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Vegetation phenology is a key indicator of vegetation-climate interactions and 
carbon sink changes in ecosystems. Therefore, it is very important to understand 
the temporal and spatial variability of vegetation phenology and the driving 
climatic determinants [e.g., temperature (Ts) and soil moisture (SM)]. Vegetation 
greenness and photosynthetic phenology were derived using the double logistic 
(DL) method to enhance vegetation index (EVI) and solar-induced chlorophyll 
fluorescence (SIF) spring and autumn phenology, respectively. The growing season 
length (GSL) of greenness phenology (about 100 days) derived EVI was longer 
than GSL of photosynthetic phenology (about 80 days) derived SIF. Although their 
overall spatiotemporal pattern trends were consistent, photosynthetic phenology 
varied 1.4 to 3.1 times more than greenness phenology over time. In addition, SIF-
based photosynthetic phenology and EVI-based greenness phenology showed 
consistent factors of drivers but differed to some extent in spatial patterns 
and the most relevant preseason dates. Spring photosynthetic phenology was 
mainly influenced by pre-season mean cumulative Ts (about 90 days). However, 
greenness phenology was controlled by both pre-seasons mean cumulative Ts 
[(about 55 days) and mean cumulative SM (about 40 days)]. Autumn photosynthetic 
phenology was controlled by both periods’ mean cumulative Ts [(about 20 days) 
and SM (about 20 days)], but autumn greenness phenology was mainly influenced 
by pre-season mean cumulative Ts (85 days). The comparison analysis of SIF 
and EVI phenology helps to understand the difference between photosynthetic 
phenology and greenness phenology at a regional scale.
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1. Introduction

Vegetation phenology changes are mainly characterized by key phenology parameters 
such as the start of the season (SOS) and end of the season (EOS) (Melaas et al., 2016; 
Hufkens et al., 2019; Salas, 2020). Vegetation phenology is an important variable in studies 
on food security (Lobell et al., 2008; dela Torre et al., 2021a), drought (Brown and de Beurs, 
2008), forest fire risk (Westerling, 2006), and ecosystem carbon balance and water and 
energy exchange (Piao et al., 2008; Richardson et al., 2013; Keenan et al., 2014; Jin et al., 
2017; Wang et  al., 2021). Meanwhile, vegetation phenology can be  used to understand  
the effects of global or regional climate change on vegetation processes and 
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vegetation-environment interactions (Buermann et  al., 2018; 
Richardson et  al., 2018). Consequently, the study of vegetation 
phenology changes in ecosystems is of great importance to gain 
insight into climate change and the carbon cycle.

Traditionally, vegetation phenology research has been based on 
field observations, which are costly, discontinuous of spatial scale, and 
subjective to the observer’s judgment. With the development of 
remote sensing technology, it is able to quantify vegetation phenology 
at the pixel scale, i.e., “Land Surface Phenology (LSP)” (Henebry and 
de Beurs, 2013), making it potential for regional and even global-scale 
studies of relationship between vegetation phenology and climate 
change (White et  al., 1997). Traditional vegetation indices (e.g., 
normalized difference vegetation index, NDVI and enhanced 
vegetation index, EVI) mainly respond to seasonal changes in 
vegetation greenness without reflecting the actual vegetation 
photosynthetic (Wang et al., 2019; Zhang et al., 2020). Therefore, the 
timing and duration of vegetation greenness activity are called 
greenness phenology. Recently, satellite remote sensing of solar-
induced chlorophyll fluorescence (SIF) has become available (Meroni 
et al., 2009; Frankenberg et al., 2011). Several studies have shown that 
SIF is correlated with ecosystem gross primary productivity (GPP) 
(Frankenberg et al., 2011; Zarco-Tejada et al., 2013; Li et al., 2018). SIF 
monitors the intrinsic photosynthetic processes of vegetation (Tang 
et al., 2016). Therefore, SIF is available for vegetation photosynthetic 
phenology studies (Jeong et al., 2017; Chang et al., 2019; Wang et al., 
2019; Zhang et  al., 2020). The timing and duration of vegetation 
photosynthetic activity are called photosynthetic phenology. 
Nowadays, studies have shown differences between greenness and 
photosynthetic phenology (Zhang et al., 2020; Xie et al., 2022), which 
overestimates the length of vegetation photosynthetic phenology 
(Jeong et al., 2017), indicating a systematic bias in seasonality between 
vegetation structure and function (Yin et al., 2020). Therefore, it is 
necessary to quantitatively assess the differences between greenness 
phenology and photosynthetic phenology, to understand the potential 
of greenness phenology to characterize photosynthetic phenology and 
the reasons for the differences.

