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Introduction: Pinus elliottii × P. caribaea is one of the major tree species in

commercial forest bases in developed countries. However, in the process of

sapling cultivation, nutrients cannot be accurately detected and supplied to

individual saplings, resulting in reduced yield and quality.

Methods: In this paper, visible-near-infrared (Vis-NIR) hyperspectral imaging (HSI)

combined with ensemble learning (EL) was used to solve this problem. The

content and distribution of nitrogen (N), phosphorus (P), and potassium (K) in

the canopy needles of Pinus elliottii × P. caribaea saplings were obtained through

HSI data analysis, and the nutritional needs of individual plants were reflected

to provide a basis for nutritional supply decisions. The saplings were treated

with deficient, sufficient, and excessive N, P, and K single-element fertilizers.

After collecting the Vis-NIR hyperspectral images of these saplings, a variety of

pre-processing, feature selection, and ensemble learning algorithms were used

to establish predictive models. The R2 and RMSE were used to evaluate the

performance of the prediction models.

Results: The results showed that the multiple scattering correction-competitive

adaptive reweighted sampling-Stacking (MSC-CARS-Stacking) model had the best

results among the three nutrient elements prediction models (Rp2-N = 0.833,

RMSEP = 0.380; Rp2-P = 0.622, RMSEP = 0.101; Rp2-K = 0.697, RMSEP = 0.523).

When studying the sensitive bands of N, P, and K, we found that the common

characteristic wavelengths were 675.3 and 923.9 nm, while the non-common

characteristic wavelengths were located at 550 nm (green peak), 680 nm (red

valley), and 960 nm (water peak). In studying the generalization ability of the

model, only the nitrogen group data were used to train the MSC-CARS-Stacking

model for nitrogen prediction, which was then used to predict the nitrogen
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content in the phosphorus and potassium groups, obtaining good results (Rc2-

N = 0.841, Rp2-P = 0.814, Rp2-K = 0.801). It showed a strong generalization ability

for the prediction of nitrogen, and similarly, phosphorus and potassium.

Discussion: In conclusion, this study verifies that the Vis-NIR HSI combined with

EL is indeed a reliable and stable method to predict the contents of N, P, and K in

the needles of Pinus elliottii × P. caribaea sapling canopy.

KEYWORDS

Pinus elliottii× P. caribaea sapling, canopy needles, nitrogen, phosphorus and potassium,
hyperspectral imaging, ensemble learning

1. Introduction

Pinus elliottii × P. caribaea is a hybrid progeny of P. elliottii
var. elliottii and P. caribaea. It has the advantages of strong stress
resistance, rapid growth, and high economic benefits (Yang et al.,
2015; William et al., 2019, 2020). Nitrogen (N), phosphorus (P),
and potassium (K) are the three essential nutritive elements for
P. elliottii × P. caribaea saplings and play an important role in
maintaining sapling growth status and improving plant growth
(Liu et al., 2006; Dong et al., 2010; Wang et al., 2013; Yuan
et al., 2015). Due to the high demand for these three elements in
saplings and the limited nutrients provided by the soil, additional
fertilizers are often applied to saplings (Gökkaya et al., 2015).
However, excessive fertilization leads to sapling burning and
environmental pollution, and insufficient fertilization leads to yield
reduction. Therefore, it is vital to master the nutrient content in
the sapling accurately and apply fertilizer to the sapling precisely.
The traditional chemical determination technique is destructive to
the sample, with low observation continuity, high instrument and
reagent costs, and time-consuming and labor-intensive, thus it is
difficult to promote in actual large-scale forestry production (Liu
et al., 2020; Huang et al., 2021). In this paper, Visible near-infrared
(Vis-NIR) hyperspectral imaging (HSI) was used for nutritive
elements detection.

Visible near-infrared HSI is a technique developed in recent
years and has received increasing attention in forestry due to its
rapid and accurate non-destructive detection of plants. It integrates
images and spectral information into a hyper-cube. Without pre-
processing the sample, we can collect the full-band spectrum
and image of the object, and at the same time obtain detailed
information such as quantitative data and spatial distribution of
the chemical composition of the sample (Zhang et al., 2013; Heo
et al., 2021). Currently, hyperspectral imaging-based nutritional
diagnosis technology has been applied to analyze the content
of large and trace elements in different plants, including some
important woody plants such as lychee, tea, fir, Norway spruce,
slash pine, and loblolly pine (Ferwerda and Skidmore, 2007; Schlerf
et al., 2010; Bian et al., 2013; Masaitis et al., 2013; Chen et al., 2018;
Li et al., 2018, 2022; Vanguelova and Pitman, 2019; Sanaeifar et al.,
2020; Wan et al., 2020; Wang et al., 2020). Studies have shown
that there is a relationship between the spectral characteristics of
leaves and their physiological status and that the content of various
biochemical components in leaves can be predicted by measuring
the spectral reflectance of canopy leaves, which can be used as the

basis for plant nutrition diagnosis (Liang et al., 2010). Therefore,
this paper proposed that the spectral reflectance of sapling canopy
leaves can be measured to predict the nutrient composition of the
sapling canopy, and then the nutritional status of the whole sapling
can be assessed.

