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Improving spatial predictions of
Eucalypt plantation growth by
combining interpretable machine
learning with the 3-PG model

Peter Taylor1*, Auro C. Almeida1, Ernst Kemmerer2 and

Rafael Olivares de Salles Abreu2

1CSIRO, Sandy Bay, TAS, Australia, 2Forico Pty Limited, Kings Meadows, TAS, Australia

Accurate predictions of forest plantation growth provide forest managers

with improved forest inventory estimates, forest valuation, and timely harvest

schedules. Forest process-based models are increasingly used for quantifying

current and potential productivity, yield gaps, and factors limiting growth, such

as climate variability, soil characteristics, and water deficit. Improvements in

the availability and resolution of spatial and temporal data combined with

advancements in machine learning algorithms provide new opportunities to

improve model predictions. This study shows how interpretable machine learning

(ML) can be used to independently predict site soil fertility rating (FR) and

incorporate these results into the 3-PG forest process-based model to accurately

predict plantation growth. Four ensemble decision tree machine learning

models—random forest trees, extremely randomized trees, gradient boost, and

XG boost—were trained and compared using spatial cross-validation across the

study area. FR predictions were estimated in relation to the influencing soil type

and terrain characteristics, and interpretable ML methods were used to show

how input feature permutations may relate to the soil fertility predictions. The

results show the explanatory variables are similar across the selected ML models,

with the strongest influencing variables being water leaching index, site aspect,

and the silt and sand soil texture properties. The extremely randomized tree

models showed the overall best performance, with only a small variation in

performance across the four ML models. The method was applied to Eucalyptus

nitens plantations covering over 63,000 ha in north-west Tasmania, Australia. The

results using the predicted FR spatial grid with 3-PG show a strong correlation

with observed growth for tree diameter and stand volume (R2 tree diameter at

breast height = 0.97, RMSE = 0.85m; R2 stand volume = 0.96, RMSE = 23.1 m3

ha−1) obtained from 161 permanent sample inventory plots ranging from 3 to

31 years old. This method has practical utility for other study sites to calibrate

forest plantation soil fertility rating, in both the spatial and point-scale 3-PG

model, where spatial data of soil characteristics are available. The derived soil

fertility grid can provide valuable insights into the spatial variability of soil fertility

in unknown areas.

KEYWORDS

interpretable machine learning, forestry modeling, 3-PG model, Eucalyptus nitens, soil
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1. Introduction

Forest growth models are used by forest managers and
researchers to predict future yields and explore alternative
management options (Vanclay, 1994). Typical forest management
decisions include choosing planting and harvesting periods,
rotation age, optimum stocking, suitable species, thinning of forest
stands, fertilization, weed and pest control, and reestablishment
procedures (Landsberg and Gower, 1997). A range of models is
available within forestry practices to provide insights for such
decisions. These models can predict different forest responses
under various interventions or conditions, generating valuable
insights into the decision-making process.

Existing models are often separated into empirical or process-
based models and can be further separated into statistical,
process, hybrid, and gap models (Weiskittel et al., 2011). Each
has its specific area of application and associated advantages
and disadvantages (Taylor et al., 2009). Statistical models use
empirical relationships derived from inventory data, and thus,
they require high-quality intensive tree measurements, are site-
specific, and are insensitive to climate variability (Weiskittel
et al., 2011). Process-based models focus on capturing the
most influential processes in the forest–environment interaction,
including climate, soils, nutrients, and water, and consider solar
radiation conversion into carbon and biomass partitioning in
roots, stem and branches, and foliage (Landsberg and Gower,
1997). While able to generalize outside initial data ranges, they
rely on difficult-to-measure species parameters and are more
computationally expensive. However, subsequent research has
published robust species-specific parameters and computational
power has become (Coops et al., 1998) significantly more accessible
resulting in increasing applications at the forest management level
(Almeida, 2018).

One of the most widely used process-based models is
the Physiological Processes Predicting Growth model, 3-PG
(Landsberg and Waring, 1997; Landsberg and Sands, 2011). 3-PG
is a canopy carbon balance model that has had broad applications
within the industry due to its relative ease of setup and manageable
data requirements. It may also be categorized as a hybrid model,
as it includes statistically derived constraints to represent biomass
allometric equations. One important parameter of 3-PG relates to
soil fertility and is called the soil fertility rating (FR). This parameter
is a subjective estimate, and there are different approaches for
estimation, ranging from expert opinion to soil field measurements
and analysis of soil chemistry (Stape et al., 2004a; Almeida et al.,
2010; Vega-Nieva et al., 2013; Subedi et al., 2015). The FR is an
important component of the 3-PGmodel predictions (Esprey et al.,
2004) and is an index that ranges from 0 (high limitation) to 1 (no
limitation). The FR is a site-specific parameter that affects the light-
used efficiency of the canopy, canopy conductance, and the biomass
allocation above and below ground (Almeida et al., 2004; Gupta and
Sharma, 2019). Sensitivity analyses from other studies show that a
variation of 20% of FR implies a 12 to 15 % change in the prediction
of stem volume (Almeida, 2003; Esprey et al., 2004). A more robust
method for predicting FR is, therefore, required, particularly given
that most inputs into the 3-PG model are typically available in
existing data. The aim of this study was to develop a more reliable,
repeatable, and quantitative method for predicting the FR from

generic spatial datasets of soil and terrain attributes. An emerging
area for improved predictions from multivariate data is the use of
machine learning (ML).

Applications of ML techniques have been shown to be effective
in a wide range of environmental applications (Zhong et al., 2021),
for example, in digital soil mapping (Heung et al., 2016), spatial
interpolation (Li et al., 2011), flood risk management (Chen et al.,
2021), and ecological modeling (Recknagel, 2001). Tree-based ML
models have also been adapted specifically for spatial interpolation
(Hengl et al., 2018; Sekulić et al., 2020) by adding additional
covariates for spatially proximal observations to address challenges
with spatial autocorrelation. For forestry applications, ML has been
applied to predict deforestation (Mayfield et al., 2020), understand
incentives for forestry policy setting (Firebanks-Quevedo et al.,
2022), data management, and decision support (Matwin et al.,
1995), improve predictions of wind damage to forests (Hart et al.,
2017), estimate vegetation height and canopy cover from LiDAR
and satellite data (Stojanova et al., 2010; Potapov et al., 2021), and
recently improve prediction of forest litterfall (Geng et al., 2022).