In the context of climate change, it is widely accepted that SOS is 
advanced, while EOS is delayed so that it extends the length of the 
growing season (Buermann et  al., 2018). Previous studies have 
suggested that pre-season precipitation may indirectly affect changes 
in SOS by increasing its water demand (Yang et al., 2017). And it has 
also been suggested that early SOS is caused by global warming (Shen 
et al., 2015; Li et al., 2022; Wang et al., 2022). Moreover, studies have 
shown that pre-season temperature and precipitation play a key role 
in regulating greenness phenology (Ge et al., 2015; Cao et al., 2018; 
Ren et al., 2019). In general, the results of the above studies were 
derived from greenness vegetation indices for phenology. At present, 
the SIF-based phenology study is in its start-up phase (Meng et al., 
2021). In addition, studies have shown that SIF is more sensitive to 
water and heat stress than greenness vegetation indices (Yoshida et al., 
2015; Song et al., 2018; Liu et al., 2021). Vegetation photosynthesis is 
subject to stress from environmental factors in the light use efficiency 
(LUE) model (Monteith, 1972; Porcar-Castell et al., 2014; dela Torre 
et al., 2021b). Wang et al. (2019) showed that SIF-derived phenology 
was two to four times more sensitive to climate than EVI-derived 
phenology. However, the pre-season time difference between 
photosynthetic and greenness phenology in response to pre-season 
water and heat is unclear.

In summary, while EVI indicates vegetation structural 
information, SIF is a probe of vegetation photosynthesis. The 
differences between the photosynthetic and greenness phenology 
derived from EVI and SIF and its response to pre-season water and 
heat are unclear. We used the double logistic (DL) method to derive 
SOS and EOS for SIF and EVI, respectively, and investigated their 
spatial and temporal variation. The objectives of this study are to 
explore two issues: (1) to explore the spatial and temporal patterns of 
photosynthetic and greenness phenology, and (2) to explore the 
pre-season length of water and heat of photosynthesis and 
greenness phenology.

2. Materials and method

2.1. Study area

This paper takes Heilongjiang Province, Jilin Province, and the 
eastern part of the Inner Mongolia Autonomous Region (Hulun Beier, 
Hinggan League, Tongliao, and Chifeng) as the study area (40.08–
53.55°N, 115.52°-135.08°E) (Figure 1). Because vegetation phenology in 
the northern hemisphere at mid to high latitudes is sensitive to climate 
change (Schwartz et al., 2006; Jeong et al., 2011). The eastern part belongs 
to the temperate monsoon climate with annual precipitation ranging 
from 400 to 700 mm, while the western part belongs to the temperate 
continental climate with annual precipitation between 90 and 400 mm 
(Mao et al., 2012). The study area has four distinct seasons, with both hot 
and rainy seasons and long, cold winters. It is in the middle latitudes, and 
vegetation is sensitive to changes in the climatic environment. Also, the 
study area is abundant in vegetation types, such as grasslands, deciduous 
broadleaf forests, mixed forests, woody savannas, and croplands.

2.2. Datasets

In this study, various data products were used to explore the 
differences between vegetation greenness phenology and vegetation 
photosynthetic phenology. For consistency, the spatial resolution of 
these datasets was unified by mean method to 0.25° and time span 
from 2003 to 2018 in the analysis of the time lag between vegetation 
phenology and climatic factors.

2.2.1. Solar-induced chlorophyll fluorescence 
(SIF)

Contiguous SIF (CSIF) and global OCO-2 SIF (GOSIF) datasets 
were used to derive photosynthetic phenology. The CSIF dataset was 
generated using MODIS surface reflectance and a neural network 
approach (Zhang et al., 2018a).1 CSIF dataset captures the seasonal 
and spatial changes of the original OCO-2 SIF in the far-infrared band 
(767 nm), which is shown to be  closely related to the spatial and 
temporal variations of GPP (Zhang et al., 2016, 2018a; Sun et al., 
2017). In this study, we used CSIF clear-daily from 2003 to 2019 with 
a temporal resolution of 4 days and spatial resolution of 0.05°. The 
CSIF clear sky product was chosen because of its strong correlation 

1 https://osf.io/8xqy6/
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with the satellite retrieval SIF and also with GPP from the vorticity 
flux towers (Zhang et al., 2018a,b).

