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Introduction: Plantation forest is an important component of global forest

resources. The accurate estimation of tree aboveground biomass (AGB) in

plantation forest is of great significance for evaluating the carbon sequestration

capacity. In recent years, UAV-borne LiDAR has been increasingly applied to forest

survey, but the traditional allometric model for AGB estimation cannot be directly

used without the diameter at breast height (DBH) of individual trees. Therefore,

it is practicable to construct a novel allometric model incorporating the crown

structure parameters, which can be precisely extracted from UAV LiDAR data.

Additionally, the reduction e�ect of adjacent trees on crown area (Ac) should be

taken into account.

Methods: In this study, we proposed an allometric model depending on the

predictor variables of Ac and trunk height (H). The UAV-borne LiDAR was utilized

to scan the sample plot of dawn redwood (DR) trees in the test site. The raw point

cloud was first normalized and segmented into individual trees, whose Acs and Hs

were sequentially extracted. Tomitigate the e�ects of adjacent trees, the initial Acs

were corrected to refer to the potential maximum Acs under undisturbed growth

conditions. Finally, the corrected Acs (Acc) and Hs were input into the constructed

allometric model to achieve the AGBs of DR trees.

Results and discussion: According to accuracy assessment, coe�cient of

determination (R2) and rootmean square error (RMSE) of extractedHswere 0.9688

and 0.51m; R2 and RMSE of calculated AGBs were 0.9432 and 10.91 kg. The

unrestricted growth parts of the tree crowns at the edge of a plantation forest

could be used to derive the potential maximum Ac. Compared with the allometric

models for AGB estimation relying only on trunk H or on initial Ac and H, the novel

allometric model demonstrated superior performance in estimating the AGBs of

trees in a plantation forest.

KEYWORDS

plantation forest, aboveground biomass (AGB), UAV-borne LiDAR, allometricmodel, trunk

height, crown area

1. Introduction

Plantation forestry is gradually becoming a significant component of global forest

resources (FAO, 2020) and is playing an increasingly crucial role in the global carbon cycle

(Fang et al., 2001; Lal, 2005; Chen et al., 2011; Lun et al., 2018; Diao et al., 2022). More

importantly, the contribution of plantation forest is expected to surpass that of natural

forest in carbon neutralization (Justine et al., 2015; Chen et al., 2022). As the key indicator,
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the aboveground biomass (AGB) of a forest is vital for

quantitatively estimating its carbon sequestration (Dubayah et al.,

2010; Chen et al., 2015; Li et al., 2015; Dube and Mutanga, 2016;

Lu et al., 2017; Su et al., 2020). Furthermore, the tree AGB is the

primary component of the total biomass of a plantation forest

(Ming et al., 2012; Yu et al., 2013; Zheng et al., 2014; Li, 2019; Guo

et al., 2022). Therefore, the accurate AGB estimation of trees in

plantation forest is of great significance for evaluating its carbon

sequestration capacity and ecological service functions.

As an active remote sensing technology, light detection and

ranging (LiDAR) has stronger penetrability and can overcome the

problem of signal saturation in synthetic aperture radar (SAR) and

optical remote sensing (Lu et al., 2014; Hu et al., 2016; Nie et al.,

2017; Jiang et al., 2020; Su et al., 2020). It can obtain detailed

information on the three-dimensional (3D) spatial structure of a

forest and the underlying terrain (Popescu et al., 2002; Hilker et al.,

2010; Li et al., 2016). Hence, it is a more effective tool to study

the extraction of structure parameters of individual trees and the

indirect estimation of forest AGB in various forest environments

(Hu et al., 2016; Nie et al., 2017; Jiang et al., 2020; Lu et al.,

2020; Xu et al., 2021). According to the carrying platform, LiDAR

deployments can be classified into four types: space-borne laser

scanner (SLS), airborne laser scanner (ALS), vehicle-borne laser

scanner (VLS), and terrestrial laser scanner (TLS) (Wu et al., 2013;