This study outlines an ML-based method to spatially estimate
the soil fertility rating parameter of 3-PG using soil and terrain
characteristics data. We verify the ML method that can be trained
on soil and terrain attributes to predict FR, where the FR has
been calculated through validation of the 3-PG predictions of
stand volume and diameter at breast height, and provide accurate
results. Additionally, we show how interpretable machine learning
libraries related to game theory, specifically the SHapley Additive
exPlanations (SHAP) method (Lundberg and Lee, 2017), can be
used to interpret these predictions.

The proposed ML-based method for FR estimation
has the advantage of being derivable from available soil
data, can be used by plot scale (point) and/or spatial
(grid) 3-PG, provides transparency of the terrain and soil
attributes that are influencing the predictions, and can
generate spatial FR maps that can assist interpretation of
plantation productivity.

2. Materials and methods

2.1. Study area

The study area covers over 63,000 ha of Eucalyptus nitens

plantation in the north-west of Tasmania, Australia (Figure 1).
The elevation ranges from approximately 200 to 750m above
sea level (m.a.s.l.), and the study area is predominantly on a
basaltic plateau (Onfray et al., 2015). The area experiences mean
annual precipitation of approximately 1,700mm, ranging from
drier conditions in the north (1,100mm) to wetter conditions
in the southern regions (2,000mm). Mean daily temperatures in
summer range from 19◦ C in the north to 15◦ C in the south.
Mean daily minimum temperatures in winter drop to 2◦ C, often
falling below zero. The low air temperature and resistance to frost
were contributing factors in the plantation of E. nitens due to its
cold-tolerant attributes (Onfray et al., 2015).

The dominant soil types in the area are Ferrosols,
predominantly formed on basalt parent material, which are
high in free iron oxides, contain a higher level of organic carbon
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FIGURE 1

Study area plantation (black polygons), permanent sample plots (red star), and elevation (m.a.s.l.) (projection EPSG: 3577).

(mean 6.5%), and are known for their desirable agricultural
productivity (Cotching et al., 2009), despite being prone to
deterioration through intensive management. Dermosols and
Rudosols are also present in smaller areas across the plantations.
This region is generally characterized as having good quality, deep
and fertile soils, and with its temperate and wet climate, it is the
most agriculturally productive in Tasmania.

A total of 161 plantation permanent sample plots (PSP) of
400 m2 each were measured at regular intervals as part of the
forest inventory. A total of 1,048 measurements cover aspects of
tree growth (an average of six measurements per PSP rotation);
primary measures being tree diameter at breast height (DBH), tree
height (H), basal area (BA), stand volume (SV), and mean annual
increment (MAI) were calculated based on mean H and DBH. The
PSPs have between 5 and 10 measurements through the rotation
of the plots (from establishment to harvesting), providing a robust
basis for a time series of growth attributes.

2.2. 3-PG model

The 3-PG model was developed with the objective to be a
practical tool for forest managers and researchers (Landsberg J. J.
and Sands P. J., 2011). It combines simplified representations of
biophysical processes with empirical relationships of growth and
yield derived from field measurements. The default is a monthly
timestep, although software extensions allow for daily timesteps to
align with daily patterns of rainfall (Almeida and Sands, 2016). An
overview of the core components of 3-PG is shown in Figure 2,
adapted from Landsberg and Sands (2011). The full details of the
model are outside the scope of this study; all the model components
are well described in Landsberg and Waring (1997) and Landsberg
J. J. and Sands P. J. (2011).

The 3-PG model has been successfully applied in many
regions of the world (Gupta and Sharma, 2019) to various
species, including different Eucalyptus plantations—E. globulus
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FIGURE 2

Simplified schematic representation of the 3-PG model (modified from Landsberg and Sands, 2011).

(Sands and Landsberg, 2002; Vega-Nieva et al., 2013; Carrasco
et al., 2022), E. nitens (González-García et al., 2016), E. regnans
(Feikema P. et al., 2010), E. grandis (Almeida et al., 2004;
Stape et al., 2004b) and other plantations such as Pinus radiata

(Feikema P. M. et al., 2010) and Pinus elliottii (Gonzalez-
Benecke et al., 2014), and mixed species (Forrester and Tang,
2016). More recently, Forrester et al. (2021) demonstrated 3-
PG performance when parameterised to major central European
tree species.

The model can be applied at different scales, the most common
application being plot scale, whereby the model represents
individual plots of homogenous or mixed species, soil, and climate
combinations (Gupta and Sharma, 2019). Spatial versions of
the 3-PG model-−3-PGS—have been developed to capture and
represent spatial variation of stand characteristics (Coops et al.,
1998; Almeida et al., 2010). These versions are able to generate
spatial outputs that provide additional insights for decision-
makers (Tickle et al., 2001) under current and future climates
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(Almeida et al., 2009; Carrasco et al., 2022). This study uses both
the plot and spatial scales of the 3-PG model: the plot scale for
calibration and validation, and the spatial scale to expand the spatial
coverage to provide predictions across all plantation areas, not just
those with permanent sample plots.

2.2.1. Existing methods to determine soil fertility
rating

There is no single agreed-upon method for estimating FR
within the published literature; methods range from subjective
site assessment to soil chemistry testing and incorporating
combinations of soil and terrain characteristics (Dye et al., 2004;
Stape et al., 2004b; Fontes et al., 2006; Paul et al., 2007; Xenakis
et al., 2008; Almeida et al., 2010; Pérez-Cruzado et al., 2011; Vega-
Nieva et al., 2013; Gonzalez-Benecke et al., 2014; González-García
et al., 2016; Hung et al., 2016; Subedi and Fox, 2016; Carrasco
et al., 2022). Other methods may incorporate a soil-nutrient sub-
model that can capture the dynamics of the nutrient influence and
exchange (Dewar, 2001). Some studies consider a gradual decay of
FR values along the rotation length as the trees get older (Almeida
et al., 2004). These are not covered directly here as we focus on
methods that make direct use of data without major alteration of
the model processes.

