AUTHOR=Drucker Jack R. , Farguell Angel , Clements Craig B. , Kochanski Adam K. TITLE=A live fuel moisture climatology in California JOURNAL=Frontiers in Forests and Global Change VOLUME=6 YEAR=2023 URL=https://www.frontiersin.org/journals/forests-and-global-change/articles/10.3389/ffgc.2023.1203536 DOI=10.3389/ffgc.2023.1203536 ISSN=2624-893X ABSTRACT=

In this study, observations of live fuel moisture content (LFMC) for predominantly sampled fuels in six distinct regions of California were examined from 2000 to 2021. To gather the necessary data, an open-access database called the Fuel Moisture Repository (FMR), was developed. By harnessing the extensive data aggregation and query capabilities of the FMR, which draws upon the National Fuel Moisture Database, valuable insights into the live fuel moisture seasonality were obtained. Specifically, our analysis revealed a distinct downtrend in LFMC across all regions, with the exception of the two Northernmost regions. The uptrends of LFMC seen in those regions are insignificant to the general downtrend seen across all of the regions. Although the regions do not share the same trends over the temporal span of the study, from 2017 to 2021, all the regions experienced a downtrend two times more severe than the general 22-year downtrend. Further analysis of the fuel types in each of the six regions, revealed significant variability in LFMC across different fuel types and regions. To understand potential drivers of this variability, the relationship between LFMC and drought conditions was investigated. This analysis found that LFMC fluctuations were closely linked to water deficits. However, the drought conditions varied across the examined regions, contributing to extreme LFMC variability. Notably, during prolonged drought periods of 2 or more years, fuels adapted to their environment by stabilizing or even increasing their maximum and minimum moisture values, contrary to the expected continual decrease. These LFMC trends have been found to correlate to wildfire activity and the specific LFMC threshold of 79% has been proposed as trigger of an increased likelihood of large fires. By analyzing the LFMC and fire activity data in each region, we found that more optimal local thresholds can be defined, highlighting the spatial variability of the fire response to the LFMC. This work expands on existing literature regarding the connections between drought and LFMC, as well as fire activity and LFMC. The study presents a 22-year dataset of LFMC spanning the entirety of California and analyses the LFMC trends in California that haven’t been rigorously studied before.