of the quantitative
analysis model for chestnut soluble sugars, it is necessary to
remove outliers in the samples prior to spectral pre-processing.
This experiment uses Ensemble Partial Least Squares for outlier
detection to remove outliers (Cao et al., 2017). As this methodology
could efficiently detect and remove the outliers by combining
multiple models, each trained on different subsets of data and it
is able to capture different patterns and relationships present in the
dataset.

After removing the anomalous samples, spectral data must be
pre-processed to reduce the noise and interference information in
the spectra (Zhang L. et al., 2020). To achieve this, Standard normal
variate transformation (SNV) (Barnes et al., 1989), BS (Eriksson
et al., 2001), block normal (BN) (Eriksson et al., 2001), first-order
derivative, and second-order derivative (1st and 2nd) using the
Savitzky–Golay (SG) filters (Luo et al., 2005) were used for single
and composite processing. The optimal treatment was selected
based on the R2 and RMSE.

Recent research has shown that variable selection of the original
spectrum can reduce computational complexity and improve
the predictiveness of the model (Alizadeh et al., 2019). In this
study, Backward Variable Elimination (bve) (Eason, 1990; Austin,
2008), regularization elimination (rep) (Molajou et al., 2021), and
significant multivariate correlation (sMC) algorithm (Liu et al.,
2021) were used for variable selection.

2.4.3. Predictive model construction and
performance evaluation

The PLS method was used to build the prediction model for
this experiment, the spectral data underwent pre-processing and
variable selection, with 80% randomly selected as the calibration
set and 20% as the validation set. The PLS model was tested
with 100 simulations to assess its overall stability and predictive
performance (Couture et al., 2016). The effectiveness of the linear
fit of the spectral values to the soluble sugar content was evaluated
by the R2 and RMSE, which measure the degree of correlation
and deviation between predicted and measured values, respectively
(Mohammad, 2020; Karunasingha, 2022). A higher R2 value closer
to 1 and a lower RMSE value closer to 0 indicate better predictive
performance of the model (He et al., 2022).

All data analysis and image production were
conducted using R software. The “prospectr” package
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FIGURE 2

(A) Hyperspectral image of the obtained chestnut sample; (B) red background and the selected green regions of interest (ROI) region of the sample;
(C) the selected ROI region is indicated in panel (A).

(Stevens and Ramirez-Lopez, 2014) was used for spectral pre-
processing, the “plsVarSel” package (Mehmood et al., 2012) for
variable selection, the “pls” package (Wehrens and Mevik, 2007)
and the “enpls” package (Xiao et al., 2019) for constructing PLS
models and the “ggplot2” package (Villanueva and Chen, 2019) for
generating image visualizations.

The framework follow chart is shown in Figure 3.

3. Results

3.1. Eliminating abnormal samples

The abnormal samples were excluded using ensemble partial
least squares for outlier detection, and screened based on the
sample error mean and error standard deviation (SD). Figure 4
illustrates that the upper left region with a large error SD represents
the sample with abnormal spectral value, while the lower left region
displays the normal sample selected for analysis. The upper right

FIGURE 3

Workflow diagram for model building of soluble sugar content
prediction in chestnut.

region with a large error mean and error SD represents the sample
with abnormal spectral value and soluble sugar content of chestnut,
while the lower right region with a large error mean corresponds to
the sample with abnormal soluble sugar content.

3.2. Model performance evaluation

The results of model calibration using the selected best
pretreatment BS and three variable selection methods are shown
in Table 1. The model built using BS spectral pre-processing
demonstrated higher accuracy compared to the original spectra and
other variable selection methods.

For the model that uses original bands (OG) without pre-
processing, the calibration set R2 ranged from 0.49 to 0.58, with
RMSE values ranging from 1.00 to 1.13. The validation set R2

ranged from 0.58 to 0.64, with an RMSE value of 0.94. The models
after BS preprocessing had a calibration set R2 in the range of 0.49–
0.61 and RMSE values in the range of 0.99–1.13. The validation
set R2 ranged from 0.58 to 0.66, with all RMSE values at 0.94.
The variable selection method for the model after BS preprocessing
varied depending on the selection method and the model accuracy.
The accuracy of variable selection using bve and sMC was lower
than that of no variable selection (raw). The best accuracy was

TABLE 1 Optimal pretreatment and partial least squares (PLS) prediction
models used to estimate soluble sugars.