Chen et al., 2021). Due to the reference beam divergence, the

footprint of individual pulses from SLS is on a scale of several

meters in diameter (Gong et al., 2011; Sun et al., 2011), making

it nearly impossible to identify individual trees in a forest. The

platform movement of VLS can be blocked by floor obstacles

(Beland et al., 2019), resulting in limited spatial coverage for the

data collection of a forest. The poor mobility and complex field

operations of TLS restrict repeated surveys for a large forest (Wu

et al., 2013; Jiang et al., 2022). In contrast, ALS can provide accurate

and dense measurements of multiple forest types with a large

spatial coverage (Wu et al., 2013; White et al., 2016). Particularly,

unmanned aerial vehicle (UAV)-borne LiDAR has the advantages

of higher precision data, lower cost, and stronger maneuverability,

and is optimal for forest AGB estimation at the single tree scale (Liu

et al., 2018; Wu et al., 2019; Wang et al., 2020; Chen et al., 2021).

The tree biomass equation is the most common and efficient

method for non-destructively estimating forest AGB at the

individual tree scale (Alvarez et al., 2012; Chave et al., 2014; Paul

et al., 2016; Luo et al., 2020) and is generally realized by establishing

the allometric relationship between the structure parameters of

individual trees and the AGBs. Theoretically, both trunk height

(H) and diameter at breast height (DBH) affect the tree AGB

(Allouis et al., 2011; Paul et al., 2016; Shi and Liu, 2017). DBH is

the most pivotal and commonly used predictor in the allometric

equations for tree AGB estimation (Alvarez et al., 2012; Paul et al.,

2016; Fu et al., 2018), but it cannot be directly obtained using

UAV-borne LiDAR (Allouis et al., 2011; Wu et al., 2013; Lu et al.,

2020; Xu et al., 2021). H can be directly and accurately extracted

from the UAV LiDAR data (Wallace et al., 2014; Liu et al., 2018;

Lu et al., 2020; Ma et al., 2022) and can be utilized as the only

predictor to construct the allometric equation to estimate the

tree AGB (Blujdea et al., 2012; Goodman et al., 2013; Lin et al.,

2018). However, the single parameter H will unavoidably introduce

uncertainties into the resulting AGB. The structure parameters

reflecting the size and shape of the tree crown (e.g., crown height,

crownwidth, crown diameter, crown projection area, crown surface

area, and crown volume) have also exhibited certain allometric

relationship with the H/DBH of a single tree (Li, 2019). Therefore,

several researchers have tried incorporating crown parameters

into the AGB estimation (Popescu, 2007; Wan-Mohd-Jaafar et al.,

2017; Liu et al., 2021; Lin et al., 2022) and achieved improved

accuracies. However, unlike the DBH, the crown parameters were

seriously affected by neighboring trees, especially in a natural

forest with multiple tree species and uneven ages. Hence, it will

inevitably introduce uncertainties into the estimated AGB using

crown parameters. This problem has been greatly weakened in

plantation forests, which are intensively managed, comprise only

one or two tree species, are even-aged, and are planted at regular

spacing (FAO, 2020).

Nevertheless, not all crown parameters are suitable to be

combined with trunk height to estimate the tree AGB of a

plantation forest. As the point cloud is scanned by UAV-borne

LiDAR from the air, it is difficult to obtain those structure

parameters involving the crown base, including crown height,

crown surface area, and crown volume (Wu et al., 2013; Beland

et al., 2019; Xu et al., 2021). As for crown width and diameter, they

are more suitable for trees with relatively symmetrical crowns. In

contrast, the crown area (Ac) can not only be accurately extracted

from the UAV LiDAR data through individual tree segmentation

(Kuyah et al., 2012; White et al., 2016; Xu et al., 2021) but can also

well reflect the size and shape of tree crowns. Although relatively

uniformly distributed in the plantation forest, the individual trees

at different positions (in the interior or at the edge) are shaded or

squeezed to different extents by adjacent tree crowns. Hence, the

Acs of trees with similar trunk heights are not always approximate.

Under undisturbed growth conditions, the Ac and H/DBH of an

individual tree also have a certain allometric relationship (Allouis

et al., 2011; Fu et al., 2018; Li, 2019). Therefore, it is expected

to further enhance the precision of AGB estimation based on Ac

and H by correcting the initial Acs of trees in a plantation forest

according to a unified rule.