Published methods to determine the FR parameter for 3-PG
generally use field-based measurement, expert knowledge of soil
and/or the site, a data-driven method (including ML), calibration,
or a combination of these. Table 1 summarizes some of the
published examples of these methods.

The proposed method of applying machine learning provides
an FR estimation technique that combines soil and terrain
characteristics that may influence soil fertility and tree productivity.
The method provides a reusable approach to test spatial variation
and the performance of different machine learning models, while
also providing transparency of the models using interpretable
ML techniques.

2.3. Model input data

The input data required for the 3-PG model include details
of soil attributes, climate, and site-specific attributes, such as
stocking number (tree/ha) and initial planting biomass partitioning
in leaves, stems, and roots (t/ha). The following sections provide
detail of the inputs used.

2.3.1. Climate data
Monthly climate data of precipitation (mm), minimum and

maximum temperature (◦C), and solar radiation (MJ m−2 day−1)
were obtained in gridded form from the SILO database (Jeffrey
et al., 2001). Point time series at each plot location were extracted
from the gridded data for use in the plot model. Additionally,
the number of rain days and frost days in a month was derived
as the count of the number of days with rainfall over 1mm and
daily minimum temperature below or equal to 0◦ C, respectively.
Further details of the climate input data are available in the
Supplementary material.

2.3.2. Soil, terrain, and terrain-adjusted climate
data

Soil data were obtained from the Soil and Landscape Grid
(Grundy et al., 2015; Kidd et al., 2015; Rossel et al., 2015) at a
resolution of 3 arc-s, resulting in a grid of 876 columns and 962
rows, with each cell roughly 80 x 80m. These grids are available
for a range of textural and chemical soil attributes and at multiple
depths, covering: 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm
vertical sections. The soil texture data were used in both the 3-PG
model and the ML model. Soil texture and soil depth were used to
calculate the soil water holding capacity that influences the model
water balance.

For the ML training, all six soil depth profiles were used
separately to analyse which depth provided the best relationship to
soil fertility rating, as shown in Figure 3 (stage 2).

The terrain attribute data were obtained from published data
that have been derived from 1" SRTM satellite data (Gallant and
Austin, 2015), resulting in a grid size of 1,577 columns x 1,732
rows pixels. The attributes used are summarized in Table 2, with
full reference to the data provided in the Supplementary material.
There are also two terrain-adjusted climate variables and a climatic
index used for ML models that are part of the Soil and Landscape
Grid. These are not used in the 3-PG model.

2.3.3. Model parameterisation
The 3-PG model requires a series of physiological and

allometric parameter values related to the tree species. Many
of the model input parameter values for E. nitens have been
published in the literature from different tree physiology studies,
particularly in Tasmania (Battaglia et al., 1996; White et al., 1996;
Hunt and Beadle, 1998; Misra et al., 1998; Medhurst et al., 1999;
Medhurst and Beadle, 2001, 2002; Moroni et al., 2003; Pinkard and
Neilsen, 2003). Other studies have also been published applying
3-PG with parameter sets to E. nitens growing in other regions
(Rodríguez et al., 2009; Pérez-Cruzado et al., 2011; González-
García et al., 2016). The parameter values for E. nitens were
reviewed and collated for the study area. This was done by selecting
parameter sets from other E. nitens studies in Australia. The
parameter descriptions, units, values, and sources are presented in
the Supplementary material.

2.4. 3-PG and ML workflow

The process used in this study follows two stages: First, the
setup and running of the 3-PG plot scale to determine the optimal
FR for individual plots by matching the observed and predicted
DBH and SV. These two outputs were selected as DBH is directly
measured in forest inventory and SV is in general the most interest
to forest managers and also derived from inventory measurements
(Tickle et al., 2001). The second stage involved the training of ML
models to predict FR from terrain and soil data. This two-stage
process is shown in Figure 3.

An important characteristic of this workflow is that the 3-PG
modeling to determine the optimal FR is done separately from
the ML workflow. The 3-PG model incorporates influence from

Frontiers in Forests andGlobal Change 05 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1181049
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Taylor et al. 10.3389/�gc.2023.1181049

TABLE 1 Summary of published methods to estimate soil fertility rating (FR) in the 3-PG model.

Type of method to estimate FR Description References

Data-driven Soil phosphorus content (t ha−1) as a linear regression of four input variables, rescaled as a
fertility index (0-1). The input variables used were gamma radiometric potassium, Prescott
index, near-infrared band from satellite, and the airborne radiometric signal.

Tickle et al., 2001

Data-driven Estimation of FR from readily available soil data. Results showed that sand and clay texture
were the most influential in the prediction of FR. The study noted that soil carbon, bulk
density, pH, and water-holding capacity were not useful in this context. It was also noted
that consequently “. . . lighter soils had lower intrinsic fertility. . . ”

Sampson et al., 2008

Field measurements Field measurements of soil properties taken from the soil profile were then used as inputs
into a partial least squares (PLS) regression model. In-depth study looking at characteristics
of soil that contribute to the FR. Found that higher clay= higher FR, finer soils lower
fertility.

Vega-Nieva et al.,
2013

Field measurements Paired plot trials with fertilization treatments were then used to derive a fertilization
response index. This was then used to estimate FR, FR= 0.4 (29-FER)/29+0.6). Stape et al., 2004b

Field measurements Field samples were taken, and then, a regression was used to match soil properties to the
best fit FR. The most important soil predictors were found to be cations Ca2+ and K+ and
the soil organic carbon.

Hung et al., 2016

Calibration The values used for FR to calibrate predicted to observed plantation volume growth varied
from 0.1 to 0.9 and were typically 0.3–0.6 Feikema P. M. et al.,

2010

Calibration FR was correlated with a stand site productivity index. Calibration was conducted using
0.01 FR stepping to fit with above-ground biomass estimation. Gonzalez-Benecke

et al., 2014

Calibration FR was calibrated to Site Index, which was estimated from a non-linear relationship
relating observations of tree height with DBH and stand volume. Subedi et al., 2015

Combination (data-driven and expert advice) FR= 0.2359+ 0.0089 x Sand – 0.0117 x Cation exchange with some adjustments using
expert opinion. González-García

et al., 2016

Combination (calibration and data-driven) Use of multiple regression, random forest, and gradient boost models to estimate soil
fertility. The most influential variables were organic matter, pH, ASW, Boron, and cation
exchange.

