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Hyperspectral imagery and machine learning have proven to be powerful,

non-invasive, and chemical-free tools for studying tree symbiotic fungi.

However, traditional machine learning requires manual feature extraction (feature

engineering) of spectral and spatial features of tree symbiotic fungi. Deep

convolutional neural networks (CNNs) can extract self and robust features

directly from the raw data. In the current study, a deep CNN architecture is

proposed to recognize the isolates of dark septate endophytic (DSE) fungal

in hyperspectral images. The performance of different CNN approaches (two-

dimensional and three-dimensional CNNs) was compared and evaluated based

on two independent datasets collected using visible-near-infrared (VNIR) and

short-wave-infrared (SWIR) hyperspectral imaging systems. Moreover, the impact

of different spectral pre-processing techniques was investigated. The results

show that a hybrid CNN architecture (3D-2D CNN), which combines three and

two-dimensional CNNs, achieved the best performance for the classification of

fungal isolates on SWIR hyperspectral data compared to the same architecture

on VNIR hyperspectral data. The best performance is 100% for precision, recall,

and overall accuracy. The results also demonstrate that combining different

pre-processing techniques on raw SWIR spectra can significantly improve

the performance of the CNN models for fungal classification. The hybrid

CNN approach with SWIR hyperspectral data provides an efficient method for

classifying fungal isolates, which can contribute to the development of accurate

and non-destructive tools for evaluating the occurrence of fungal isolates on

trees. Such tools can be beneficial for both sustainable agriculture and preserving

fungal diversity.

KEYWORDS

dark septate endophytes (DSEs), 2D-CNN, 3D-CNN, deep learning, spectral pre-
processing, hyperspectral imaging (HSI)

1. Introduction

Nowadays, more attention has been paid to the ecological significance and diversity of
tree symbiotic fungi (Hagh-Doust et al., 2022), which inhabit healthy tree tissues and may
influence tree growth. Thus, endophytic fungi have become an important component of
the tree root mycobiome, which could potentially alleviate the host tree’s abiotic stresses
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(Qin et al., 2017). For example, Dark Septate Endophytes (DSEs),
a subgroup of endophytic fungi characterized by melanized
hyphae, colonize root epidermis and cortex both inter- and
intracellularly, forming densely septated intracellular structures
known as microsclerotia (Knapp et al., 2015). DSEs have been
reported to form symbiotic associations with a wide range of
plants, spanning diverse climatic regions and major biomes, and are
notably abundant in extreme and nutrient-deprived environments
like arid and semi-arid zones (Porras-Alfaro and Bayman, 2011).

Dark septate endophytics might play a role in breaking
down organic matter in nutrient-scarce soils, similar to the
function of ericoid mycorrhizal fungi–mutualistic partners that
help host plants by processing complex substrates in environments
lacking nutrients (Knapp et al., 2018). As a result, DSEs could
potentially support host trees in coping with abiotic stress through
the generation of melanized hyphae and microsclerotia while
also acting as promoters of plant growth (Gostinèar et al.,
2009). Enhancing fungal identification through hyperspectral data
analysis may facilitate the concurrent detection of fungal isolates
with physiological and ecological significance, thereby promoting
the comprehensive evaluation of the multifaceted utility values of
DSEs.

In recent years, the development of remote sensing techniques
has provided reliable and promising technologies for characterizing
the growth of trees and fungi over a wide period (Stone and
Mohammed, 2017). The popular remote sensing techniques related
to fungi classification and detection of fungal diseases mainly
include hyperspectral imagery (Singh et al., 2007; Yao et al., 2008;
Femenias et al., 2022) and red, green, blue (RGB) imagery (Marique
et al., 2012; Ropelewska, 2019; Kirti et al., 2021).

Hyperspectral imaging (HSI) systems are considered robust
tools for analyzing the chemical and physical properties of materials
or objects. Compared to conventional imaging systems such as
RGB imaging, HSI systems can collect reflected light at hundreds
of narrow wavelengths over a wide range of bands in the
electromagnetic spectrum, including the visible and near-infrared
(VNIR) areas (400–1,100 nm) and the short-wave infrared (SWIR)
area (1,100–2,500 nm) (Ghamisi et al., 2017). However, the large
number of spectral bands and complex structure of hyperspectral
images results in large data sizes, necessitating the use of efficient
and reliable analysis methods.

RGB imagery covers only three wavelengths from the visible
region of the electromagnetic spectrum (red, green, and blue),
reflecting only the visible (or color) information of materials.
Therefore, HSI systems have an advantage due to the wealth of
spectral information they can collect for analyzing the internal
(chemical) and external (physical) composition of target materials,
such as fungi on trees (Goetz et al., 1985; Bioucas-Dias et al.,
2013).