The GOSIF dataset with the continuous high spatial and temporal 
resolution was developed from discrete OCO-2 SIF, MODIS products, 
meteorological reanalysis data, and multiple regressions (Li and Xiao, 
2019).2 In this study, we  used GOSIF from 2003 to 2019 with a 
temporal resolution of 8-day and spatial resolution of 0.05°. GOSIF 
had strong consistency (R2 = 0.73, p < 0.001) with GPP from 91 
FLUXNET2015 dataset (Li and Xiao, 2019).

2.2.2. MODIS products
Vegetation cover types were obtained from the MODIS MCD12C1 

land cover type product of the International Geosphere-Biosphere 
Programme (IGBP) classification scheme. MODIS IGBP land cover type 
data are annual synthetic products with a spatial resolution of 0.05°. In 
addition, the 8-day synthetic surface spectral reflectance from MODIS 
MOD09A1 was used to calculate the EVI from 2003 to 2019. They are 
all available for free download at https://search.earthdata.nasa.gov/.

2.2.3. Climate data
Temperatures (Ts) were downloaded from the China 

Meteorological Forcing Dataset (CMFD, Yang and He, 2019; He et al., 
2020)3 with a temporal resolution of days and a spatial resolution of 
0.1°. In addition, soil moisture (SM) data were downloaded from the 
Global Land Evaporation Amsterdam Model (GLEAM) v3.5a 
(Miralles et al., 2011; Martens et al., 2017),4 with a temporal resolution 
of days and a spatial resolution of 0.25°.

2.3. Double logistic phenology method

We used a logistic function to fit the SIF and EVI observations 
(Zhang et al., 2003; Ganguly et al., 2010). To further eliminate the effect 
of outliers, the data were smoothed using Savitzky–Golay (SG) filtering 

2 http://data.globalecology.unh.edu/data/GOSIF_v2/

3 http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/

4 https://www.gleam.eu

(Chen et al., 2004). The logistic functional fitting method has advantages 
for estimating phenology with noisy data (Hird and Mcdermid, 2009). 
The fitting equation is (Zhang et al., 2003; Ganguly et al., 2010):
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where VI(t) denotes the SIF (or EVI) value at time t (days); 1α is 
the value of the winter dormancy period; 2α is the peak of the 
summer growth period; 1β , 2β , 1ρ , and 2ρ  are parameters of this 
function to be estimated. The phenology indicators can be derived 
following (Gonsamo et al., 2017; Wang et al., 2019):
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For consistency, hereinafter referred to as SOS, EOS, and GSL 
based on CSIF as SOSCSIF, EOSCSIF, and GSLCSIF, respectively; and SOS, 
EOS, and GSL based on GOSIF as SOSGOSIF, EOSGOSIF, and GSLGOSIF 
respectively; and SOS, EOS, and GSL based on EVI as SOSEVI, EOSEVI, 
and GSLEVI, respectively.

2.4. Analysis

We analyzed the temporal and spatial patterns of phenology 
parameters for each dataset in the study area. We used multi-year 
means to represent the spatial patterns of SOS, EOS, and GSL and 
analyzed the rate of change of SOS, EOS, and GSL over time using the 
linear trend with the equation.

FIGURE 1

Map of vegetation cover types in the study area.
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where y represents the year and takes values from 1 to n (n = 1,2, 
3, …,17); Sl is the slope of the linear fit; Phe (i, j, y) represents the value 
of the pixel (i, j) in year y. Sl > 0 indicates that the value of the pixel is 
increasing, Sl < 0 indicates that the value of the pixel shows a 
decreasing trend. Moreover, the t-test was used to determine if Sl 
reached the 95% significance test.

Both SOS and EOS were strongly controlled by preseason climatic 
factors (Fu et al., 2015; Güsewell et al., 2017). To further understand 
the potential climate drivers of spatial and temporal patterns of 
phenology, we  explored the correlations between phenological 
parameters and preseason climate factors using correlation and partial 
correlation analyses, extending forward in 5-day intervals from the 
SOS and EOS dates to the 200th day.