Carrasco et al., 2022

Combination (data-driven and expert advice) FR= 0.4 FL+ 0.2 WL+ 0.1 OL+ 0.2ML+ 0.1 TL where FL is fertility limitation, WL is
water limitation, O oxygen, M management, and T topography. The limitation (L) may be
null (1.0), slight (0.8), moderate (0.6), strong (0.4), and very strong (0.2).

Almeida et al., 2010

Combination (field measurements and expert advice) “Soil physical characteristics, chemical analyses when these were available, and the advice of

the forestry officers. . . ” and “. . .we adjusted the FR up or down from the value assumed on the

basis of information available about the soil and its fertility”
Landsberg et al.,
2003

Calibrated to observations “A value of 0.8 (for FR) was suitable for the catchment used in this study”

Almeida et al., 2004

The distinction between field measurements and data-driven in this table is to separate methods that directly deploy field measurements for the FR estimation as opposed to using readily

available (e.g., regional/national) soil databases.

the climate, soils, water balance, plantation periods, and species
information on plantation growth. The ML algorithms are then
trained independently to determine the relationship between the
soil and terrain attributes that explain the optimal FR values in
each plot.

2.5. Stage 1−3-PG plot scale

This stage of the processing workflow involves running 3-
PG at all plot sites using 0.01 increments of FR while fixing
plantation details, climate, soils, and species parameter values.
This method of using incremental FR is a simple approach to
finding the optimal FR purely by fitting the model. It has been
used in previous studies, as described in section Existing methods
to determine soil fertility rating (calibration method), but it is

not a recommended final method to estimate FR as it provides
no relationship between the fertility and the soil or terrain. It
becomes a tuning parameter only. It is used here to determine
the target (or optimal FR) that can then be related to soil and
terrain attributes.

The method then compares the DBH and SV with observed
values to isolate the optimal FR values for every site. The steps are
as follows:

1) Prepare model data inputs: climate, soil, site data, and
species parameters.

2) Setup site definitions for each permanent plot location.
3) Run 3-PG plot scale model for FR at 0.01 increments between

0 and 1.
4) Compare 3-PG outputs (DBH and SV) to permanent plot

location time series measurements.
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FIGURE 3

Data, 3-PG model, and ML processing workflow.

5) Determine FR that minimizes the error between model and
observed, for both DBH and SV. It does this byminimizing the
average of the absolute per cent bias of the DBH and SV over
all the FR model results from step 3, as shown in Formula 1.

biasavg =

(

1
n

n
∑

i=1

∣

∣

∣

DBHoi−DBHmi
DBHoi

∣

∣

∣
· 100+ 1

n

n
∑

i=1

∣

∣

∣

SVoi−SVmi
SVoi

∣

∣

∣
· 100

)

2

6) Where DBHoi and DBHmi are observed and modeled DBH
at ith measurement time, SVoi and SVmi are observed and
modeled SV at ith measurement time, and n is the number of
measurements for the permanent sample plot.

2.6. Stage 2—machine learning prediction
of FR

This stage uses only the FR values from the previous step as the
target for the ML models, using terrain and soil as input features,
with steps as follows:

1) At each permanent plot location, extract soil and terrain data.
This generates 76 input features per plot location.

2) Train machine learning models using the combined data
for all locations to predict FR from step 1.5 using soil and
terrain data.

3) Compare machine learning model predictions.
4) Examine the internals of the predictions using interpretable

ML to understand soil and terrain influence on predictions
of fertility.

5) Select the best performing model using holdout R2 and run
predictions for each grid cell across the study area.

6) Using generated spatial fertility, run spatial 3-PG to generate
gridded growth predictions.

2.6.1. Machine learning models
To predict the FR from soil and terrain data, four decision tree

ensemble models were used: random forest regression tree (Ho,
1995) (RF), extra tree (or extremely randomized) regression tree
(Geurts et al., 2006) (ET), gradient boost (Friedman, 2002) (GB),
and XG boost (Chen and Guestrin, 2016) (XGB). This family of
models was chosen for its desirable characteristics, specifically their
ability to generalize to new data, moderate level of transparency and
explanatory insight, ability to represent non-linear responses, and
capture variable interactions, availability of implementation, and
insensitivity to irrelevant predictors (Olden et al., 2008). Ensemble
trees combine multiple estimators with the aim of improving
predictions over single tree approaches, and the four ensemble
models used can be grouped into two main families: RF and
ET use averaging—also called bagging—of multiple estimators,
whereas GB and XGB use boosting, which combine multiple weak
learners to produce strong learners (Natekin and Knoll, 2013) by
training additional estimators on the residuals of prior trees. More
simply, bagging approaches train many independent decision trees
and combine their predictions, while boosting sequentially trains
trees where subsequent estimators learn based on the error of the
previous trees. The differences in performance of these models
are not absolute and depend largely on the area of application.
Generally, the differences reside in how they optimize for either bias
or variance in their predictions.
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TABLE 2 Summary of soil, terrain, and terrain-adjusted attributes.

Category Attribute Description Unit Used in

Soil pH–Water pH of a 1:5 soil water solution pHw ML

Soil Electrical conductivity Presence of potentially harmful salt Indicates the degree of leaching. dS/m ML

Soil Clay content Percent of clay content % Both

Soil Sand content Percent of sand content % Both

Soil Silt content Percent of silt content % Both

Soil Bulk density Measure of soil compactness. g/cm3 ML

Soil Organic carbon Mass fraction of carbon by weight in the <2mm soil material as determined
by dry combustion at 900◦C

% ML

Soil Coarse fragments > 2mm Mass fraction of the soil material > 2mm % ML

Soil Soil depth Depth of soil profile cm Both

Soil Nitrogen (N) Mass fraction of total N in the soil by weight % ML

Soil Phosphorus (P) Mass fraction of total P in the soil by weight % ML

Soil Effective cation exchange
capacity

Cations extracted using barium chloride (BaCl2) plus exchangeable H+ Al meq/100 g ML

Soil Available water capacity (AWC) Available water capacity % Both

Terrain-adjusted climate Mean monthly total shortwave
radiation on a sloping surface