Traditional and laboratory-based techniques, such
as cytochemical processing, time-lapse cameras, and
photomicroscopy, have shown high accuracy in identifying
fungi (Williams et al., 2012a). However, these techniques
are time-consuming, not rapid, and can lead to biological or
chemical contamination. In contrast, HSI technology is ideally
suited for fungal identification due to its advantages of being
high-throughput, chemical-free, rapid, and non-destructive.

Traditional machine learning algorithms have been widely used
in analyzing HSI data in various remote sensing tasks. These

algorithms include support-vector machines (SVMs) (Vapnik,
1999), random forests (RF) (Breiman, 2001), gradient boosting
machines (GBMs) (Natekin and Knoll, 2013), and artificial neural
network (ANN) (Nie and Linkens, 1992). SVM and RF are
the most commonly used algorithms for plant fungi disease
detection and fungal isolate classification using hyperspectral image
data. For instance, Qiao et al. (2017) used SVM and SWIR
hyperspectral images to identify fungi-contaminated peanuts from
healthy peanuts, achieving an overall classification accuracy above
95%. Zhang et al. (2007) and Chu et al. (2020) also achieved
promising results with SVM, with overall classification accuracies
of 100% for the classification of three fungal species naturally
infected on maize and 90% for three different fungal species on
wheat, respectively. These studies demonstrate that SVM is a
reliable and promising method for fungi disease detection and
fungi species classification. Siedliska et al. (2018) proposed RF and
ANN algorithms for the early stages detection of infections by
two fungal species in two strawberry fruit species, achieving an
overall discriminating accuracy between inoculated and control
fruit higher than 97%.

Convolutional neural networks (CNNs), which belong to deep
learning, were first developed in the late 1980s (LeCun et al.,
1989), and recently have gained huge interest in computer vision
tasks such as object recognition, detection, and segmentation.
Three different CNN approaches have been proposed for analyzing
HSI image data: one-dimensional (1D-CNN) for only spectral
information, two-dimensional (2D-CNN) for spatial information
of selected bands, and three-dimensional (3D-CNN) for combining
both spectral and spatial information of HSI image data (Al-
Sarayreh et al., 2018; Audebert et al., 2019; Paoletti et al., 2019; Soni
et al., 2021).

The CNN approach is advantageous over the traditional
machine learning algorithms by automatically extracting the
required spatial and spectral features from the raw HSI image,
while traditional machine learning depends on manually extracted
features that are highly affected by the domain of expertise (Hedjazi
et al., 2017).

The use of CNNs and hyperspectral imagery in fungi
analysis mainly focuses on fungi species classification and disease
identification tasks (Billones et al., 2020; Gaikwad, 2021; Kumar
et al., 2021). Mansuri et al. (2022) compared 1D-CNN with Partial
Least Squares-Discriminant Analysis (PLS-DA) and Artificial
Neural Network (ANN) for detecting fungal contamination in
maize kernels using hyperspectral imaging. The results showed
that 1D-CNN achieved the best classification accuracy with average
error rates of 3.15, compared to 5.71, and 4.94 for PLS-DA and
ANN, respectively.

Jin et al. (2018) found that the combination of 2D-CNN and
bidirectional-gated recurrent unit (GRU) neural network (2D-
CNN-BidGRU) achieved the highest accuracy in the classification
of wheat Fusarium head blight disease for early detection of plant
viral disease, compared to the 1D-CNN methods, with an accuracy
of 85%. Nguyen et al. (2021) compared the performance of SVM,
RF, 2D-CNN, and 3D-CNN for the detection of grapevine viral
disease in HSI images, and it was found that 2D-CNN and 3D-CNN
outperformed the traditional machine learning models, achieving
an accuracy of 71 and 75% on a small size dataset, respectively.

Furthermore, studies have investigated the impact of different
spectral ranges of HSI systems on fungi species classification. For
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FIGURE 1

An example of fungal segmentation from VNIR hyperspectral images. The fungal colony area was manually labeled as an area of interest (ROI) and
extracted by removing the values at 649.6 nm below 0.1. (A) The VNIR hyperspectral image (selected band); (B) the manually labeled ROI area; (C)
the ROI area after cropping from the hyperspectral image; (D) the extracted fungal colonies area after thresholding at 649.6 nm. The horizontal and
vertical coordinates indicate the image dimensions (in pixels), and the color bar represents the reflectance values.

instance, Lu et al. (2020) reported that VNIR hyperspectral data
and the SVM algorithm achieved the highest classification accuracy
of 95.87% on five cereal fungi in different growth stages, while
Williams et al. (2012b) found that PLS-DA and SWIR hyperspectral
data can efficiently be used for the classification of different
Fusarium spp. fungi species in the culture medium. This indicates
that traditional machine learning and the right HSI system can
achieve good results in the classification of fungi on the culture
medium. However, limited research efforts have been devoted to
the use of CNN methods and the full and wide spectral range of
hyperspectral images for the classification of fungi isolates on the
culture medium.