The date when climatic factors had the maximum absolute value 
of the correlation coefficient was defined as the preseason date when 
the phenological parameters were most correlated with climatic 
factors. The pixels that reached 95% significance were found according 
to correlation coefficient significance reference table. The partial 
correlation formula is:
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where R12 3( )  is the partial correlation coefficient between  
variable 1 and variable 2 after controlling for the linear effect of variable 
3; R12 ,  R13, and R23  are correlation coefficients between variable 1 
and variable 2, variable 1 and variable 3, and variable 2 and variable 3, 
respectively.

3. Results

3.1. Temporal variation of photosynthetic 
and greenness phenology

From Figure 2, SOSCSIF and SOSEVI derived by DL from 2003 
to 2019 showed advancement at the rate of-0.469 days/year 
(p < 0.01) and-0.324 days/year (p < 0.05), respectively, indicating 
that the rate of change of SOSCSIF was greater than that of SOSEVI 
over time. Then, EOSCSIF and EOSEVI derived using DL were 
delayed at the rates of 0.218 days/year (p < 0.05) and 0.023 days/
year (p  > 0.05), respectively over time, where the delay rate of 
EOSCSIF was clearly higher than that of EOSEVI. Finally, GSLCSIF 
(0.675 days/year, p < 0.01) still lengthened at a greater rate than 
GSLEVI (0.216 days/year, p > 0.05) over time. The change rates of 
SOSCSIF, EOSCSIF, and GSLCSIF were more than the change rates of 
SOSEVI, EOSEVI, and GSLEVI over time. Moreover, the rate of change 
of SOSGOSIF, EOSGOSIF, and GSLGOSIF compared with SOSEVI, EOSEVI, 
and GSLEVI was consistent with the findings of the rate of change 
of SOSCSIF, EOSCSIF, and GSLCSIF compared with SOSEVI, EOSEVI, and 
GSLEVI (Supplementary Figure S1). In summary, the rate of change 

in photosynthetic phenology (SOS, EOS, and GSL) derived from 
SIF over time was greater than the rate of change in greenness 
phenology (SOS, EOS, and GSL) derived from EVI over time.

3.2. Spatial variation of photosynthetic and 
greenness phenology

SOSCSIF (or SOSGOSIF) were dated from mid-April to May 
(Figure 3A and Supplementary Figure S2A), but SOSEVI was dated 
from late March to mid-April (Figure  3D), with a clear spatial 
pattern in which the croplands were apparently later than the natural 
vegetation (Figures  1, 3A,D and Supplementary Figure S2A). 
Meanwhile, From Figure 3G and Supplementary Figure S2J, SOSEVI 
was earlier than SOSCSIF (or SOSGOSIF), with mean values of 99.69, 
122.68, and 130.31 days, respectively. EOSCSIF (or EOSGOSIF) and 
EOSEVI showed an increasing trend from north to south (Figures 4B,E 
and Supplementary Figure S2B), but EOSEVI (mean 283.26 days) was 
later than EOSCSIF (mean 281.76 days) and EOSGOSIF (281.48 days) 
(Figure 3H and Supplementary Figure S2H). The croplands’ SOS was 
later than natural vegetation and GSLCSIF (or GSLGOSIF) was also 
markedly shorter than natural vegetation for croplands (Figure 3C 
and Supplementary Figure S2C), but GSLEVI did not perform clearly 
(Figure 3F). In terms of the length of GSL, from longest to shortest 
growing period were GSLEVI (185.62 days), GSLGOSIF (158.81 days), 
and GSLCSIF (151.65 days) (Figure 3I and Supplementary Figure S2I). 
Overall, SOSEVI spanned about 2 months. EOSCSIF and EOSGOSIF were 
shorter (about 1 month), but EOSEVI spanned 2.5 months. GSLCSIF 
and GSLGOSIF had an 80-day spanned. GSLEVI spanned 100 days. The 
results showed that the length of the greenness phenology growth 
period represented by EVI was greater than that characterized by 
SIF for photosynthetic phenology.