Calibration Validation

Pre-processing Variable selection R2 RMSE R2 RMSE

BS bve_sel 0.49 1.13 0.58 0.94

raw 0.61 0.99 0.58 0.94

rep_sel 0.59 1.02 0.66 0.94

smc_sel 0.49 1.13 0.60 0.94

OG bve_sel 0.57 1.04 0.64 0.94

raw 0.58 1.02 0.60 0.94

rep_sel 0.52 1.00 0.64 0.94

smc_sel 0.49 1.13 0.58 0.94

R2 , correlation coefficient; RMSE, root mean square error; BS, block scale; OG, no pre-
processing; bve, inverse variable elimination; raw, no variable selection; rep, regularized
elimination; smc, significant multivariate correlation.
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FIGURE 4

Ensemble partial least squares for outlier detection. The marked values in the graph indicate sample numbers, blue, green, and red circles indicate
abnormal values and blank circles indicate normal values.

obtained using the rep variable selection method, with calibration
set R2 and RMSE values of 0.59 and 1.02, respectively, and
validation set R2 and RMSE values of 0.66 and 0.94, respectively.

3.3. Average raw and block scale spectra

Figure 5A depicts the original average spectra of the chestnut
samples. The spectral signals exhibited slight variations due to
differences in size, color, and internal composition of the chestnuts,
but demonstrated consistent trends and high spectral overlap.
Subsequently, (b) illustrates the average spectrum after block
scale pretreatment, which indicated significant differences from
the original spectra. The pretreated spectra exhibited two small
absorption peaks in the 403.7∼ 429.1 nm band and 454.7∼ 500 nm
band, less fluctuation in the spectral curves from 503.2 to 687.2 nm,
and a considerable increase in spectral absorption between 690.6
and 927.8 nm. Notably, the spectral absorbance between 690.6 and
927.8 nm exhibited a substantial surge, peaking at 927.8 nm, while
the spectral curve between 931.5 and 993.9 nm decreased.

3.4. Development of PLS prediction
model

The measured and predicted values of soluble sugars obtained
by PLS regression using BS- rep and the original full spectrum are
shown in Figures 6A, B. The prediction errors for both models are
at the lower end of the range, with the spectrally treated model
fitting slightly more accurately than the original full-spectrum fit.
The wavenumber (wave) after variable selection is 42 and the wave
of the original full spectrum is 176. These results confirm the
feasibility of hyperspectral imaging for rapid and non-destructive
prediction of the soluble sugar content of chestnuts.

the residuals of the best processing model and the raw spectra
have been displayed in Figures 6C, D, respectively. It can be seen

that chestnut soluble sugar content is easily underestimated below
5% and more likely to be overestimated above 7%. The residuals for
the best treatment model ranged from −2.11 to 1.81, compared to
−2.07∼ 2.06 for the model without spectral treatment.

Furthermore, Figure 7 depicted the significant variables
selected by the rep algorithm, revealing that the selected
wavelengths at 464.3, 503.2, 539.3, 579, and 711.3 nm are critical
for developing the soluble sugar content prediction model.

4. Discussion

As an emerging technology, hyperspectral imaging can acquire
both image and spectral information of samples, which is
efficient, fast and non-destructive, and is widely used in medicine,
agriculture and food quality (Halicek et al., 2019; Lu et al., 2020;
Zhu et al., 2020). In agriculture, hyperspectral imaging technology
can be used as a non-destructive inspection tool, which has a
broad application in fruit and vegetable quality monitoring and
variety selection (Faqeerzada et al., 2020). Hyperspectral imaging
has already been used for the detection and grading of apple bruises
(Tan et al., 2018), the assessment of kiwi ripeness (Serranti et al.,
2018), and the analytical determination of soluble solids content in
oranges (Zhang et al., 2020a). In this study, a hyperspectral camera
was used to obtain spectral and image information of chestnuts.
The aim was to explore the feasibility of hyperspectral image
techniques in detecting the soluble sugar content of chestnuts.
Soluble sugars play a crucial role in plant growth and development,
serving not only as signaling molecules but also as key indicators
of fruit quality due to their content and fraction within the fruit
(León and Sheen, 2003; Tang et al., 2021). Consequently, developing
a rapid, convenient, and non-destructive method for determining
soluble sugar content is essential for fruit quality assessment and
new variety selection.