Laburnicola rhizohalophila sp. nov., a novel Dark Septate
Endophyte (DSE) species, has been isolated from the healthy
roots of S. salsa and shown to have phytobeneficial effects on
host seedling growth (Yuan et al., 2020). The ability to identify
different isolates of Laburnicola rhizohalophila sp. nov., which can
enhance tree growth and bolster the salt stress tolerance of their
host plants, is valuable. It is worth noting that the effects on
tree growth and salt tolerance vary among the different ploidy
levels and genetic diversification of these DSE strains. Therefore,

the ability to identify these fungi during different growth stages
can potentially have a significant impact on promoting future
productivity.

The current study focuses on the classification of DSEs fungi
isolates to demonstrate the effective analysis of CNN methods and
hyperspectral images for the first time. This study considers five
DSE fungal isolates and both the VNIR and SWIR hyperspectral
images data with the aim of addressing the following four main
objectives:

1. Investigate the performance of different CNN approaches
(2D-CNN, 3D-CNN, and their hybrid) for fungi
isolates classification.

2. Investigate the performance of different HSI spectral ranges
(VNIR and SWIR) for the classification of the selected
five fungi isolates.

3. Investigate the impact of different spectral pre-processing
methods and the importance of wavelengths used for fungi
isolates classification tasks.

4. Propose and evaluate a hybrid CNN architecture that can be
used for fungi isolates classification and similar tasks.
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FIGURE 2

An example of fungal segmentation from SWIR hyperspectral images. The fungal colony area was manually labeled as an area of interest (ROI) and
extracted by removing the values at 1588.6 nm below 0.07. (A) The SWIR hyperspectral image (selected band); (B) manually labeled ROI area; (C) the
ROI area after cropping from the hyperspectral image; (D) the extracted fungal colony area after thresholding at 1,588 nm. The horizontal and
vertical coordinates indicate the image dimensions (in pixels), and the color bar represents the reflectance values.

2. Materials and methods

2.1. Sample preparation

In this study, we considered and generated five fungal isolates
belonging to the Laburnicola rhizohalophila sp. nov. (named 8A,
44, r22, 19, 11A) (Yuan et al., 2020; He and Yuan, 2021), which
were obtained from the China General Microbiological Culture
Collection Center (CGMCC 3.19615). The fungi were first cultured
in Potato Dextrose Agar (PDA) culture medium for purification,
and the highly active fungi were then inoculated on new PDA
culture medium at 22◦C.

2.2. Hyperspectral images acquisition

Two HSI systems, each consisting of a hyperspectral camera
(push broom scan and reflectance mode) and six light sources:
the GaiaSky-mini2 VNIR hyperspectral camera (176 wavelengths,
400–1,000 nm), the Gaiafield Pro-N25EXE SWIR hyperspectral
camera (256 wavelengths, 1,000–2,500 nm) (Jiangsu Shuangli Hepu

Technology Co., Ltd., Nanjing, China), and a set of Halogen
lamps as the light source. The cameras and the light sources were
warmed up for 30 min first. Then, black references (by covering
the cameras with their caps) and white references (using a standard
whiteboard) were collected for each VNIR and SWIR camera for
calibration purposes and to reduce the impact of experiment-to-
experiment variation.

After 24 h of fungal subculturing, all 120 fungi samples
from different growth stages were used for VNIR and SWIR
hyperspectral data collection. Each of the five fungal isolates had
24 replicates, and hyperspectral image collection began 1 day after
the start of growth. Images were captured every 2 days, for a total
of six times, resulting in a dataset of 720 hyperspectral images each
for both VNIR and SWIR.

The camera was positioned approximately 50 cm above the
culture plate to capture images of the fungi samples. All of the
images were calibrated to extract the reflectance intensities, to
remove the dark current effect and uneven illumination effect from
the images using the dark and white reference by the following
formula:

RC =
R− D
W − D

× 100% (1)
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FIGURE 3

The overall framework of the 2D-CNN, 3D-CNN, and hybrid 3D-2D-CNN model. For VNIR images the used input layer is (32 × 32 × 176 × 1) and for
SWIR images the input layer is (32 × 32 × 256 × 1).

where RC is the calibrated image and R, D, and W represent the raw,
dark, and white reference images, respectively (Geladi et al., 2004).

2.3. Image region of interest (ROI)
selection

To remove the background noise and generate clean fungal
colony images, as shown in Figures 1, 2, only the culture medium
within the petri dish was selected by hand and marked as an area of
interest (ROI). Then, the reflectance values at 649.6 nm for VNIR
and 1,588 nm for SWIR were used to discriminate between the
culture medium and fungal colonies. Thus, threshold values (below
0.1 for VNIR and greater than 0.07 for SWIR) were used to segment
the regions of fungal growth from the culture medium as shown in
Figures 1, 2.