Next, we  further analyzed the trends of SOS, EOS, and GSL 
pixels level derived from CSIF, GOSIF, and EVI, respectively, from 
2003 to 2019. From Figure 5G and Supplementary Figure S3G, most 
areas of SOSCSIF, SOSGOSIF, and SOSEVI showed an early trend, with 
87.9, 89.2, and 82.4% of the areas advanced, respectively, of which 
35.1, 44.4, and 22.0% of the pixels reached 95% significant level, 
respectively (Figures 5A,D and Supplementary Figure S3A). From 
Figure  5K and Supplementary Figure S3K, the areas of EOSCSIF, 
EOSGOSIF, and EOSEVI delays varied widely, with 75.1, 67.8, and 47.0% 
of the pixels showing a delayed trend, respectively, and the 
percentage of those reaching the 95% significance level was also 
smaller, 17.0, 13.7, and 1.9%, respectively (Figures  5B,E and 
Supplementary Figure S3B). Comparison between SOS and EOS 
revealed that the area of SOS advancement and the percentage of 
reaching 95% significance were both obviously larger than the area 
of EOS delay and the percentage of reaching 95% significance. From 
Figure  5I and Supplementary Figure S3I, GSLCSIF, GSLGOSIF, and 
GSLEVI showed a lengthened trend, with 90.6, 90.5, and 56.5% of the 
area showing a lengthened trend, respectively, of which 43.6, 43.7, 
and 3.8% of the pixels reached the 95% significance level 
(Figures 5C,F and Supplementary Figure S3C). The spatial variations 
of CSIF and GOSIF-derived phenological parameters were highly 
consistent, and the spatial trends between CSIF (or GOSIF) and 
EVI-extracted SOS were universally consistent. The results showed 
that the spatial patterns of photosynthetic phenology and greenness 
phenology differed to some extent, especially EOS and GSL.
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FIGURE 2

Trend of SOS, EOS, and GSL based on DL extraction of CSIF and EVI datasets.

A B C

D E F

G H I

FIGURE 3

Spatial patterns of SOS, EOS and GSL means based on DL extracted CSIF and EVI datasets. (A–C) Spatial patterns of SOS, EOS, and GSL derived CSIF; 
(D–F) Spatial patterns of SOS, EOS, and GSL derived EVI; (G–I) Violin plots, where red dots indicate means, black rectangular boxes cover the 
interquartile range, and thin black lines reach the 5th and 95th percentiles.
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3.3. Climatic determinants of 
photosynthetic and greenness phenology

Ts and SM are necessary for vegetation growth. Ts and SM affect 
vegetation photosynthesis under climate change (Zhang et al., 2010; 
Chong et al., 2017; Dang et al., 2022; Haerani et al., 2023; Zhao et al., 
2023). Thus, the correlation and partial correlation analysis were used 
to explore the correlation between phenological parameters and 
preseason Ts and SM. From Figure  6, the correlation coefficients 
between SOS, EOS derived from CSIF, EVI, respectively, and preseason 
Ts, SM showed increasing then decreasing trends, respectively. Studies 
have shown that Ts and precipitation before the occurrence of 
phenology events play a key role in regulating phenology (Ge et al., 
2015; Cao et al., 2018; Ren et al., 2019). This paper showed that the 
maximum correlation coefficients between SOSEVI and preseason Ts 
were reached at the cumulative mean Ts of 2–3  months using 
correlation and partial correlation coefficients analysis (Figure  6), 
which was consistent with the existing study (Wu and Liu, 2013). But 
SOSCSIF reached the maximum correlation about 1 month earlier than 
SOSEVI (Figure  6). Compared to Ts, the correlation coefficients 
between SOSCSIF and preseason SM (months 5–6) took longer to reach 
maximum correlation (Figure 6), which was consistent with previous 
finding (Piao et  al., 2006). However, SOSEVI was consistent with 
preseason SM and Ts. The maximum correlation coefficient was 

reached between EOS and preseason Ts, SM ranging from 20 to 
60 days. And the timing of the maximum correlation coefficients 
between EOSCSIF, EOSEVI and preseason Ts, SM was generally consistent 
(Figure 6). In addition, SOSGOSIF and EOSGOSIF were consistent with the 
responses of SOSCSIF and EOSCSIF to preseason Ts and SM (Figure 6 and 
Supplementary Figure S4).

We further analyzed the spatial distribution of correlation 
coefficients between SOS, EOS and preseason Ts, SM from the pixel 
level. From Figure  4I, SOSCSIF and SOSEVI were mostly positively 
correlated with Ts, with mean values of 0.153 and 0.237, respectively. The 
positive correlation coefficients between SOSCSIF, SOSEVI and Ts were 
67.2 and 78.1% of the area, respectively, with positive correlation 
coefficients reaching 95% significance level accounting for 20.2 and 
18.8% of the total number of pixels, respectively. The negative correlation 
coefficients between Ts and SOSCSIF, SOSEVI were mainly concentrated in 
the southeast of the pixels (Figures  4A,E). However, most areas of 
correlation coefficients between Ts and EOSCSIF, EOSEVI were negative 
with mean values of-0.229 and-0.209, respectively (Figure 4J). The area 
of negative correlation coefficients between EOSCSIF, EOSEVI and Ts were 
77 and 80.1%, respectively, where the negative correlation coefficients 
reached 95% significance levels of 21.4 and 11.9% of the total number of 
pixels (Figures 4B,F). Compared to Ts, the correlations of SM with SOS 
and EOS were generally opposite, i.e., while SM was negatively correlated 
with SOS, SM was positively correlated with EOS (Figures 4K,L). The 