In this article, we aim to apply the UAV LiDAR data to extract

and correct Ac and construct a novel allometric model based

on corrected Ac (Acc) and H to precisely calculate the AGB of

plantation trees. The specific objectives comprise (1) establishing

the allometric model based onH to retrieve the potential maximum

Ac of an individual tree under undisturbed growth conditions,

and then combining the initial Ac extracted from the LiDAR

point cloud to derive the Acc with the correction equation; (2)

constructing the allometric model with predictors of Acc and

H to more precisely estimate the AGB of plantation trees with

UAV-borne LiDAR.

2. Test site and materials

2.1. Test site

Located in the Beibei District of Chongqing municipality in

southwest China and close to Jinyun Mountain and Jialing River

(Figure 1a), the test site has elevations varying from 164.52m

to 174.06m (Figure 1b). This region has the characteristics of
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FIGURE 1

(a) Spatial location of the test site; (b) terrain of the test site rendered by elevation; (c) sample DR trees from the horizontal perspective.

a moist monsoon climate in the subtropics, with an average

yearly temperature of 18◦C and an average yearly precipitation

of 1156mm. The research target is one plot of plantation trees

planted along Ma’anxi Creek, and the dawn redwood (DR for

short, Metasequoia glyptostroboides Hu and Cheng) is the only

tree species. Some shrubs and weeds were sporadically distributed

underneath the trees (Figure 1c). Due to its characteristics of

fast growth, high yield, forest formation, and strong adaptability,

the DR tree has been widely cultivated around the world and

categorized as one of the principal afforestation tree species in

China (Ma, 2007). The DR trees in the test site grow in their

natural state and are nearly planted with regular spacing. Their

crowns have a steeple-like shape from the horizontal perspective

and a nearly circular shape from the vertical perspective. Hence,

it is an appropriate site to study the allometric model with

Acc and H as predictors for precisely estimating the AGBs of

plantation trees.

2.2. UAV LiDAR data

In this study, the FEIMA D2000 equipped with D-LiDAR2000

(Figure 2A) was used to scan the test site. The quad-rotor drone

has a maximum take-off weight of 3.35 kg and a maximum load

of 750 g. The LiDAR system is a light-weight and high-precision

airborne laser sensor with a weight of 680 g, a measurement

accuracy of up to 3 cm (50m flight height), three returns of each

pulse, and a point frequency of 240 ktps/s. Prior to UAV flight,

the technical parameters were preset as follows: the flight trajectory

was a cross one (Figure 2B), the flight height was 80m above the

ground, both the longitudinal and lateral overlap were 80%, the

flight speed was 5 m/s, and the scanning mode was area scanning.

The raw data acquired by the laser scanner were processed using the

included software to produce a LAS-formatted point cloud with the

coordinate system of WGS84/UTM Zone 48N and a point density

of about 2,800 points/m2 (Figure 2C).
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FIGURE 2

(A) UAV-borne LiDAR system; (B) cross-flight trajectory; (C) resulting 3D point cloud.

2.3. Field-measured data

The data measured in the field were crucial to establishing an

allometric model and assessing the accuracy of the estimated AGBs.

As shown in Figure 3C, 60 DR trees were selected as samples in this

study. Among them, 15 trees marked with cyan points (ID: 1–15)

were used for crown area correction, 30 with black points (ID: 16–

45) were for fitting biomass models, and 15 trees with white points

(ID: 46–60) were for accuracy evaluation. The DBHs and Hs of all

sample trees were measured using a total station (Figure 3A) and a

DBH tape (Figure 3B) separately and are shown in Table 1.

3. Methods

To combine Ac and H to accurately estimate AGBs of DR trees

in the test site, the accurate Ac and an applicable allometric model

with predictors of corrected Ac and H are required. The point

cloud was first normalized using a digital elevation model (DEM),

which was produced from the filtered ground points. Second,

the seed points were generated from the canopy height model

(CHM), which was obtained from classified vegetation points.

Third, individual trees were segmented from the normalized point

cloud using seed points, and their Hs and initial Acs were extracted.