However, due to the inclination angle of saplings’ canopy
needles, the top and bottom of the same needles vary greatly, which
will affect the accuracy of the prediction model. To address this
problem, the following measures were used. In the aspect of data
collection, small depth-of-field and canopy focus techniques were
adopted to ensure clear and reliable canopy needle leaf images;
For image processing, the methods of threshold segmentation and
cluster segmentation were used to select clear areas of needle
leaf imaging; In terms of spectral pre-processing, normalization,
multivariate scattering correction (MSC), and differentiation (D1)
algorithms were used to eliminate the influence of large sample
spectral differences caused by inconsistent image brightness and
darkness. High-quality data were obtained in vivo for nutrition level
classification via these methods.

The ensemble learning approach was used to further exploit
the spectral information of canopy needles. This method combines
multiple existing individual learners through a certain strategy
to build a new learner, and takes the mean or weighted mean
of the prediction results of multiple base learners as the final
prediction result, which has better generalization ability than a
single basic learner (Cheng et al., 2021). Among EL methods, the
Stacking ensemble learning strategy is a technique used to assemble
heterogeneous learners, which has higher accuracy, robustness, and
overall induction ability than assembling homogeneous learners.
It has shown good predictive ability in research such as retrieval
of chlorophyll content in mangrove canopy leaves (Zhen et al.,
2022), detection of nitrogen in rice canopy leaves (Zhang et al.,
2022), etc. Given the strong feature learning ability of the Stacking
ensemble learning strategy, it is expected to achieve the prediction
of N, P, and K content in the canopy needles of P. elliottii × P.
caribaea saplings by combining ensembling learning strategy with
hyperspectral imaging technology.

The purpose of this study was to explore the potential of Vis-
NIR hyperspectral imaging for the detection of N, P, and K contents
in canopy needles of P. elliottii × P. caribaea saplings. To this
end, the specific objectives were to (1) extract the characteristic
wavelengths of N, P, and K by using competitive adaptive
reweighted sampling (CARS), successive projections Algorithm
(SPA), principal component analysis weight (PCA_Weight), and
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principal component analysis (PCA); (2) establish prediction
models for the N, P, and K content in the canopy needles of
P. elliottii × P. caribaea saplings using random forests (RF),
gradient boosting decision tree (GBDT), and Stacking, and evaluate
the accuracy and generalization ability of the models; (3) map the
visualization distribution map of N, P, and K content in the canopy
needles of P. elliottii × P. caribaea saplings based on the MSC-
CARS-Stacking prediction model, and analyze the distribution
characteristics of N, P, and K content.

2. Materials and methods

2.1. Sample preparation

The canopy needles of 1 year-old P. elliottii × P. caribaea
cuttings were taken as the research object in this study. The
experimental site was located at Hongling Seed Garden Nursery,
Taishan, Guangdong, China (22.164769◦N, 112.822761◦E)
(Figure 1). A total of 360 saplings were selected by experts and
planted in potted plants in April 2020, with a soil matrix consisting
of loess and light matrix (6:4), 16 cm high. After 11 months,
three different levels of urea, superphosphate, and potassium
chloride were applied to the soil matrix of the saplings twice every
15 days. The effective components of corresponding fertilizers
were calculated by molecular formula (Table 1). Among the three
levels, level 2 (N2, P2, K2) was the sufficient fertilization level. Each
of the three single-element fertilizers was applied in groups of three
different levels, plus the control group, for a total of 10 groups. The
sequence of test samples was designed by the Random Complete
Block method. The experimental site was divided into three blocks,
and each block was divided into 10 plots. Each treatment was
treated once in each block (complete block) (1−10), the ranking
order within each block is randomized (randomization). 278
saplings survived after 1 year of cultivation. Hyperspectral images
of the saplings’ canopy needles and samples required for chemical
determination of N, P, and K content were collected. In this paper,
the groups treated with nitrogen fertilizer, phosphorus fertilizer,
and potassium fertilizer were referred to as the N group, P group,
and K group, respectively.