A B C D

E F G H

I J K L

FIGURE 4

Spatial patterns of correlations between SOS and EOS extracted from CSIF and EVI and pre-season Ts, SM. (A–D) Spatial patterns of correlation 
coefficients between SOS, EOS derived CSIF and preseason Ts, SM; (E–H) Spatial patterns of correlation coefficients between SOS, EOS derived EVI 
and preseason Ts, SM; (I–L) Violin plots, where red dots indicate the mean, black rectangular boxes cover the interquartile range, and thin black lines 
reach the 5th and 95th percentiles. The black dot markers indicate that the 95% significance level was reached.
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mean values of the correlation coefficients between SOSCSIF, SOSEVI and 
SM were −0.237 and −0.287, respectively, with the areas of negative 
correlation accounting for 81.7 and 86.1%, respectively, of which the 
areas reaching 95% significance level were 15.6 and 19.8%, respectively, 
and the areas reaching significance were mainly distributed in the 
middle (Figures 4C,G). The mean values of SM correlation coefficients 
with EOSCSIF, and EOSEVI were 0.1 and 0.0003, respectively (Figure 4L), 
with positive correlations of 60.4% (15.5% reaching 95% significance 
level) and 49.6% (1.9% reaching 95% significance level), respectively, 
concentrated in the southwest, upper center, and southeast. In addition, 
SOSGOSIF, EOSGOSIF and SOSCSIF, EOSCSIF responded consistently  
with pre-season Ts and SM at the pixel scale (Figure  4 and 
Supplementary Figure S5). The analysis at the pixel scale showed that the 
SM affected a larger area for SOS, but Ts affect a much larger area of EOS.

Next, we analyzed the spatial distribution between SOS, EOS and 
preseason Ts, SM using partial correlation (Figure 7). The overall partial 
correlation coefficients between preseason Ts and SOSCSIF [59.9% 
(12.75% reaching 95% significance level)], SOSEVI [74% (14.3% reaching 
95% significance level)] were positive, where the mean values of the 
partial correlation coefficients were 0.081 and 0.197, respectively. The 

area of negative partial correlation between preseason Ts and SOSCSIF, 
SOSEVI were 40.1% (6.6% reaching 95% significance level) and 26% 
(0.6% reaching 95% significance level), respectively, concentrated in the 
southeast (Figures 7A,E,I). Compared to SOS, the partial correlations 
between preseason Ts and EOSCSIF [75.1% (18.5% reaching 95% 
significance level)] and EOSEVI [83% (12.3% reaching 95% significance 
level)] were overall negative, where the mean values of the partial 
correlation coefficients were −0.212 and −0.235 (Figures 7B,F,J). In 
addition, the partial correlations between preseason SM and SOSCSIF, 
SOSEVI were mostly negative. The mean values of the partial correlation 
coefficients between preseason SM and SOSCSIF, SOSEVI were −0.228 and 
−0.252, respectively, with the proportion of negative correlations for the 
pixels being 81.8% (13.2% reaching 95% significance level) and 82.2% 
(14.5% reaching 95% significance level), respectively (Figures 7C,G,K). 
However, the area of preseason SM positively correlated with EOSCSIF 
and EOSEVI were 58.5 and 47.6%, respectively, with 12.8 and 2.1% 
reaching the 95% significance level. Preseason SM was negatively 
correlated with EOSCSIF and EOSEVI with an area of 41.5% (5.8% reaching 
95% significance level) and 52.4% (2% reaching 95% significance level), 
respectively. The area of positive and negative effects of preseason SM 
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FIGURE 5

Spatial patterns of SOS, EOS, and GSL change rates and significance based on DL extracted CSIF and EVI datasets. (A–C) Spatial patterns of SOS, EOS, 
and GSL derived CSIF temporal rates of change and significance; (D–F), Spatial patterns of SOS, EOS, and GSL derived EVI temporal rates of change 
and significance; (G–I) Violin plots, where red dots indicate means, black rectangular boxes cover the interquartile range, and thin black lines reach the 
5th and 95th percentiles.