Fourth, the equation for retrieving the potential maximum Ac

of an individual tree under undisturbed growth conditions was

established using the derived maximum Ac and measured H of

those sample trees on the riverside. Fifth, the retrieved maximum

Acs and the initial Acs of all other trees were combined to acquire

the corrected Acs using the correction equation. Finally, the AGBs

of sample DR trees for model fitting were calculated using field-

measured DBHs and Hs and integrated with the corresponding

corrected Acs and measured Hs to construct the novel allometric

model. Thus, the AGBs of DR trees in the test site could be achieved

by importing the corrected Acs and obtained Hs into the newly

constructed allometric model. The entire flow chart is illustrated

in Figure 4.

3.1. Point cloud normalization

To eliminate the influence of topographic relief, the values

in the Z-axis of non-ground points would be normalized from

altitudes relative to sea level to heights relative to the ground. Before

normalization, the LiDAR point cloud (Figure 2C) was tailored

to the test site and removed noise points. The ground points

were separated using the enhanced progressive TIN (triangulated

irregular network) densification algorithm (Zhao et al., 2016). The

point cloud was first gridded, and the lowest points in grid cells

were used as seed points to establish the initial TIN. Then it

was densified on a layer-wise basis via iterated processing until

each ground point meeting the thresholds of iterative distance

and angle (1.4m and 20◦) was found. Subsequently, the resulting

ground points were utilized to produce a raster DEM with the

IDW (inverse distance weighting) interpolation method. Finally,

the normalization was accomplished by subtracting the elevations

of the corresponding DEM pixels from those of non-ground points.

Then, the normalized points were separated into low, medium, and

high vegetation in accordance with the height separation points of

2m and 5m (ASPRS, 2005).
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FIGURE 3

Field measurement: (A) DBH tape for measuring DBH; (B) total station for measuring H; (C) spatial distribution of sample DR trees in the test site.

TABLE 1 Field-measured DBHs and Hs of sample DR trees in the test site.

Tree ID H (m) DBH (cm) Tree ID H (m) DBH (cm) Tree ID H (m) DBH (cm) Tree ID H (m) DBH (cm)

1 16.12 18.06 16 15.82 19.26 31 12.95 14.96 46 15.71 17.51

2 15.31 18.46 17 15.24 19.26 32 12.43 15.41 47 14.07 16.07

3 12.58 15.22 18 15.04 19.99 33 11.32 14.15 48 15.35 17.65

4 16.94 20.53 19 15.94 20.92 34 10.56 12.51 49 14.43 17.06

5 13.83 18.37 20 13.36 15.76 35 13.36 16.71 50 12.99 13.31

6 15.62 19.26 21 13.70 18.62 36 13.39 16.55 51 12.59 13.05

7 15.76 19.74 22 15.50 18.94 37 13.58 16.23 52 12.99 13.85

8 11.97 15.60 23 16.13 19.54 38 11.14 12.71 53 13.26 14.01

9 10.81 12.65 24 15.33 21.80 39 13.16 14.87 54 13.78 15.28

10 15.80 19.32 25 16.46 21.49 40 11.70 12.89 55 13.37 14.16

11 14.97 20.12 26 11.85 14.90 41 13.40 18.14 56 15.96 18.59

12 11.40 13.43 27 14.23 20.44 42 11.38 13.21 57 11.71 12.10

13 14.28 18.53 28 13.38 17.89 43 12.56 15.60 58 13.72 14.36

14 15.08 17.41 29 14.53 18.14 44 11.50 13.85 59 13.15 14.74

15 13.20 15.92 30 12.43 13.37 45 14.72 18.40 60 16.13 16.74

Tree ID 1–15 were for crown area correction, 16–45 for model fitting, and 46–60 for accuracy evaluation.