2.2. Hyperspectral image acquisition and
spectroscopy calibration

After cultivating the samples for 11 months, the Vis-NIR
hyperspectral camera (Gaiafield Pro-V10, Jiangsu Shuangli Hepu,
Nanjing, China) was used for hyperspectral image acquisition
(Figure 2A). The camera mainly consisted of a built-in push-
broom transmission grating (ImSpector-V10, Specim Imaging Oy
Ltd, Oulu, Finland) and a 16-bit CCD grayscale camera (Lt365R,
Lumenera, Ottawa, ON, Canada). The spectral resolution was
3.5 nm @ 750 nm. The spectral range was 402.6–1005.5 nm with 176
spectral bands. The angle between the light source and the platform
was 45◦. The photosynthetic photon flux density (PPFD) was
measured at the center of the camera’s field and four points at the
field boundary using a plant light analyzer (OHSP-350P, Hangzhou
Rainbow Spectrum Photochromic Technology, Hangzhou, China).
The PPFD range was 88–95 µmol/(m2s) with an illumination

uniformity of 7.6%. Set the aperture to 2.8 to get the minimum
depth of field to blur the background. After the light source was
warmed up for 30 min, paper with black and white grids was placed
flat at a distance of 25 cm from the lens for focusing. A standard
white reference plate (HSIA-CT-400×400, Jiangsu Shuangli Hepu,
Nanjing, China) was placed horizontally on the same plane for
the exposure setting. The exposure time of the camera was 3 ms,
the gain was 1, and the image resolution was 991 × 960. After
collecting the white reference image, the dark noise reference image
was obtained by covering the lens cap. Cuttings were placed at the
bottom of a dark box, and the distance between the center of the
canopy needles and the lens was adjusted to 25 cm by lifting jack to
collect hyperspectral images of the samples.

Then, the reflectance calibration was performed by formula (1).

Rs (λ) =
Rraw(λ)− Rdark(λ)

Rwhite(λ)− Rdark(λ)
(1)

where, λ is any band in the hyperspectral image; Rs (λ) is the
corrected reflectance image; Rraw (λ) is the original gray value
image; Rblack (λ) is the gray value image of dark noise; Rwhite (λ)

is the white reference image.
After obtaining the hyper-cube, the original spectrum was

obtained by averaging the spectra of the region of interest. A total
of 270 hyper-cubes were obtained.

2.3. Data analysis

2.3.1. Noise bands removal
Among the 176 bands, the wavelengths at both ends have low

responses in the sensor and were greatly affected by noise and
water vapor, so they needed to be removed. In this paper, the noise
wavelength was removed by calculating the correlation coefficient
of two adjacent band images. If their correlation coefficient was less
than 0.7, these two wavelengths were considered noise wavelengths
(Hasan et al., 2021).

2.3.2. Region of interest acquisition
After removing the noise bands, hyperspectral images at

800 nm were taken for thresholding (Figure 3C). The band shows
the greatest difference in reflectance between the canopy needles
and the background (Figures 3A, B). Firstly, the general area of
the canopy needles was extracted from the background using the
threshold segmentation algorithm, and the threshold was set to
0.21. Then use the open algorithm to get the region of interest
(ROI). Finally, the raw spectrum is obtained by averaging the
spectrum of each pixel in the ROI (Figure 3D).

2.3.3. Spectral pre-processing
To reduce noise and baseline drift caused by uneven lighting,

normalization, MSC, and D1 algorithms were used (Vidal and
Amigo, 2012; Figure 2B). Normalization expanded the spectral
value from 0 to 1, which not only widened the difference
between effective spectral wavelengths but also eliminated the
invalid spectral wavelengths (Amigo, 2010). MSC can not only
effectively eliminate baseline shift and offset between samples due
to scattering, but also retain chemically related information in the
original spectrum as much as possible (Taghizadeh et al., 2011).
D1 is often used to eliminate limit drift and spectral band overlap
(Rinnan et al., 2009).
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FIGURE 1

On the top, the seed garden where the study area is located. On the lower, the sample sequence is designed by random complete block method.

TABLE 1 The application amount of N, P, and K fertilizers and their effective components at different levels.

Level Urea
(g/strain)

N
(g/strain)

Level Superphosphate
(g/strain)

P2O5
(g/strain)

Level Potassium
chloride
(g/strain)

K2O
(g/strain)

N1 1 0.46 P1 16.7 2 K1 1.6 1

N2 3 1.38 P2 50 6 K2 5 3

N3 9 4.14 P3 150 18 K3 15 9

2.3.4. Feature wavelength extraction
The adjacent wavelengths of spectral data were highly

correlated, so it was necessary to extract characteristic wavelengths
to reduce the information redundancy in the spectrum. In this
paper, PCA, PCA_Weight, SPA, and CARS were used to extract
characteristic wavelengths (Figure 2D).

Principal component analysis is a linear transformation
algorithm (Huang et al., 2021). The high-dimensional vector set
is mapped to a low-dimensional space through linear projection
and the variance of the new vector set is maximized in the new
dimension.

PCA_Weight algorithm is similar to PCA. After reducing the
dimension of the original spectrum using PCA, the wavelengths
with the largest mutation in the weight coefficient of the first four
principal components with the largest contribution rate are selected
as the characteristic wavelengths.