2.4. CNN models

In the current study, the classification ability of 2D-CNN, 3D-
CNN, and their hybrid methods on the five fungi isolates were
investigated and evaluated. The detailed structure of these CNN
models has been shown in Figure 3.

For the 2D-CNN model, the fungi hyperspectral images were
resized to (32 × 32 × 176) for VNIR data, with height, width, and
wavelength, respectively, and similarly (32 × 32 × 256) for SWIR
data as inputs. Three 2D CNN layers with two-dimensional kernels
were used. The output of the last CNN layer was flattened into a

vector and then connected to three fully connected layers. A stride
of 2 and kernel size of (3, 3) were used for each convolutional layer.
The ReLU activation function was used for all hidden layers, while
the softmax function was used in the output layer.

For the 3D-CNN model, each fungi hyperspectral image was
resized to 32× 32 (height× width) to standardize the image input.
The hyperspectral image cube for the input parameter of the 3D-
CNN comprised height × width × wavelength × spatial, which
included the spatial and spectral information. For the VNIR and
SWIR 3D-CNN model, the input layer was set as 32× 32× 176× 1
and 32 × 32 × 256 × 1, respectively, followed by three 3D
convolutional layers (with three-dimensional kernels) and three
fully connected layers. The spectral-spatial features were extracted
by the CNN layers and continually used by the fully connected layer
for the classification. Similar to the 2D-CNN model, the output
of the last CNN layer is flattened before the fully connected layer
is applied. We used a kernel size of (3, 3, 2) in the convolutional
layers, and the ReLU function was used as the activation function
in all hidden layers.

For both 2D-CNN and 3D-CNN models, the softmax function
was used in the output layer. Moreover, batch normalization layers
(Ioffe and Szegedy, 2015), dropout layers (Srivastava et al., 2014)
of 0.2, and max pooling layer of (2, 2, 2) were added to the
proposed models to accelerate the training process and controlling
the probability of overfitting.

The hybrid 3D-2D CNN model is a combination of
the proposed 3D and 2D-CNN models by utilizing the 3D
convolutional layers first (similar to the single 3D-CNN model),
and then a new reshape layer has been added to reshape the output
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FIGURE 4

The RGB, VNIR, and SWIR images of five fungal colonies (named 8A, 44, r22, 19, 11A) in the same growth stage (day 10). For VNIR and SWIR images,
(A) images using the optimal raw spectral band; (B) images using the bad raw spectral band.

FIGURE 5

The mean raw (original) spectra of VNIR and SWIR, and various preprocessing techniques of the five fungi (8A, 44, r22, 19, 11A). OG: original spectra;
CR: continuum removal spectra; DET: De-trending spectra; SNV: standard normal variate.

Frontiers in Forests and Global Change 06 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1179910
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1179910 September 6, 2023 Time: 12:17 # 7

Liu et al. 10.3389/ffgc.2023.1179910

FIGURE 6

The mean spectra of VNIR and SWIR after combining different preprocessing techniques of the five fungi (8A, 44, r22, 19, 11A). FST: The first
derivative; FST-CR: The first derivative combined with continuum removal spectra; FST-DET: The first derivative combined with De-trending spectra;
FST-SNV: The first derivative combined with standard normal variate spectra; SNV-FST: SNV combined with the first derivative spectra.

of the last 3D-CNN into a two-dimension structure to be connected
with the 2D convolutional layers. Then the output of the last 2D-
CNN layer is flattened and connected with three fully connected
layers. The neurons for each of these three fully connected layers
were set to 64, 32, and 16, respectively. Finally, softmax activation
was used in the output layer for the 5 fungal isolates classification.
Figure 3 illustrates the proposed 2D-CNN, 3D-CNN, and the
hybrid CNN model.

All of the CNN models (i.e., 2D-CNN, 3D-CNN, and 3D-2D
hybrid CNN) were trained using the Adam optimizer (Loshchilov
and Hutter, 2017) with the categorical_crossentropy loss function.
The batch size and epochs were set to 32 and 300, respectively.

2.5. Spectral pre-processing and data
augmentation

Several spectral pre-processing techniques were investigated
and applied to the raw calibration spectra from the hyperspectral
images in order to reduce the potential influences of overlapping or
light noise around various spectra wavelengths (Alchanatis et al.,
2005) and to evaluate the influence of different pre-processing
methods on the classification of fungi species using CNNs. The
pre-processing techniques included standard normal variate (SNV)
(Barnes et al., 1989), continuum removal (CR) (Clark and Roush,
1984), De-trending (DET) (Barnes et al., 1989), and 1st (FST)
derivatives (Cameron and Moffatt, 1987).