Radiation on a sloping surface modeled from topography and climatic data MJ/m2/day ML

Terrain-adjusted climate Mean monthly net radiation Radiation modeled from topography and climatic data MJ/m2/day ML

Terrain Aspect Direction of land slope Degrees ML

Terrain Slope Inclination of the land surface from the horizontal % ML

Climate index Prescott Index (PI) A climatic index for the leaching factor in soil formation. Relates
precipitation to evapotranspiration

Index ML

Terrain Topographic wetness index Index of relative wetness Index ML

Terrain Topographic position index Position classification identifying upper, middle, and lower parts of the
landscape of relative wetness

Index ML

Terrain Multiresolution valley bottom
flatness

Measure of valley flatness, often used to identify areas of deposited material Index ML

Terrain Multiresolution ridge top
flatness

Measure of flatness in high areas Index ML

RF trees address the weakness of single decision trees by
introducing a random selection of feature inputs to develop the
splitting algorithm for each tree node (Breiman, 2001). ETs add
additional randomness in the splitting rules by randomly selecting
a cut point from the features, and they also use the whole sample
when growing the tree rather than using a bootstrapped replica. The
intention of the additional randomness in splitting seeks to reduce
the variance in predictions; the change in the learning sampling
aims at reducing bias (Geurts et al., 2006). ETs have potential
efficiencies in computation times given the simplification of the
splitting rule, whereas other ensembles require an optimisation
to find an optimal cut point. For these two models, the training
method used a randomized grid search to optimize the number of
trees in the forest (number of estimators), the number of features
used when splitting nodes (max features), the maximum depth, and
the sample splitting size.

The two boosting tree models, GB and XGB, use the gradient
boosting approach that sequentially trains trees that seek to
improve predictions by learning from the errors of previous

through minimizing a loss function. This process uses the slope—
or gradient—of the loss function and trains subsequent trees
to approximate this gradient to minimize the overall loss of
the model. XGBs add regularization to GB models, which is a
technique to reduce overfitting by penalizing higher weights for
features, resulting in smaller and more spread-out weighting across
features. XGBs also have additional improvements, including
speed, early stopping, and inbuilt handling of missing values (Chen
and Guestrin, 2016). Further details on each regression model
are available in the cited references. The Scikit-learn (Pedregosa
et al., 2011) Python package was used for all the ML model
implementations, apart from the XGBoost Python implementation
(Chen and Guestrin, 2016).

Other applications in environmental research have shown
success in the use of tree models, for example, a study into ML to
predict crop yields in Mexico noted that tree models performed
better than ANNs (Gonzalez-Sanchez et al., 2014), while also
highlighting the difficulty in model selection for environmental
applications. A comparison of ML approaches for digital soil
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mapping (Heung et al., 2016) found RF and logistic model trees
were desirable due to their speed and interpretability of results. RFs
have also successfully been used in other spatial ML applications,
such as tropical forest carbon mapping (Mascaro et al., 2014).

For this study, each model was trained and evaluated using
the spatial cross-validation splits, using the group of six soil
features (see Section Soil, terrain, and terrain-adjusted climate
data) with the terrain data, with every split using a random
grid search to optimize the ML algorithms hyperparameters. The
hyperparameters for each model relate to the internal structuring
of the trees when fitting. The hyperparameters are tuned by
a random sampling approach that tests permutations of the
parameter combinations and scores the results based on the
scoring parameter. The commonly used correlation coefficient,
R2, was used as the scoring parameter, and root mean square
error (RMSE) was also used in assessing both the ML and 3-PG
model performance.

2.6.2. Spatial cross-validation
A spatial cross-validation approach was used to train and test

the ML models. Cross-validation (CV) is a commonly employed
technique to trainMLmodels, especially when limited training data
are available. Spatial CV is used in the presence of autocorrelation
of data to avoid overoptimistic estimation of model performance
(Meyer et al., 2019). It does this by using spatially aware splits
of data, thus ensuring that training and testing data are spatially
distinct. There is a current debate about the importance of spatially
aware cross-validationmethods (Wadoux et al., 2021) to assess map
(model output) performance. A recent study tested the sensitivity
to autocorrelation in a convolutional neural network’s validation
results, suggesting an overestimation of performance of up to 28%
(Kattenborn et al., 2022).

The implementation of the spatial splitting used for the CV
within this study was provided by the Digital Earth Australia
toolkit (Krause et al., 2021). This includes different clustering
algorithms that determine how clusters are grouped: K-means,
Gaussian mixture, or hierarchical. The hierarchical method allows
the specification of a Euclidean distance parameter to control
the maximum distance within a group. Smaller numbers for
this parameter result in clusters that are more spread out (to
stay below the distance threshold); a larger distance parameter
yields tighter clusters. Given this parameter affects the spatial
grouping significantly and the sample size for this study, we tested
the sensitivity of the ML models by training for iterations of
this parameter ranging from 0.04 degrees to 0.13 at 0.01 degree
increments. The count of clusters for the CV was set to 5 (5-fold),
resulting in four training clusters and one for validation for each
fold. This approach ensures training results are not overoptimistic,
while additional resistance against overfitting.

An additional holdout set of 15% of the sites were used for
validation, and not used in the spatial cross-validation, providing
additional verification against overfitting. These holdout sites were
also selected using a spatial separation split approach, where 15%
of sites are in an area unseen by any of the ML models. 15% and
K-5 splitting were chosen due to the relatively small sample size

(161 plots) to avoid reducing the available sites for cross-validation
too significantly.

The trainedmodels were then filtered to select the highest mean
R2 model achieved in the cross-validation.

2.6.3. Interpretable machine learning
The game theory-based method (Štrumbelj and Kononenko,

2014) to interpretable machine learning was used, as implemented
in the SHAP (SHapley Additive exPlanations) library (Lundberg
and Lee, 2017). This method quantifies each input feature’s
importance in making predictions. It does this by perturbing the
model’s input features to generate an estimate of its contribution
to individual predictions. This provides normalized values that can
be inspected and compared for different individual (local)—and
overall (global)—contribution to predictions.

Within stage 2 of the processing workflow, force plots
(Lundberg et al., 2018) were used to explore the influence of the soil
and terrain variables on the prediction of site FR. This provides the
magnitude and direction of a specific input’s contribution, allowing
examination of the consistency of predictions and the relation to
specific sites.