Successive projections Algorithm is a forward iterative search
method (Li and Guo, 2021). The projection analysis of the vector
is used to compare the size of the projection vector by projecting
the wavelength onto other wavelengths. The wavelength with the

largest projection vector is used as the wavelength to be selected,
and then the final characteristic wavelength is selected based on the
correction model.

Competitive adaptive reweighted sampling algorithm is
an algorithm combining adaptive reweighted sampling (ARS)
technology and partial least squares (PLS) (Zheng et al., 2019).
The ARS algorithm retains the points with the higher weights of
the absolute value of the regression coefficient in the PLS model
as a new subset while removing the points with lower weights.
Then the PLS model is built based on the new subset. After several
calculations, the wavelengths in the subset with the minimum root
mean square error (RMSE) of PLS model interactive verification is
selected as the characteristic wavelengths.

Both the PCA and PCA_Weight algorithms aimed to maximize
the variance between the data to increase the variance. They only
needed to be run once and the characteristic wavelengths selected
for N, P, and K were consistent. The feature wavelengths selected
by SPA and CARS algorithms were not completely consistent.
Therefore, the two algorithms were run 500 times each to reduce
the impact of algorithm fluctuations (Li et al., 2009). The frequency
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FIGURE 2

Experimental process. (A) Collected visible-near-infrared (Vis-NIR) hyperspectral images of the top needles of Pinus elliottii × P. caribaea seedlings.
(B) Hyperspectral image pre-processing. Selected the region of interest (ROI) of the hyperspectral image to obtain the spectral curve, and performed
spectral pre-processing after removing noise points and noise bands. (C) Got 5 g sample to obtain the N, P, and K content. (D) Built regression
models based on spectral data and chemical data.

FIGURE 3

Region of interest (ROI) selection process. (A) Reflectance of the canopy needles and the background. (B) Reflectance of the canopy needles:
reflectance of the background. (C) Hyperspectral image at 800 nm. (D) ROI.
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FIGURE 4

The correlation coefficient of adjacent wavelengths.

of each wavelength was counted, and the wavelengths with the
higher frequency were used as the characteristic wavelengths. After
setting the running times of the algorithms to 200, 500, and 1,000
times, it was found that the frequency of wavelength occurrences
was not affected.

2.4. Chemical content determination

A tital of 5 g of canopy needles were picked and stored in
paper envelopes. The samples were dried and ground through
a 0.425 mm stainless steel sieve. The pretreated samples were
digested with a sulfuric acid-hydrogen peroxide solution. The
contents of the N, P, and K content in the samples were
determined by the Kjeldahl nitrogen (KN) method (Beijing
Zhongxihuada Science and Technology Co., Ltd., M57063-84B),
Molybdenum blue colorimetric method (Shimazu UV-2600), and
flame spectrophotometry (Shimazu AA-6880) (Laclau et al., 2009;
Figure 2C).

2.5. Ensemble learning and model
verification

In this paper, ensemble learning algorithms such as: Boosting-
GBDT, Bagging-RF, and Stacking were used to build the
prediction models.

Random forests is the typical representative of the Bagging
algorithm cluster (Peng et al., 2021). It is an algorithm that connects
multiple decision trees to reduce the risk of overfitting. It consists
of multiple uncorrelated decision trees, and each decision tree in
the forest is regressed separately when a new sample is an input.
Each decision tree gets its regression result, and the random forest
takes the average of these results as its final result. In this article, the
number of decision trees was set to 100 and the number of leaves
on each tree was set to 20. The number of max features was set to
zero, meaning that all features are selected.

Gradient boosting decision tree is a typical representative of
the Boosting algorithm cluster (Tian et al., 2022). The algorithm
consists of multiple decision trees that are not independent of
each other but have a serial relationship. When building a subtree,
the residuals formed after the results of the previous subtree
construction are used as input for constructing the next subtree.

The final prediction is made according to the order of subtree
construction and the prediction is averaged as the results. In this
paper, the parameters of the decision tree were optimized using the
negative gradient of the loss function. In this paper, the number
of decision trees was set to 100. To suppress model overfitting and
reduce model complexity, the max depth is set to 2 and the learning
rate is set to 0.01.

The Stacking ensemble learning framework is different from
the above two algorithm clusters (Lu et al., 2021). It is generated by
a variety of base learners and is called heterogeneous integration.
First, it divides the original dataset into several sub-datasets and
feeds them to each base learner in the first layer. Each base learner
outputs prediction results. Then, to achieve the induction of the
output characteristics of the previous layer, the output of the first
layer is used as the input value of the second layer metalearner. In
this paper, GBDT, RF, extra trees (ET), and ada boost (AB) were
selected as the first layer of the Stacking ensemble learning model
framework and DT was selected as the meta learner in the second
layer. Cross-validation was used to generate training samples for
the secondary learning algorithm.