To this end, this study examined the relationship between
soluble sugars and hyperspectral images by integrating BS
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FIGURE 5

Raw mean spectra of panel (A) and mean spectra of BS pretreated (B).

FIGURE 6

(A) Partial least squares (PLS) prediction model obtained based on BS-rep. (B) PLS prediction model of the original mean spectrum. The regression
line of the model is the solid blue line, and the solid black line indicates that the measured and predicted values of soluble sugars are equal. (C) Plot
of residuals versus soluble sugar measurements based on BS-rep spectra. (D) Plot of residuals versus soluble sugar measurements for raw mean
spectra. Error bars for predicted values represent the SDs obtained from the 100 simulated models. Wave mean wavenumber.

preprocessing methods, original spectra, and three commonly
used machine learning techniques. The results indicated that
the optimal prediction model combined the BS preprocessing
method with the rep variable selection method, achieving R2

and RMSE values of 0.59 and 1.02, respectively. These values
were lower than the R2 and RMSE values obtained when
predicting the soluble sugar content of sweet maize (R2 = 0.8431,
RMSE = 5.8292) (Yang et al., 2020). The discrepancy may be
attributed to the freshness of the chestnut used for spectral data
collection, their high water content, and the complex texture
and composition of the chestnut kernels. The strong absorption
of water in the NIR spectral band, in conjunction with other

compounds present in the fruit, renders the collected spectra
highly intricate (He et al., 2021). Moreover, the collected spectra
encompass not only absorption information related to the chemical
composition but also scattering information pertaining to the
internal fruit structure, complicating the accurate assignment of
specific absorption bands to particular chemical components (Yuan
et al., 2022). This resembles the prediction of soluble solids content
by PLSR models based on visible/near-infrared spectroscopy of
lychee, which may also be due to the non-uniform thickness and
roughness of the lychee peel, as well as the complex composition
of the flesh interior, resulting in limited model prediction accuracy
(Pu et al., 2016).
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FIGURE 7

Spectral effects of 100 random runs of the soluble sugar model.

It has been demonstrated that sugars are not uniformly
distributed in fruits; therefore, collecting spectral information from
multiple regions of the fruit surface can enhance the accuracy of
predictive models (Jiang et al., 2021; Tan et al., 2022). Hyperspectral
imaging, a novel method that merges spectroscopy and image
analysis, yields both image and spectral information for a sample,
providing a comprehensive depiction of its shape, texture, and
intrinsic characteristics (Quan et al., 2014; Zhang et al., 2020b).
However, hyperspectral imaging is substantially influenced by the
sample’s curvature, and the acquired hyperspectral image data
often contain numerous non-linearities. These factors necessitate
hyperspectral data processing for reliable extraction of sample
properties (Luka et al., 2021). Various treatments possess distinct
characteristics. For example, SNV primarily eliminates scattering
phenomena and filters the impact of optical range changes on
the spectral signal during the experiment (Bi et al., 2016). The
derivative removes baseline drift and background interference,
enhances spectral differences, and improves resolution (Xu et al.,
2008). Detrend eliminates baseline drift and curvature interference
from the spectral signal (Luypaert et al., 2003). In practice, the
appropriate processing method should be chosen based on the
spectral data (Luo et al., 2020).

In a study on the rapid prediction of sugar content in Dangshan
pears, the influence of fruit shape caused significant fluctuations
in the fruit surface’s reflectance, preventing accurate spectral
information from being obtained across the entire fruit surface.
Mean normalization of the spectra partially mitigated the impact
of fruit shape on the obtained spectra, improved spectral intensity
differences, and yielded a more uniform grayscale distribution
compared to the original (Zhang et al., 2018). In this study, the
spectral intensity of chestnuts was also affected by the curvature
of the hemispherical surface. To minimize the impact of curvature
and other interfering information, the spectra were processed
using BS. BS can identify information in different blocks, extract
complementary information from them, balance the influence of
building modules, and prevent any block from dominating the

model, thereby reducing the effects of interfering information such
as scattering, fruit shape, etc. (Campos and Reis, 2020; Puneet et al.,
2021).