3. Results

3.1. 3-PG plot scale calibration of FR

The distribution of FR results from stage 1 is shown in Figure 4
by latitude (a), longitude (b), and overall probability density (c).
Plot (a) shows some indication of a trend of lower FR in the
southern plots. This trend is shown further in the spatial outputs
from the ML models in Results section.

3.2. ML training and cross-validation results

The cross-validation is executed for combinations of the ML
model, soil feature groups and Euclidean distance parameters, with
a random grid search for the hyperparameters of each model. The
best performing hyperparameter set is selected based on its mean
cross-validation score across each fold.

Figure 5 shows the results for predictions in the training
and holdout data grouped by soil depth when selecting the
best performing distance parameter. The best performing depth
profile for training was 15 cm (R2 = 0.49) and the holdout was
100 cm (R2 = 0.73). The holdout results (mean R2 = 0.66) show
better performance than the cross-validation fold results (mean
R2= 0.44), providing some evidence that the model can spatially
generalize to unseen data. The best performing model in training
was ET (R2 = 0.72) and in holdout was RF (R2 = 0.78).

The variation of the maximum distance parameter provides
an estimation of how sensitive the cross-validation results
are to the spatial grouping structure. Results grouped by the
maximumEuclidean distance parameter are shown in Figure 6. The
correlation variance appears to increase as the distance parameter
increases and is more pronounced in the training data. The higher
distance parameter clusters will result in points closer together,
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FIGURE 4

Probability density of FR of all plots density (A) by longitude (B) and latitude (C).

FIGURE 5

Coe�cient of correlation (R2) values vs. soil depth group for training (A) and holdout (B) data grouped by model.

so the validation group will cover a smaller area and will likely
have less FR variation. The RF model shows the best result when
considering the holdout data, and the ETmodels show better results
for the mean CV training.

When considering the average of the training and holdout
results, the ET model had the top five best ranking models, with
mean R2 across training and holdout of 0.64, 0.63, 0.63, 0.61, and
0.61. The best of each of the four models using average R2 was ET=

0.64, RF = 0.61, GB = 0.59, and XGB = 0.54. To check the full set
of predictions, the best performingmodel from the cross-validation
results and the best performing model when comparing to the

holdout data were run against the training and holdout data to
compare predicted with actual values. Both show a good correlation
between predicted and actual values. Some models showed clear
signs of overfitting with training values fitting a straight line; the use
of the holdout data set assisted in the identification of these models
that could be excluded.

The computational requirements for training the models were
not high. The total training time was in the range of 2–3 h using
an 8-core i9 machine with 64 GB RAM. Within this time, the ML
models were converging on optimal solutions, and thus, further
training was not necessary.
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FIGURE 6

Coe�cient of correlation (R2) values vs. Euclidean distance parameter for training (A) and holdout (B) data grouped by ML models.

3.3. Feature importance results

The top-performing models were selected by filtering models
with a CV R2 > 0.3 and selecting the best holdout R2 score
for each ML model type. The SHAP values were computed to
understand the features that have the strongest influence when
making predictions. Table 3 shows the top five features of the best
performing model for the four models. This table summarizes the
more detailed SHAP value plots in Figure 7.

The Prescott Index (PI), a measure of soil–water balance, is
consistently used by all models and has the highest influence
on predictions. Site aspect, available water content, and textural
soil components (sand and clay content) are all regularly used in
predictions. The next section provides results on how these features
influence the FR predictions.

3.3.1. Feature influences on predictions
The SHAP values were generated to produce influence plots for

the top four models, shown in Figure 7. This shows the influence
of the top 6 features in the predictions for all locations, showing
the top-performing model for each of the four ML models. There
appears to be consistency across theMLmodels in the way the input
features have influenced the FR predictions. For example, in all four
of the models shown in Figure 7, a high PI value (pink) indicates
lower FR (lower SHAP value). And for the soil sand content, the
ET, RF, and GB models show that a higher sand content also results
in lower FR (lower SHAP value).

The aspect terrain attribute is a direction vector with units of
degrees and thus needs appropriate interpretation in terms of its
values and influence. SHAP dependence plots show the relationship
of feature values with the predictions, providing more details of
a feature’s influence. Figure 8 shows a dependence plot for aspect,
with the 0–180 boxes indicating the values of aspect that are
positively affecting FR, which corresponds to a north-east (NE)
aspect, as opposed to the south-west (SW) (180–360 degree) aspect
sites that show a decrease in FR. This follows intuitively that NE
sites have more exposure to solar radiation than the SW-facing

sites and are less exposed to wind predominance that can cause
damage to the leaves. The influence of aspect (and slope) on both
soil processes and plant growth is well known and documented
elsewhere (Reid, 1973; Holland and Steyn, 1975; Beaudette and
O’Geen, 2009).

3.3.2. Assessing site-level (local) FR predictions
SHAP decision plots were used to describe individual

predictions (sites in this instance). Figure 9 shows decision plots for
four test sites. These sites were selected as exemplar high- and low-
productivity sites, to check for comparison against the predictions
of the model, and to assess how these relate to both the 3-PGmodel
plantation growth and the FR predictions. The test site details are
shown in Table 4, and the corresponding decision plots are shown
in Figure 9. The decision plot shows how the prediction for each site
is being influenced by the soil and terrain attributes. The attributes
on the Y axis are sorted in descending order of influence, showing
the four most influential properties being the PI, sand, clay, aspect,
and cation exchange. These are consistent with the overall influence
plots for all sites in Figure 7, though the relative importance is
different, and silt does not show as being highly influential for
these sites.

3.4. Applying predicted FR with 3-PG

Using the best scoring ET model, we ran the predictions of FRs
across every grid cell for the study area to produce a spatial map
(grid) of FR. Figure 10 shows the output of this process, with the
scale going from low FR (dark red, 0) to high FR (dark blue, 1). FR
values and respective per cent areas are shown in the histogram.

The predicted FR was used to parameterise the 3-PGmodel and
run in both plot and spatial scales. The generated FR layer provides
the spatial estimation of fertility rating for the whole plantation
area, which can then be used to model to predict potential
productivity across the region, showing the spatial distribution of
expected growth under current or future climate scenarios. Results
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TABLE 3 Most important features for the top six models (selected by best performing model against holdout data).