https://doi.org/10.3389/ffgc.2023.1172220
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Dang et al. 10.3389/ffgc.2023.1172220

Frontiers in Forests and Global Change 08 frontiersin.org

A B C D

E F G H

I J K L

FIGURE 7

Spatial patterns of partial correlations between SOS and EOS extracted from CSIF and EVI and preseason Ts, SM. (A–D) Spatial patterns of partial 
correlation coefficients between SOS, EOS derived CSIF and preseason Ts, SM; (E–H) Spatial patterns of partial correlation coefficients between SOS, 
EOS derived EVI and preseason Ts, SM; (I–L) Violin plots, where red dots indicate the mean, black rectangular boxes cover the interquartile range, and 
thin black lines reach the 5th and 95th percentiles. The black dot markers indicate that the 95% significance level was reached.

FIGURE 6

Correlation coefficients and partial correlation coefficients between CSIF, EVI derived SOS, EOS, respectively and pre-season Ts, SM over time.

https://doi.org/10.3389/ffgc.2023.1172220
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Dang et al. 10.3389/ffgc.2023.1172220

Frontiers in Forests and Global Change 09 frontiersin.org

on EOS was approximately equal. The negative effects of preseason SM 
on EOSCSIF were mainly concentrated in the north, but the negative 
effects on EOSEVI were dispersed over the whole study area. Moreover, 
the partial correlation coefficients between preseason SM and EOSCSIF 
(0.079) and EOSEVI (−0.007) were around 0 (Figures 7D,H,L). Moreover, 
the partial correlation between SOSGOSIF, EOSGOSIF and SOSEVI, EOSEVI 
with pre-season Ts, SM compared with CSIF of phenology vs. EVI of 
phenology was highly consistent (Figure 7 and Supplementary Figure S6). 
Thus, the results indicated that the preseason SM affected SOS over a 
larger area, but EOS was more influenced by Ts.

4. Discussion

4.1. Comparison of photosynthesis and 
greenness phenology

Studies have found that there were systematic differences between 
photosynthetic and greenness phenology (Figures 2, 3). SOSEVI was 
earlier than SOSCSIF (or SOSGOSIF), but EOSEVI was later than EOSCSIF 
(or EOSGOSIF), resulting in greenness phenology growing 
approximately 20 days longer than photosynthetic phenology 
(Figure 3 and Supplementary Figure S2), which was consistent with 
the results of existing studies (Jeong et al., 2017; Meng et al., 2021). 
Moreover, the rate of change of photosynthetic phenology over time 
was 1.4–3.1 times greater than that of greenness phenology (Figure 2 
and Supplementary Figure S1), which agreed with the results of 
existing work (Wang et al., 2019). The LUE model is available to 
explain the different performances in terms of EVI and SIF phenology 
(Walther et al., 2016; Yang et al., 2022). EVI is a robust proxy for 
fraction of absorbed photosynthetically active radiation (FAPAR) 
(Myneni and Williams, 1994) where not all photosynthetically active 
radiation (PAR) absorbed by the vegetation canopy is used for 
photosynthesis (Zhang et  al., 2018c) but only light absorbed by 
chlorophyll is used for photosynthesis. The timing of photosynthesis 
in spring is later than the timing of growing leaves, which varies with 
leaf structure and longevity (Kikuzawa, 2003). Photosynthesis stops 
between chlorophyll reduction and leaf abscission due to light 
limitation (Daumard et al., 2010; Medvigy et al., 2013; Zhang et al., 
2020). Also, there are differences in the phenology curves of SIF and 
EVI; both SIF and EVI are single-peaked curves, with the single peak 
of the SIF curve being steeper than that of EVI, and EVI decline in 
autumn slightly later than SIF resulting in a later autumn phenology 
extraction (Walther et al., 2016; Liu et al., 2018). In addition, SOSCSIF 
(or SOSGOSIF) was highly consistent with SOSEVI in terms of spatial 
trends (Figures 3, 5 and Supplementary Figures S2, S3), however, 
EOSCSIF (or EOSGOSIF) was somewhat different from EOSEVI in terms 
of spatial trends (Figures 3, 5 and Supplementary Figures S2, S3), 
which was consistent with the available findings (Meng et al., 2021). 
The FAPAR by chlorophyll is the dominant factor in spring 
photosynthetic phenology, while the total amount of 
photosynthetically active radiation absorbed by chlorophyll is the 
dominant factor in autumn when radiation determines 
photosynthetic phenology (Yang et  al., 2022). Besides, autumn 
photosynthetic phenology is controlled by photoperiod, even if the 
leaves remain green (Bauerle et al., 2012). Therefore, there were some 
differences between the photosynthetic phenology of SIF and the 
greenness phenology of EVI using the same method of extraction.