To prevent overfitting and generate a stable and robust
classification model with a low number of training samples, a
data augmentation methodology was proposed. The model was
trained using only the raw hyperspectral data as input, and then
the inputs were augmented by applying a combination of different

pre-processing techniques on hyperspectral images during the
training process.

2.6. Performance evaluation

For training and evaluation purposes, the collected dataset
(720 samples) was randomly split into a calibration set of 576
samples (80%) and a validation set of 144 samples (20%) on
all CNN models. The overall accuracy (OA) of the prediction,
precision (P), and recall (R) were used for the final evaluation
of the model performance on the validation set, which included
completely new fungi samples. Precision evaluates the number of
positive predictions for each group, while recall finds how many of
the positive results were predicted correctly. These metrics can be
calculated using the following formulas:

OA =
TP + TN

N
; (2)

P =
TP

TP + FP
; (3)

R =
TP

TP + FN
(4)

where true positives (TP) represent the number of samples that
are originally measured as a positive class and the model predicts
them as positive; true negatives (TN) represent the number of
samples that are originally measured as a negative class and the
model predicts them as negative; false negatives (FN) represent
the number of samples that are originally measured as a positive
class and the model predicts them as negative; false positives (FP)
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TABLE 1 Results of the 2D-CNNmodel on the validation set using different preprocessed VNIR and SWIR spectra.

Model Pretreatment Data input VNIR SWIR

OA P R OA P R

2D-CNN None 11A 0.3 0.80 0.57 0.57 0.67 0.57

19 0 0 NA 0

44 0.20 0.33 0.29 0.67

8A 0 0 0.6 1

r22 0.50 0.50 1 0.75

DET 11A 0.8 1 0.57 0.62 1 0.57

19 0.67 1 0.33 0.25

44 1 1 0.33 0.67

8A 0.60 0.75 0.6 1

r22 1 1 1 0.75

CR 11A 0.6 1 0.86 0.52 0.8 0.57

19 0.25 0.25 1 0.5

44 0.50 0.67 0.22 0.67

8A 0.25 0.25 0.33 0.33

r22 1 1 1 0.75

SNV 11A 0.85 1 0.71 0.71 1 0.57

19 0.60 0.75 0.75 0.75

44 1 1 0.40 0.67

8A 0.80 1 0.60 1

r22 1 1 1 0.75

FST 11A 0.2 NA 0 0.14 NA 0

19 NA 0 NA 0

44 NA 0 0.14 1

8A 0.2 1 NA 0

r22 NA 0 NA 0

FST + CR 11A 0.2 NA 0 0.14 NA 0

19 NA 0 NA 0

44 NA 0 0.14 1

8A 0.2 1 NA 0

r22 NA 0 NA 0

FST + DET 11A 0.6 0.80 0.57 0.52 0.8 0.57

19 0.57 1 NA 0

44 0.50 0.33 0.29 0.67

8A 0.25 0.25 0.33 0.67

r22 1 1 1 0.75

FST + SNV 11A 0.2 NA 0 0.62 0.80 0.57

19 NA 0 NA 0

44 NA 0 0.43 1

8A 0.2 1 0.5 1

r22 NA 0 1 0.75

SNV + FST 11A 0.9 1 0.71 0.47 0.75 0.43

19 0.80 1 0 0

44 1 1 0.50 0.67

8A 0.80 1 0.33 0.67

(Continued)
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TABLE 1 (Continued)

Model Pretreatment Data input VNIR SWIR

OA P R OA P R

r22 1 1 1 0.75

ALL-smoothing
data

11A 0.72 0.78 1 0.95 0.93 0.96

19 0.63 0.28 1 0.93

44 0.72 0.94 0.91 1

8A 0.64 0.67 0.95 0.86

r22 1 0.38 1 1

ALL-NO smoothing
data

11A 0.76 0.95 0.82 0.96 0.96 0.96

19 0.73 0.62 1 1

44 0.79 0.69 0.94 1

8A 0.56 0.79 0.94 0.88

r22 1 0.88 1 1

The bolded text signifies the best performing model results in the VNIR and SWIR spectra.

represent the number of samples that are originally measured as a
negative class and the model predicts them as positive; N is the total
number of samples.

All of the hyperspectral images data processing and CNN
model calibration and validation was accomplished with R software
version 4.2.3 (R Core Team, 2023) by using the RStudio platform
(Allaire, 2012). The following packages were used: (1) prospectr
package was used for spectral pre-processing; (2) EBImage (Pau
et al., 2010), raster (Hijmans et al., 2015), and terra package
(Hijmans, 2022) were used for hyperspectral image processing; (3)
keras package (Allaire and Chollet, 2022) was used for CNN model
calibration; (4) ggplot2 package (Wickham et al., 2016) was used for
visualization.