Model R2 for CV and
holdout

Soil depth feature group (cm) Importance level

1st 2nd 3rd 4th 5th

ET CV= 0.47
Holdout= 0.71

60 PI Silt Sand Aspect AWC

XGB CV= 0.44
Holdout= 0.64

100 PI Coarse fragments AWC Aspect Silt

RF CV= 0.43
Holdout= 0.67

30 PI Sand Aspect Clay Cation exchange

GB CV= 0.51
Holdout= 0.66

60 PI Silt Aspect AWC Sand

FIGURE 7

SHAP values for top six features for the best performing model in each model type—(A) Extra-Tree regressor (ET), (B) XGB (eXtreme Gradient Boost),

(C) Random Forest (RF), and (D) Gradient Boost (GB).

for potential productivity as stand volume for the area planted in
2006 and grown for 12 years are shown in Figure 11.

A comparison of the 3-PG results using the ML-derived FR and
using the optimal FR across all plots showed strong agreement. R2

differed by only 0.01 for DBH (0.97 vs. 0.98), SV (0.96 and 0.97)
and H (0.96 and 0.97), and 0.02 for BA (0.95 and 0.97) and 0.03 for
MAI (0.93 vs. 0.96) for the ML-derived model and the model with
optimal FR values. The optimal FR model uses the best fit method
described in the method section—i.e., it is directly calibrated to fit
the observations.While optimal, the fitting provides no explanation
in terms of its contribution to the growth and how this relates to any
soil or terrain attributes.

4. Discussion

This study has demonstrated the utility of a machine learning-
based method to estimate FR for use within the 3-PG forest
growth model to improve the accuracy of the model predictions.
The contributions of this approach are 2-fold. First, it provides
a reusable and interpretable method to estimate the 3-PG FR
parameter from spatial data of soil and terrain attributes. This can
be used to parameterise both plot and spatial scales of the 3-PG
model. Second, it allows the generation of spatial FR and estimates
of the influencing variables that can be used to inform forest
management decisions, such as plantation and rotation cycles. The
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FIGURE 8

Influence of terrain aspect on prediction of FR.

FIGURE 9

SHAP decision plot showing predictions for four specific sites for the best fit RF model.
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TABLE 4 Details of four test sites to compare predictions.

Site identification Longitude
(WGS 84)

Latitude
(WGS 84)

Planted year FR

Site A (high FR) 145.6785 −41.3141 2002 Predicted= 0.77
3-PG optimal= 0.79

Site B (low FR) 145.6524 −41.5071 2009 Predicted= 0.38 (low)
3-PG optimal= 0.28

Site C (high FR) 145.7486 −41.2136 2002 Predicted= 0.66 (high)
3-PG optimal= 0.79

Site D (low FR) 145.5996 −41.4553 2005 Predicted= 0.32 (low)
3-PG optimal= 0.13

FIGURE 10

ET model-derived fertility rating at 1 arc-s (∼30m) resolution covering study area. Shadow areas show plantation boundaries. Histogram shows

probability density for each category across the whole area.

generated spatial data can assist in identifying areas of potential
low and high productivity and providing valuable information for
forest planning and wood supply management. Additionally, the
influence of soils and terrain on fertility can be inspected for each
site using the SHAP method described. This allows detailed spatial
analysis when assessing variability in productivity.

The four ML regression models spatially estimated FR across
the study area using inputs from spatial soil and terrain data.
The subsequent 3-PG results show very accurate predictions when
comparing model outputs to stands with different ages and periods

and different site-related variables. That inference power of the
ML-derived FR rating as an input to 3-PG is demonstrated by
its performance in capturing growth dynamics across subsequent
rotations and under different climate periods, as opposed to just
fitting a singular growth variable.

When compared to a simple calibration, or fitting, of the FR,
the ML method can generate spatial predictions using the terrain
and soil attributes, resulting in high-resolution spatial grids of soil
fertility. These can then be used in the spatial version of 3-PG and
as indicators of plantation productivity.
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FIGURE 11

Potential productivity for the study as stand volume (m3 ha−1) considering all areas planted in 09/2006 and grown for 12 years. Histogram shows

probability (%) density for the SV ranges.

4.1. Influence of soil and terrain features

The results of ML models show that the most influential
features were PI, textural components (mainly sand and silt), and
aspect. There was low influence observed from the N or P soil layer,
and this has also been noted in other studies for E. globulus and
P. radiata in Chile (Carrasco et al., 2022). The PI appears to be
the dominant explanatory variable, and while PI describes the soil
water balance, it also relates to the soil’s ability to hold nutrients.
For example, higher PI indicates greater leaching of soils related
to the ratio between precipitation and evapotranspiration and has
been shown to relate to soil pH in Australia (de Caritat et al., 2011),
which in turn may affect nutrient availability (Neina, 2019). The N
and P contents of the soil may change due tomanagement practices,
for example, through soil cultivation and application of N and/or P
on trees. However, these short-term changes are not reflected in the
static soil grids; while a surrogate variable such as PI is more likely
to capture short-term soil-nutrient dynamics and therefore be an
important explanatory variable for the FR.

The influence of the aspect feature may be identifying sites
that have improved solar radiation exposure, as shown by the
increased FR for north-east-facing sites. Alternatively, it may be

the influence of wind exposure, with the predominant west winds
affecting growth and/or soil composition, or a combination of solar
radiation and wind effects. The SILO radiation values used for 3-PG
are not adjusted for aspect (https://www.longpaddock.qld.gov.au/
silo/faq/) and 3-PG does not explicitly capture site aspect, though
it does model light interception from the canopy. Terrain-adjusted
mean-monthly net radiation was used as an input feature (see Soil,
terrain, and terrain-adjusted climate data), which adjusts for aspect
and slope attributes (among others), but this was not identified as
an influential attribute in the top-performing models.

Given the textural components are interrelated, specifically
sand, silt, and clay content, water holding capacity, and coarse
fragments, the models are likely to perform similarly when subsets
of these attributes are used. The sensitivity to subsets of the
textural attributes was not tested but warrants further investigation.
Noting that the SHAP feature analysis contains internal handling of
correlated features by perturbing combinations of different features
and has been proposed as a feature selection processor (Marcílio
and Eler, 2020).