As shown in Figure 5, it is evident that the BS-processed
spectral data are much more tightly clustered, and the absorption
peaks become more pronounced compared to the original
average spectra, although the absorption peaks exhibit a broader
spectral range. Spectra provide light intensity values at each
increment of the wavelength range, resulting in a large number
of variables that necessitate considerable computational power
to combine (Esposito and Houser, 2019). Direct modeling of
the original full spectrum not only replicates the structure and
incurs significant costs, but also negatively impacts the model’s
stability. Therefore, it is essential to extract valid wavelength
information as needed (Qi and Fu, 2022). These selected effective
wavelengths reduce data dimensionality, contain the most critical
information related to the sample traits, and can replace the
original full spectrum for modeling. This approach increases
the model accuracy and robustness while accelerating data
computational speed and reducing the computational cost of
the generated model (Saputro and Handayani, 2017; Zhang J.
et al., 2021). In this experiment, variable selection based on
BS pretreatment using bve, rep, and sMC was combined with
PLS to construct PLS models for predicting soluble sugar
content in chestnuts. The results of each model are shown in
Table 1. Models built with bve and sMC selected wavelengths
exhibited lower accuracy than those constructed using the original
full spectrum, which may be attributed to the elimination of
some information variables related to soluble sugars during the
variable selection covariance removal process. This is similar
to the pear fruit sugar content prediction model building,
where models using SPA-selected variables were built with
lower accuracy than full-spectrum modeling (Zhang et al.,
2018). The model built using the variables selected by the rep
method demonstrated marginally better performance than the
model built from the original full spectrum. This improvement
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is because the problems of covariance and overfitting are alleviated
by using only the effective wavelengths, eliminating redundant
wavelengths that do not carry much spectral information, and
reducing the amount of operations (Aquinocruz et al., 2021).
This has also been demonstrated in non-destructive testing of
strawberry quality attributes, where models built using selected
effective wavelengths have higher predictive performance than
those built from the original full spectrum (ElMasry et al., 2007). In
this study, the important variables selected closely related to soluble
sugars in chestnuts were 464.3, 503.2, 539.3, 579, and 711.3 nm,
similar to those selected in bananas, namely 440, 525, 633, 672,
709, 760, 925, and 984 nm (Rajkumar et al., 2012). Furthermore,
the residual analysis of the best model and the original spectral
model was performed in this experiment. As seen in Figures 6C,
D, the residuals of the best model were more evenly distributed
and had a narrower bandwidth in the −2 to 2 interval compared
to the original spectrum. It has been found that if the residual
values are evenly distributed in the horizontal band and have a
narrower bandwidth, this indicates that the chosen model is more
appropriate and has better fitting accuracy (Couture et al., 2016).

The presented findings demonstrate the feasibility of utilizing
hyperspectral imaging for predicting soluble sugar content in
chestnuts. However, further improvements are required to refine
the model and achieve optimal performance. Therefore, a
comprehensive investigation of factors affecting spectral analysis
and mitigation of their negative effects is necessary for enhancing
subsequent research. Additionally, the exploration of a wider range
of combinations of spectral processing and modeling methods is
recommended to augment the sample.

5. Conclusion

This study explored the feasibility of using hyperspectral
techniques to predict the soluble sugar content in chestnut
fruits. Soluble sugars play a crucial role in determining chestnut
fruit quality, as they influence both nutrition and flavor. The
study applied various preprocessing methods to the spectral data,
including SNV, derivative, DET, and BS, and employed machine
learning techniques to establish a prediction model for soluble
sugar content. The results indicated that the BS pretreatment
method combined with rep variable selection yielded the optimal
prediction model, with an R2 value of 0.59 and an RMSE value of
1.02. The selected model demonstrated higher accuracy in fitting
the regression equation, suggesting that it was more appropriate
and reliable for predicting soluble sugar content in chestnuts.
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