3. Results

3.1. The VNIR and SWIR hyperspectral
images and spectra preprocessing of
DSEs

Figure 4 illustrates an example of RGB, VNIR, and SWIR
hyperspectral images of five fungal colonies (8A, 44, r22, 19,
11A) growing in the culture medium at the same growth stages
(day 10). The results show that it was easy to distinguish the
r22 fungi from others but hard to distinguish the other four
fungi visually from the images. The r22 fungi produced less
melanin than the other four fungi, which led to the r22 fungi
appearing whiter than the other fungi. The VNIR and SWIR
spectra show diversity in classifying fungi from the culture
medium, the wavelength 649.6 nm for VNIR and 1,588 nm for
SWIR show clear discrimination between the fungi and the PDA.
However, some wavelengths cannot discriminate the fungi from the
background.

In Figures 5, 6, the mean raw spectra of VNIR and SWIR
at different pre-treatments (i.e., preprocessing) of five fungi were
plotted. Regardless of the pre-treatments, the results show that the

SWIR spectra are more discriminative for the five fungi compared
to VNIR, with more discriminative peaks found in the SWIR band
than in the VNIR spectra. In both the VNIR and SWIR spectra,
there is a significant difference between the fungus named r22 and
the others.

The performance of different preprocessing methods varies
for spectrum optimization. For instance, CR, DET, and SNV
clearly distinguish the five fungi in the SWIR spectrum, while
SNV gives slightly worse results for VNIR. Both the FST
pre-treatment and additional pre-treatment have demonstrated
impressive discrimination in SWIR spectra for the five fungi but
are less evident in VNIR spectra.

3.2. Influence of different CNN
architectures on DSEs classification

Table 1 shows the classification results of the 2D-CNN model
on the validation set, using VNIR and SWIR data that were
pre-processed with different techniques. The performance of the
2D-CNN models varies depending on the spectral pre-processing
method used. The best overall accuracy of 90% was achieved by the
2D-CNN model on VNIR data pre-processed with SNV + FST. On
the other hand, using all pre-processing methods, including spectra
smoothing (DET, CR, and SNV), led to the best performance
for SWIR data, with an overall accuracy of 96%. The 2D-CNN
models that used the raw spectra and various pre-processed spectra,
such as FST, FST+CR, and FST+SNV, did not achieve satisfactory
classification results for the five fungi. The overall accuracy was low,
ranging from 14 to 62%.

The results of the 3D-CNN models, as shown in Table 2,
shows comparable behavior to the 2D-CNN models on SWIR data,
achieving an overall accuracy of 87% when all spectra preprocessing
methods (including spectra smoothing) were applied. For VNIR
data, DET and FST + SNV achieved the best performance, with
an overall accuracy of 85% compared to the other of investigated
preprocessing methods.
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TABLE 2 Results of the 3D-CNNmodel on the validation set using different preprocessed VNIR and SWIR spectra.

Model Pretreatment Data input VNIR SWIR

OA P R OA P R

3D-CNN None 11A 0.35 0.37 1 0.19 0 0

19 0 0 0.19 1

44 NA 0 0 0

8A NA 0 0 0

r22 NA 0 0 0

DET 11A 0.85 1 0.71 0.67 1 0.57

19 0.67 1 0.67 0.50

44 1 1 0.43 1

8A 0.80 1 0.50 0.67

r22 1 0.50 1 0.75

CR 11A 0.15 NA 0 0.23 0.31 0.71

19 0 0 NA 0

44 0.20 1 NA 0

8A 0 0 0 0

r22 NA 0 NA 0

SNV 11A 0.80 1 1 0.57 0.50 0.71

19 0.50 1 NA 0

44 1 0.67 0.40 0.67

8A 1 0.25 0.67 0.67

r22 1 1 1 0.75

FST 11A 0.50 1 0.57 0.19 NA 0

19 0.33 1 0.19 1

44 NA 0 NA 0

8A 0 0 NA 0

r22 1 1 NA 0

FST + CR 11A 0.70 1 0.71 0.33 0.42 0.71

19 0.57 1 NA 0

44 0.50 0.67 0.22 0.67

8A 0.75 0.75 NA 0

r22 NA 0 NA 0

FST + DET 11A 0.25 0.33 0.14 0.14 NA 0

19 0.24 1 NA 0

44 NA 0 0.18 1

8A NA 0 0 0

r22 NA 0 NA 0

FST + SNV 11A 0.85 1 0.71 0.38 1 0.29

19 0.75 0.75 NA 0

44 0.75 1 0.21 1

8A 0.80 1 0 0

r22 1 1 0.75 0.75

SNV + FST 11A 0.70 1 0.57 0.52 0.56 0.71

19 0.40 1 0 0

44 1 1 0.38 1

8A 1 0.75 NA 0

(Continued)
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TABLE 2 (Continued)