There are different methods to ML model interpretation,
including Local Interpretable Model-agnostic Explanations
(LIME), permutation feature importance (PFI), and SHAP (as used
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in this study). These approaches vary in their method and will thus
provide different results. The SHAP was chosen given its flexibility
and range of available plots for analysis. Studies have shown that
PFI is less useful in the presence of correlated input features
(Kaneko, 2022). PFI was calculated for many of the trained models
and noted that the top five identified features were often similar,
with slight variations in the feature order. While these helped to
inform how the models are forming predictions, further study is
required to relate these features through the FR to its effects on the
3-PG model.

There was not a clear pattern in the prediction performance
across the six groups of soil depths tested. These layers contain
a level of internal correlation (see Supplementary material for
details), and the differences may not be significant enough to
influence the outputs from the ML models. Depending on the
available data, the soil depth profiles are harmonized and derived
(Rossel et al., 2015) and thus may not contain sufficient variation,
or the signal may be weaker than other soil attributes. The chemical
attributes of the soil grid have also shown higher uncertainties
and high spatial variability than the textural attributes (Kidd et al.,
2015).

4.2. ML model performance

The four ML models that were tested did not show large
differences in their performance; though when considering the
average R2 across training and validation, the ET model had the
top five best ranking models. The ET model is probably benefitting
from the additional level of randomness where the splitting rule for
the tree structure uses a random selection as opposed to the RF
model which selects the best split each time. The holdout results
were generally higher, which suggests the models can generalize
to unseen data. However, this needs to be considered in the
context of the random test-train split from this small-sized data
set; the spatially split cross-validation provides a more robust
metric of performance. The use of the spatial splitting for both
cross-validation and holdout testing provided a useful approach
to identifying models that were overfitting on the training data,
especially for a small sample size as in this study. The spatial
splitting helps to avoid leakage of the training data into the
validation sets where there may be proximal sites in both sets.

There was consistency in the most important features being
selected, with some variations that would be expected given some
internal correlation of input features. The issue of equifinality
arises, where multiple models with different parameterisations can
produce equal accuracy, as has been noted with ML applied to
hydrology (Schmidt et al., 2020).

4.3. Relationship to other studies

As described earlier, there are existing methods to estimate
the FR parameter of 3-PG. Some of these have also used multiple
regression and decision trees to provide estimates (Tickle et al.,
2001; Hung et al., 2016; Carrasco et al., 2022). However, to our
knowledge there are no published methods that focus on the FR

estimation usingML that include spatial cross-validation, the use of
SHAP techniques for variable interpretation, and incorporation of
the range of spatial soil and terrain data described in this study. The
method used in this study could be described as a combination of
data driven with calibration when relating to other FR estimation
methods (Table 1). These existing FR estimation methods were
adapted based on the context of the application of 3-PG, specifically
in terms of data availability, access to field data, and any potential
input from soil experts. Given the increasing availability of gridded
soil and terrain data, the method described can be reproduced
with access to appropriate levels of soil and terrain data. This
is particularly the case when field-based measurements are not a
viable option to estimate FR.

This study only used tree-based regression method; there are
many more ML regression methods that may be utilized, such
as artificial neural networks (ANNs), support vector machines,
and k-nearest neighbor learners, among others. As described in
Method section, this study selected the method by balancing the
requirements of the study. Given the sample size, compatibility
with interpretable machine learning libraries, and reasonable
performance that was obtained through the four tree-based
models, it was not deemed necessary to include other ML
models for this study. This could, however, be explored in the
future study.

4.4. Assumptions and limitations of this
study

The spatial cross-validation method used in this study accounts
for a level of autocorrelation in the spatial data. However, due to the
study area size, the effects of spatial variability are likely to change at
different (i.e., larger/global) scales. Therefore, this method requires
testing across different spatial scales. Noting that as the spatial
scale changes, the overall variables that influence growth are also
likely to change due to differences in physical processes at these
scales. The challenges associated with local vs. global map accuracy
derived from ML models are discussed by Meyer and Pebesma
(2022). The authors caution on the use of global-level indicators of
map accuracy and derivations of these models. This study claims
no specific relevance of these results at a global scale; however,
the method here is reusable for studies and applications of 3-
PG or other models requiring derived soil properties for a study
of the same scale. The use of holdout data in addition to the
CV training data provides an additional round of validation of
the results. However, the small sample size and randomness in
sample selection for holdout comparisons can skew results, both
negatively and positively, and must be evaluated alongside the full
CV results.

The described method does not currently account for any
temporal variation in soil fertility. This is clearly a simplification,
but one that is necessary with the availability of data at this scale.
Certain soil attributes will be more static through time than others,
such as the textural components, whereas the chemical attributes,
such as N, P, and organic carbon, would vary and thus influence
soil fertility. Noting that the most important attributes within this
study related to textural and terrain attributes.
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The 3-PG model was tested against the five main growth
outputs, but the soil moisture state of the model was not compared
to any direct measurements of soil moisture due to none being
available. The model was informally tested against a national
water balance model and showed a good correlation. It would
be desirable to test the soil moisture balance more intensively in
future. Additionally, it would be desirable to further test the spatial
predictions of FR on plantation areas outside this study area. This
would provide further validation of the ability of the ML models
to generalize.

The applied method combined with the 3-PG model produced
accurate spatial predictions of the main outputs of interest for
forest management allowing to indicate the factors that influence
forest growth.

5. Conclusion

This study has described amachine learningmethod to estimate
site soil fertility that has the benefit of exposing the core explanatory
variables for predictions and can be applied to point-based or
spatial versions of the 3-PG model. The derived soil fertility grid
can be used directly in spatial 3-PG models and is also valuable
as a plantation management dataset to show spatial variability
of productivity in unknown areas. Comparisons across the four
regression treemodels show a level of consistency in the selection of
soil and terrain attributes as explanatory variables for the regression
models. While causation cannot necessarily be presumed from
these explanatory variables, the predicted FR can be usedwith the 3-
PG model to accurately simulate growth and provide a transparent
basis for the derivation of the soil fertility parameter, leading to
improved accuracy to support plantation management decisions.
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