The determination coefficient (R2) and RMSE of 10-fold cross-
validation calculations were used to evaluate the accuracy of the
model. The calculation method was shown in formulas (2–5).

R2
c = 1−

∑nc
i = 1

(
ycal,i − ŷcal,i

)2∑nc
i = 1

(
ycal,i − ycal,i

)2 (2)

RMSEC=

√√√√ 1
nc

nc∑
i = 1

(
ycal,i − ŷcal,i

)2 (3)

R2
p = 1−

∑np
i = 1

(
ypre,i − ŷpre,i

)2∑np
i = 1

(
ypre,i − ypre,i

)2 (4)

RMSEP =

√√√√ 1
np

np∑
i = 1

(
ypre,i − ŷpre,i

)2 (5)

where, nc is the number of the training set samples; ycal,i is the
regression value of the training set; ŷcal,i is the actual measured
value of the training set; ycal,i is the average of ŷcal,i; np is the number
of the prediction set samples; ypre,i is the regression value of the
prediction set; ŷpre,i is the actual measured value of the prediction
set; ypre,i is the average value of ŷpre,i. The closer R2 is to 1 and RMSE
is to 0, the higher the prediction accuracy of the model is.

3. Results and discussion

3.1. Data pre-processing

By calculating the correlation coefficients of images of
hyperspectral adjacent wavelengths of 270 samples (Figure 4),
wavelengths with correlation coefficients less than 0.7 (<505.0 and
>986.8 nm) were removed. Finally, 138 wavelengths of 505.0–
986.8 nm were left.

The spectrum of the N group was used as an example for
comparison. As shown in Figure 5, the original average spectral
curves of four levels of the N group after variable normalization,
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FIGURE 5

Original spectrum and spectral curve after pre-processing. (A) Original spectrum; (B) normalization; (C) multivariate scattering correction (MSC);
(D) differentiation (D1).

FIGURE 6

Nitrogen (A), phosphorus (B), and potassium (C) contents in the needles of saplings treated with three different levels of three single-element
fertilizers. IQR, interquartile range between 25th and 75th percentile.

MSC, and D1 pre-processing were depicted. Between 500 and
680 nm, the reflectance spectra of the samples at four levels
differ significantly and the reflectance decreases with the increasing
nitrogen level (CK > N1 > N2 > N3). This was because when the
nitrogen content in the plant increased, the chlorophyll content
in the leaves also increased. As the light absorption of the leaves
between 430–470 and 630–670 nm increased, the reflectivity of the
corresponding spectral band decreased and widened, resulting in a
decrease in the green peak at 550.8 nm.

As shown in Figure 5B, the spectral difference between
550 and 680 nm was further expanded after normalization
pre-treatment, while the spectral difference between 800 and
1,000 nm was reduced. These wavelengths with small spectral
differences and high correlation would be removed in the feature

extraction. As shown in Figure 5A, the spectral absorption peak
of chlorophyll was between 665 and 675 nm. The reflectivity of
each sample in this spectral band was small and close, so these
wavelengths might be ignored in the selection of the characteristic
wavelengths. MSC highlighted these wavelengths by calculating
the average spectrum and correcting the original spectrum by
offset (Figure 5C). In the subsequent feature wavelength selection
process, we found that these wavelengths did contain a very
important wavelength. In Figure 5D, the processing of the original
spectrum using this method highlighted the bands with large
rates of change, reducing the spectral difference between 800 and
987 nm. In this paper, MSC was the most suitable method for
sample pre-processing by comparing the results of the prediction
models.
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FIGURE 7

Characteristic wavelengths selection of nitrogen. (A) Occurrence frequency of each wavelength multivariate scattering correction (MSC); (B) the
selected wavelengths; (C) occurrence frequency of each wavelength successive projections algorithm (SPA); (D) the selected wavelengths; (E) the
first four principal component weight coefficients; (F) the selected wavelengths.

FIGURE 8

Characteristic wavelengths selection of phosphorus. (A) Occurrence frequency of each wavelength multivariate scattering correction (MSC); (B) the
selected wavelengths.

3.2. Chemical composition analysis

After determining the nutrient content by chemical method,
data outliers were removed by box chart, and finally 270 valid
data were obtained (Figure 6). In all groups, the corresponding

nutrient element content of saplings in the N group and P group
increased substantially. In particular, the nitrogen content in the
N group increased the most, with 7.06, 7.49, 8.55, and 10.71 mg/g
for the four treatments, respectively. However, the corresponding
potassium content in the K group did not increase significantly. In
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FIGURE 9

Characteristic wavelengths selection of potassium. (A) Occurrence frequency of each wavelength multivariate scattering correction (MSC); (B) the
selected wavelengths.

addition, the application of fertilizer of one element on the saplings
resulted in a significant decrease in the content of the other two
elements in the sapling. This phenomenon was very obvious in the
N group.