Model Pretreatment Data input VNIR SWIR

OA P R OA P R

r22 NA 0 1 0.75

ALL-smoothing
data

11A 0.76 0.69 0.96 0.83 0.70 1

19 0.65 0.72 0.88 0.93

44 0.88 0.79 0.94 0.89

8A 0.88 0.63 0.81 0.59

r22 1 0.50 1 0.70

ALL-NO smoothing
data

11A 0.50 0.79 0.68 0.87 1 1

19 0.29 0.92 0.52 1

44 0.80 0.50 1 0.81

8A 0.50 0.21 1 0.59

r22 NA 0 1 0.94

The bolded text signifies the best performing model results in the VNIR and SWIR spectra.

The results presented in Table 3 demonstrate that the hybrid
2D-3D-CNN models outperformed both the 2D-CNN and 3D-
CNN models. The most accurate classification for VNIR data,
with an overall accuracy of 90%, was achieved using SNV + FST
preprocessing. For SWIR data, the best results were obtained by
applying all spectra preprocessing methods (without smoothing),
resulting in a remarkable overall accuracy of 100%, outperforming
other preprocessing methods.

3.3. Model evaluation for DSEs
classification

For the final evaluation, the selected best models were
used to predict the classes of a new set of spectra (i.e., the
validation dataset), which were not included in the training
process. Figure 7 shows the confusion matrices for the CNN
models using the best-preprocessed VNIR and SWIR spectra.
Among all five fungi, the hybrid 3D-2D CNN model using
the SWIR spectra achieved the best performance, with 100%
classification accuracy, precision, and recall. The 3D CNN
model performed relatively poorly on fungi 8A, with 10 out
of 22 misclassified samples. Notably, r22 was the most easily
classified fungus, with no misclassifications in any of the CNN
models.

4. Discussion

Symbiotic fungi play a crucial role in enhancing the growth
and overall health of forest trees. These fungi form mutualistic
associations with tree roots, enhancing nutrient uptake and
providing protection against various biotic and abiotic stress
factors. In this context, the application of Convolutional Neural
Networks (CNN) and hyperspectral imaging for the rapid
and accurate identification of fungal isolates is of paramount
importance. By leveraging these advanced techniques, researchers

and practitioners can effectively monitor and manage the
complex interactions between symbiotic fungi and forest
trees, ultimately contributing to improved forest health
and productivity.

The combination of the hybrid CNN model and spectral
preprocessing methods contributes to improving the ability of
VNIR and SWIR hyperspectral images to classify the different
fungi isolates. The current study evaluated the performance of
two widely used deep learning techniques (2D-CNN and 3D-
CNN) and their hybrid in classifying five fungi isolates grown on
culture medium, utilizing various spectral preprocessing methods
to enhance the quality of the hyperspectral images and improve the
classification results.

The results show that the hybrid CNN model achieved the
highest overall accuracy compared to other CNN methods. The
model, which utilized SWIR hyperspectral images, was particularly
effective in distinguishing between fungi isolates, offering a
promising approach for fungi research. For all CNN models,
single preprocessed spectra do not perform well compared to
combining the preprocessed spectra on the classification of fungi.
It has been suggested that sample size can significantly influence
deep learning methods since a larger sample size provides more
sample information for the CNN model to learn (Windrim et al.,
2016).

To the best of our knowledge, no previous studies have utilized
both VNIR and SWIR hyperspectral images and CNN models
to classify fungi isolates on culture medium. However, Lu et al.
(2020) used VNIR hyperspectral imaging and machine learning
methods to classify five cereal fungi on culture medium, achieving
an average classification accuracy of 99%, which is slightly higher
than our hybrid model’s accuracy of 90% when using VNIR
data.

In our study, the VNIR spectra yielded lower overall accuracy
than the SWIR spectra. Similarly, Nguyen et al. (2021), reported
the performance of 2D and 3D-CNN modeling for the detection
of Grapevine vein-clearing virus (GVCV) in grapevine plants
using VNIR spectra, which achieved accuracies of 71 and 75%,
respectively. Similarly, Ru et al. (2019) reported that the entire
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TABLE 3 Results of the hybrid 3D-2D-CNNmodel on the validation set using different preprocessed VNIR and SWIR spectra.