4.2. Comparison of photosynthetic and 
greenness phenology in response to 
pre-season climatic determinants

We explored the spatial distribution of preseason Ts or SM with 
phenological parameters (SOS and EOS) using both correlation analysis 
and partial correlation analysis, and the results showed that the results 
of correlation analysis and partial correlation analysis were in high 
consistency (Figures 4, 7 and Supplementary Figures S5, S6). The spatial 
patterns of SOSCSIF (or SOSGOSIF), SOSEVI with preseason Ts or SM 
showed high consistency, but the spatial patterns of EOSCSIF (or EOSGOSIF) 
with preseason Ts or SM were somewhat different from those of EOSEVI 
with preseason Ts or SM. It may be related to the fact that SIF curves are 
more similar to NDVI in spring than in autumn (Jeong et al., 2017). In 
contrast to the greenness phenology information identified by EVI, SIF 
is mechanistically related to photosynthesis so it can rapidly respond to 
almost any factor that regulates photosynthetic activity (Porcar-Castell 
et al., 2014). This is because the photosynthetic phenology derived from 
SIF can also be constrained by environmental stress, as indicated by 
environmental factors in the LUE model (Monteith, 1972).

4.3. Limitations and outlook

This paper only considered the effects of Ts and SM on vegetation 
phenology. For vegetation phenology, radiation (Cong et al., 2017; 
Zhang et  al., 2020), photoperiod (Basler and Korner, 2014), and 
accumulated temperature (Fu et al., 2013; Vitasse et al., 2017) may play 
more important roles. For example, the effect of radiation on 
photosynthetic phenology and greenness phenology varied 
considerably, especially at high latitudes in the Northern Hemisphere 
where photosynthetic phenology was affected by radiation limitation 
(Zhang et al., 2020). In addition, the study area included a larger crop 
area and anthropogenic influences on phenology were not considered. 
It is difficult to know how much each of the multiple influencing factors 
contributes, especially considering the coupling of solar radiation, 
human activities, and climatic environmental factors on vegetation 
phenology is difficult to distinguish their respective contributions. 
Third, the low spatial resolution of SIF used in this study is subject to 
scale effects (Liu et al., 2019; Shao et al., 2021), making it necessary to 
use high-resolution remote sensing data to derive vegetation phenology 
for the study. Finally, the impact of urban expansion (Zhuang et al., 
2022a) and salinization (Zhuang et al., 2021, 2022b), which affect the 
photosynthesis of vegetation and cause changes in phenology, may also 
be considered. Therefore, future work will investigate the mechanisms 
and future predictions of climatic conditions on phenology evolution, 
the effects of urbanization and land use change on phenology and the 
combined effects of lag and scale effects on photosynthetic and 
greenness phenology.

5. Conclusion

In the study, DL was used to derive vegetation greenness and 
photosynthetic phenology to explore their spatial and temporal 
patterns and the relationship between pre-season climate 
determinants. The spatial and temporal variation of photosynthetic 
phenology extracted based on SIF and greenness phenology extracted 
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by EVI were analyzed, and the results showed that there were 
systematic differences between photosynthetic and greenness 
phenology. The greenness phenology averages about 20 days longer 
than the photosynthetic phenology averages. Moreover, the rate of 
change of photosynthetic phenology over time was 1.4–3.1 times 
greater than that of greenness phenology. In addition, the results 
showed that photosynthetic phenology and greenness phenology 
were influenced by the same main factors. For spring greenness and 
photosynthetic phenology were highly consistent with pre-season Ts 
and SM, but for autumn greenness and photosynthetic phenology 
varied somewhat to pre-season Ts and SM. This study will help to 
better understand the differences between changes in vegetation 
greenness and photosynthetic phenology and their response to 
climatic factors, as well as to better employ vegetation phenology in 
the estimation of gross vegetation productivity.
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