3.3. Sensitive bands

In this paper, PCA, SPA, CARS, and PCA_Weight were used
to remove redundant information in hyperspectral wavelengths
and to improve the detection accuracy and speed of the models.
Four algorithms were used to extract the characteristic wavelengths
of the original spectrum. After the original spectrum was pre-
processed by MSC, the characteristic wavelengths were extracted by
SPA (Figure 7A), CARS (Figure 7C), and PCA_Weight (Figure 7E)
algorithms. The SPA and CARS algorithms each runs 500 times to
eliminate fluctuations in the algorithms and to count the frequency
of each wavelength. The width of the bar represented the frequency
of occurrence of the characteristic wavelength (Figures 7B, D).
The algorithm of PCA_Weight, like PCA, only needed to be run
once. As shown in Figure 7E, the weight coefficient curves and
curve mutation points for the first four principal components were
plotted. The width of the rectangle represented the absolute value
of the weight coefficient of the characteristic wavelength. The wider
the rectangle was, the more important the characteristic wavelength
was. Finally, the positions of the characteristic wavelengths were
marked in the original spectrum (Figure 7F). According to the
principle of the SPA algorithm, the root mean square error was
used to determine the quality of the model. The smaller the

TABLE 2 Characteristic wavelengths selected for N, P, and K.

Nutrient
elements

Characteristic
wavelength

selection
method

Common
characteristic
wavelength

(nm)

Unique
characteristic
wavelength
(nm)

Nitrogen MSC-CARS 675.3, 923.9 527.8, 550.8, 651.4,
762.2, 776.2, 960.7

Phosphorus 540.9, 654.8, 847.5,
869.2, 960.7

Potassium 557.4, 706.3, 946.0,
983.0

root mean square error was, the more stable and accurate the
model was. During the operation of the CARS algorithm, Monte
Carlo sampling was set to 50 times, and the minimum RMSECV
corresponding to the PLSR model established by 50 times sampling
was used as the optimal result of the 10 times cross-validation
method. When running the PCA algorithm, the wavelengths with
a large sudden change in the weight coefficient of the first two
principal components of the PCA were selected as the characteristic
wavelengths. Then, the characteristic wavelengths for phosphorus
(Figure 8) and potassium (Figure 9) were selected using the MSC-
CARS algorithm.

As shown in Table 2, the characteristic wavelengths of nitrogen
were mainly concentrated in chlorophyll, “red edge” and “water
peak,” which were 527.8, 550.8 (green peak of chlorophyll a), 651.4
(absorption peak of chlorophyll b), 675.3 (“red valley”), 762.2 (“red
edge”), 776.2, 923.9, and 960.7 nm (“water peak”), respectively. This
was because nitrogen was an important element of chlorophyll,
so the reflectivity of wavelengths related to chlorophyll a and b
varied with the amount of nitrogen content in the plant (Yang
et al., 2021). The characteristic wavelengths of phosphorus were
essentially the same as those of nitrogen. The main reason was that
phosphorus was not directly involved in photosynthesis in plants,
but indirectly promoted nitrogen utilization and photosynthesis
through the synthesis of enzymes required for photosynthesis
(Khan et al., 2014). The common characteristic wavelengths of the
three nutrient elements were 675.3 and 923.9 nm, respectively. The
former was close to the absorption peak of chlorophyll a and the
latter was located at NIR.

3.4. Prediction model results of NPK
content

Based on the comparative analysis of the prediction results
of different spectral pre-processing methods, characteristic
wavelength extraction methods, and regression methods, it
was found that the MSC-CARS-Stacking model performed the
best (Rc2-N = 0.832 and Rp2-N = 0.833; Rc2-P = 0.621 and
Rp2-P = 0.622; Rc2-K = 0.695 and Rp2-K = 0.697). Overall, the
performance order of the three spectral pre-processing methods
was: MSC > Normalization > D1. Compared to different spectral
characteristic extraction methods, the prediction accuracy of the
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models was significantly improved after CARS and SPA processing.
The performance ranking of the four spectral feature extraction
methods was as follows: CARS > SPA > PCA_Weight > PCA.
Compared to different regression modeling methods (Table 3), the
Stacking model performed the best. The performance of the three
regression models was ranked as: Stacking > GBDT > RF.

Among the models predicting nitrogen content, the MSC-
CARS-Stacking model had the highest R2 value and the lowest
RMSE value (Rc2 = 0.832, Rcv2 = 0.837, Rp2 = 0.833;
RMSEC = 0.594, RMSECV = 0.393, RMSEP = 0.380) in the
calibration set, validation set, and prediction set. This finding
was the same when predicting phosphorus content and potassium
content (Rc2 = 0.621, Rcv2 = 0.620, Rp2 = 0.622, RMSEC = 0.142,
RMSECV = 0.153, RMSEP = 0.101; Rc2 = 0.695, Rcv2 = 0.694,
Rp2 = 0.697, RMSEC = 0.749, RMSECV = 0.775, RMSEP = 0.523).
The above results showed that Stacking had better prediction ability
than other ensemble learning models.