Model Pretreatment Data input VNIR SWIR

OA P R OA P R

3D-2D-CNN None 11A 0.35 0.37 1 0.19 0 0

19 NA 0 0.22 1

44 NA 0 NA 0

8A 0 0 0 0

r22 NA 0 NA 0

DET 11A 0.80 1 0.71 0.71 1 0.57

19 0.75 0.75 1 0.50

44 0.75 1 0.75 1

8A 0.60 0.75 0.38 1

r22 1 1 1 0.75

CR 11A 0.25 NA 0 0.52 1 0.43

19 NA 0 1 0.25

44 0.38 1 0.20 0.67

8A 0.09 0.25 0.50 0.67

r22 1 0.50 1 0.75

SNV 11A 0.75 0.63 0.71 0.71 1 0.57

19 0.60 0.75 1 0.50

44 1 1 0.43 1

8A 1 0.50 0.60 1

r22 1 1 1 0.75

FST 11A 0.25 1 0.29 0.19 NA 0

19 NA 0 0.19 1

44 NA 0 NA 0

8A 0.08 0.25 NA 0

r22 0.33 1 NA 0

FST + CR 11A 0.25 NA 0 0.33 0.31 0.71

19 0 0 NA 0

44 0.33 0.33 0.40 0.67

8A 0.31 1 NA 0

r22 NA 0 NA 0

FST + DET 11A 0.20 NA 0 0.14 NA 0

19 NA 0 NA 0

44 0.21 1 0.14 1

8A 0.17 0.25 NA 0

r22 NA 0 NA 0

FST + SNV 11A 0.55 1 0.57 0.29 NA 0

19 1 0.25 NA 0

44 0.33 1 0.17 1

8A 0.50 0.75 NA 0

r22 NA 0 1 0.75

SNV + FST 11A 0.9 1 0.71 0.52 1 0.29

19 0.8 1 0.40 0.50

44 1 1 0.43 1

8A 0.80 1 0.25 0.33

(Continued)
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TABLE 3 (Continued)

Model Pretreatment Data input VNIR SWIR

OA P R OA P R

r22 1 1 1 0.75

ALL-smoothing
data

11A 0.86 0.96 0.79 0.99 1 1

19 0.75 0.83 0.94 1

44 0.94 0.94 1 1

8A 0.76 0.92 1 0.96

r22 1 0.75 1 1

ALL-NO smoothing
data

11A 0.86 0.88 1 1 1 1

19 0.73 0.62 1 1

44 1 0.75 1 1

8A 0.77 0.89 1 1

r22 1 1 1 1

The bolded text signifies the best performing model results in the VNIR and SWIR spectra.

FIGURE 7

The confusion matrices of the optimal models of 2D-CNN, 3D-CNN, and hybrid 3D-2D-CNN on the validation set using the VNIR and SWIR spectra
data. (A–C) Result from the VNIR data; (D–F) result from the SWIR data.

bands of VNIR data showed lower accuracy than SWIR when
using the SVM and partial least squares-discriminant analysis (PLS-
DA) algorithms to classify the geographical origins of Rhizoma
Atractylodis macrocephalaes, with classification accuracies of 85–
87% and 92–94%, respectively.

Preprocessing methods can effectively remove spectral
backgrounds, additive and multiplicative noises, and enhance
the useful information related to the sample. This is critical for
establishing a reliable model (Xiao et al., 2022). As observed in
Tables 1–3, SNV+FST and no-smoothing (DET+CR+SNV) pre-
treated spectra achieved the best performance in VNIR and SWIR,
respectively. SNV increases cross-domain prediction performance

and narrows spectral curve gaps (Li et al., 2021). DET and CR can
reduce spectral noise and improve classification accuracy (Filippi
and Jensen, 2007; Fanjul-Vélez et al., 2020). FST+SNV performs
well in model calibration across different datasets and is effective
in chlorophyll content prediction (Luo et al., 2017; Xiao et al.,
2022). Our results based on the SNV+FST and DET+CR+SNV
preprocessing in both VNIR and SWIR data are consistent with the
above results of VNIR spectra based on SNV+FST preprocessing
in this study.

The classification of fungi isolates was strongly influenced
by the SWIR spectra, which covered a range from 1,100 to
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2,500 nm. According to Schwanninger et al. (2011) narrow spectral
absorption features at 1,370, 1,440, 1,666, and 2,272 nm are highly
correlated with CH3 groups. Additionally, spectral features at 1,726,
1,811, and 2,080 nm have been shown to match the spectral features
of C-H and C-O groups, which differ among fungi isolates with
traits containing different C-H and C-O group contents.

5. Conclusion

This study presents a workflow for classifying fungi
isolates from VNIR and SWIR hyperspectral imagery using
various preprocessing methods. The study compares the
performance of the 2D-CNN, 3D-CNN, and hybrid CNN
models for fungi isolates classification. The results show
that SWIR hyperspectral image data can be used for fungi
classification with high accuracy. The hybrid 3D-2D-CNN
model performs better than the 2D-CNN and 3D-CNN
models, with promising classification accuracy. Developing
these kinds of fungi classification models is essential for
operationalizing big hyperspectral data in fungi diversity and
ecosystem monitoring. This can lead to the development
of powerful, non-invasive, and chemical-free tools for fungi
isolates classification.
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