As shown in Figure 10, the best results of the prediction models
for each nutrient content were depicted. The x and y axes were the
measured and predicted values, respectively. It could be seen that
the model predicting nitrogen content was the best, followed by
phosphorus, and the worst was potassium.

4. Discussion

4.1. Effect of single element fertilizer on
the model generalization ability

In this paper, we also explored the strength of the generalization
ability of the model. For this purpose, we first divided the
saplings cultured with the three nutrients into separate groups,
then established a prediction model between VIS-NIR spectrum
and nitrogen content using N group samples, and finally used
this model to predict the nitrogen content in the P group and K
group samples. If the results of the training set (N group) and
the test set (P group and K group) were similar, it indicated that
the prediction model could well predict the nitrogen content of

various P. elliottii × P. caribaea canopy sapling needle samples.
That was, the generalization performance of the model was good.
Otherwise, the poor generalization performance of the model
was demonstrated.

The prediction models were developed by combining MSC-
CARS and three regression algorithms. The model for predicting
nitrogen content was used as an example (Figure 11A). The
horizontal, right, and left diagonal bars represented the prediction
results of nitrogen content in groups N, P, and K. Among all the
models, the Stacking model had the highest R2 of 0.841, 0.814, and
0.801, respectively. The small gap between the three showed that the
generalization performance of the model was good. Similarly, in the
models predicting phosphorus content (Figure 11B) and potassium
content (Figure 11C), the R2 of the Stacking model was 0.597,
0.648, 0.583, and 0.679, 0.652, 0.728, respectively, indicating that
these two prediction models also had strong generalization abilities.
In conclusion, the Stacking model had better generalization ability
than the other ensemble learning models.

4.2. Spatial distribution of nutrient
elements

In this paper, heat maps were used to show the spatial
distribution of N, P, and K contents in canopy needles. We
randomly selected 1 sapling from 10 groups as a sample. The
spectra of all pixels in the hyperspectral image of canopy needles
were extracted. The established prediction model was used to
obtain the contents of N, P, and K of each pixel corresponding to the
research object, and then the thermal map was drawn as shown in
Figure 12. The pseudo-color images of 460, 560, and 660 nm in the
sample spectrum cube were synthesized. The contents of nitrogen,
phosphorus, and potassium obtained from the prediction model
formed a heat map. From left to right, there were CK, level 1, level
2, and level 3 fertilization levels, respectively.

First, in the canopy needles of the N group (Figure 12A),
the red highlights in the heat map of nitrogen content in the
saplings’ canopy increased with increasing nitrogen concentration.

TABLE 3 Prediction model results of N, P, and K content based on multiple scattering correction-competitive adaptive reweighted sampling
(MSC-CARS) pre-processing and three regression methods.

Nutrient
elements

Characteristic
wavelength

selection
method

Regression
methods

Calibration set Cross-validation set Prediction set

Rc2 RMSEC
(mg/g)

Rcv2 RMSECV
(mg/g)

Rp2 RMSEP
(mg/g)

Nitrogen MSC-CARS GBDT 0.809 0.634 0.807 0.427 0.808 0.408

RF 0.818 0.619 0.819 0.415 0.814 0.401

Stacking 0.832 0.594 0.837 0.393 0.833 0.380

Phosphorus GBDT 0.588 0.148 0.590 0.159 0.586 0.105

RF 0.609 0.145 0.607 0.156 0.606 0.103

Stacking 0.621 0.142 0.620 0.153 0.622 0.101

Potassium GBDT 0.465 0.992 0.469 1.021 0.466 0.694

RF 0.652 0.801 0.656 0.821 0.651 0.561

Stacking 0.695 0.749 0.694 0.775 0.697 0.523
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FIGURE 10

Use the multiple scattering correction-competitive adaptive reweighted sampling-Stacking (MSC-CARS-Stacking) model to predict the best training
set and prediction set results of nitrogen (A,B), phosphorus (C,D), and potassium (E,F). R2, determination coefficient; RMSE, root mean square error.

In contrast, the heat maps of phosphorus and potassium
contents showed increasingly dim blue areas, especially between
N2 (normal) and N3 (supersaturated) levels. This implies
that the canopy nitrogen content in the N group increased
significantly (CK–N2) with increasing nitrogen concentration.
However, excessive nitrogen (N3) antagonized other nutrients
in saplings, resulting in a significant decrease in phosphorus
and potassium content. Secondly, in the canopy needles of the
P group (Figure 12B), the red highlights in the heat map
of phosphorus and potassium contents in the saplings’ canopy
increased with increasing phosphorus concentration. This means
that the application of phosphorus fertilizer to saplings increases

both phosphorus and potassium contents. This is closely related to
the ability of phosphorus to promote cell division during the early
stage of sapling development. Phosphorus is mainly distributed
in the root tip cells, whereas the growth of root tip cells can
promote water absorption of saplings, and ionic potassium can
move rapidly into the leaves, which can significantly increase the
needle potassium content in the shoot canopy. Finally, in the
canopy needles of the K group (Figure 12C), the highlighted part
of the heat map of N, P, and K content in the canopy of saplings
hardly changed with increasing potassium fertilizer concentration,
implying that potassium application did not significantly promote
the growth of saplings. This is because there is little difference in
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FIGURE 11

Effect of single element fertilizer on model generalization ability. (A) The model trained by N group was used to predict nitrogen content in P and K
groups; (B) the model trained by P group was used to predict nitrogen content in N and K groups; (C) the model trained by K group was used to
predict nitrogen content in N and P groups.

FIGURE 12

Heat map of the spatial distribution of nitrogen, phosphorus, and potassium contents in the coniferous leaves of the sapling canopy with nitrogen
(A), phosphorus (B), and potassium (C) fertilizers applied.

phosphorus content in the K group and phosphorus controls the
root tip cell division, so saplings have the same ability to absorb
potassium in the soil (Kou et al., 2016). In addition, potassium

is poorly mobile in the soil, so the potassium content in the K
group is almost unchanged and only a small amount of potassium
is introduced into the plant through osmotic pressure.
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In conclusion, the contents of N, P, and K in the sapling canopy
were affected by three factors: (1) the method of application of N, P,
and K fertilizer; (2) the effects of N, P, and K on sapling growth;
and (3) the different forms of N, P, and K in saplings. First of
all, nitrogen fertilizer had strong mobility in the soil and had a
quick chasing effect. Therefore, only the shallow application was
needed to penetrate the root distribution layer and be absorbed
by saplings. However, potassium fertilizer was less mobile in the
soil, and phosphorus fertilizer was even worse and had a slow
fertilizer effect. Therefore, both methods needed to penetrate deep
into the most widely distributed part of the sapling’s root system.
Second, nitrogen was an important component of chlorophyll.
The reflectivity of the wavelengths related to chlorophyll a and
b changed significantly when the nitrogen content was altered.
Phosphorus controlled the cell division in the root tips at the
early stage of saplings and indirectly promoted the growth of
saplings by facilitating the absorption of nitrogen. Potassium did
not directly constitute organic compounds, but participated in
some metabolic processes and played a regulatory role. It existed
mainly in the ionic state and had great mobility in vivo. It was
usually distributed in the most vigorous parts, such as buds, young
leaves, and root tips.

Therefore, the content of macromolecules such as chlorophyll
could be detected indirectly in needles by Vis-NIR hyperspectral
imaging to detect the nitrogen content. However, phosphorus was
mainly distributed in the root, and potassium mainly existed in the
plant in an ionic state. The content of both was more difficult to
detect, which led to weak reliability in predicting the content of
phosphorus and potassium.

5. Conclusion

The purpose of this study was to explore the potential of Vis-
NIR hyperspectral imaging in detecting nitrogen, phosphorus, and
potassium content in the canopy needles of P. elliottii× P. caribaea
saplings. The correlation coefficient method was used to remove
38 wavelengths at both ends, and MSC-CARS was used to extract
the characteristic wavelengths related to nitrogen, phosphorus,
and potassium from the full bands. Based on these characteristic
wavelengths, several ensemble learning regression algorithms
were compared. Among the prediction models for nitrogen,
phosphorus, and potassium content, the MSC-CARS Stacking
model performed the best (Rp2-N = 0.833, RMSEP = 0.380; Rp2-
P = 0.622, RMSEP = 0.101; Rp2-K = 0.697, RMSEP = 0.523). The
concentrations of nitrogen from 5.110 to 12.936 mg/g, phosphorus
from 0.317 to 2.084 mg/g, and potassium from 4.40 to 12.55 mg/g
can be accurately predicted.

This paper showed that the Vis-NIR hyperspectral imaging
could be used for rapid and non-destructive nutritional diagnosis of
P. elliottii × P. caribaea saplings because spectral information was
related to the content of internal compounds composed of nutrient
elements. In contrast to observing significant phenotypic changes,
this technology could display the distribution of target nutrient
content in organs and could continuously show the process
of nutrient content changes. This indicates that hyperspectral
imaging technology can be used as a screening tool to study
physiological processes and functional expression of genes in

plants. It can improve the accuracy of sampling location and
timing of transcriptome and metabolome, thereby reducing the
workload and cost of the experiment and obtaining more accurate
experimental results.
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