3.2. Seed point generation

It will improve the accuracy of segmenting individual trees

from the point cloud by using tree tops as seed points. The

local maxima filter (Wulder et al., 2000) is the most typical

and widely applied method for tree top detection. The idea of

this method is to utilize a moving window to search for the

points with the local maximum heights as tree tops. In this

study, a raster CHM was first produced from the classified

vegetation points. In light of field survey and measurement,

the heights to crown bases (HCB) of DR trees in the test

site were no <2.5m. Hence, the CHM pixels, which had
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FIGURE 4

Flow chart of extracting and correcting crown area to precisely estimate AGBs of trees in plantation forest with UAV LiDAR data.

values lower than 2.5m, would be deleted to eradicate the

low vegetation (shrubs and weeds). Afterward, the seed points

were generated by detecting the local maximum heights in the

rest of the CHM pixels through a suitable moving window,

whose size was determined by the crown size and stand

structure characteristics.

3.3. Individual tree segmentation

Individual tree segmentation is the prerequisite for extracting

tree-scale parameters, including trunk height and crown area. In

this study, the segmentation algorithm developed by Li et al. (2012)

was adopted to segment individual trees out of the point cloud

acquired by the UAV-borne LiDAR. The points of two neighboring

trees were sequentially separated and assigned from top to bottom

according to the specified spacing threshold, minimal spacing rule,

and planar outlines of tree crowns. It is very critical to appropriately

set the spacing threshold. When it is too large or too small, the

phenomenon of under-segmentation or over-segmentation will

appear. The common practice is to set the maximum crown radius

in the test site as the spacing threshold. The seed points generated

in the previous subsection were used as individual tree tops. The

normalized elevations of these tree tops were actually their Hs.

The individual DR trees were eventually segmented, and the point

cloud of each tree was separately projected onto a 2D plane to

generate the minimum convex hull. The resulting polygon was

considered the crown outline, and thus its area was the Ac of

the tree.

3.4. Crown area correction

According to the field investigation, the branches of adjacent

DR trees in the test site overlapped each other in various degrees

at different positions (in the interior or at the edge). As a response,

the sizes and shapes of crowns were usually reduced and changed

on the parts shaded and squeezed by adjacent crowns. As indicated

in Figure 5A, tree T1 was at the edge of the forest (on the

riverside), and tree T2 was in the interior. The branches of T1

on the riverside grew unrestricted, but those on the other side

seriously overlapped with T2. Although T2 was slightly taller than

T1, the Ac of T2 was smaller than that of T1 (Figure 5B). Hence,

it was a good practice to correct the initial Acs of trees with

reference to the maximum Acs of trees growing under undisturbed

conditions. The allometric relationship between the potential

maximum Ac and the height of an individual tree needed to

be constructed.
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FIGURE 5

(A) Overlapping crowns of tree T1 at the edge and T2 in the interior of the plantation forest; (B) unrestricted growth part of T1 crown was extracted

using a matching sector.

FIGURE 6

(A) Normalized UAV LiDAR point cloud of the test site; (B) identified individual DR trees with seed points.

Since there were no DR trees completely undisturbed by

neighboring trees in the test site, the maximum Acs could not

be directly obtained. As the growth of a tree crown at the forest

edge was frequently unrestricted in the outward direction, the

outward part of the crown could proportionally derive an entire

Ac that would be taken as the potential maximum Ac of the tree.

As shown in Figure 5B, the tree top of T1 was used as the center

to create a circumcircle covering the entire tree crown, and then

the unrestricted growth part of the crown was extracted using a

matching sector. Afterward, the potential maximumAc of T1 could

be calculated using Eq. (1).

Acmax

Acs
=

πR2

S
(1)

where Acmax is the potential maximum Ac of a tree (m
2), Acs is the

area of the unrestricted part of the crown extracted by the matching

sector (m2), R represents the radius of the circumcircle (m), and S

represents the area of the matching sector (m2).

In this study, the power function (Eq. 2) was determined

as the allometric model for retrieving the maximum Ac

under undisturbed growth conditions (see section 5.1 for

comparisons with other allometric models). By fitting the Hs

and calculating the maximum Acs of sample trees (ID: 1–

15) on the riverside with Eq. (2), the coefficient values would

be determined. Thus, the maximum Acs of all DR trees in

the test site could be obtained by entering the extracted Hs

into Eq. (2).

Acmax = a ·Hb (2)

where Acmax is the maximum Ac of an individual tree (m2), a and b

are model coefficients, andH is the extracted trunk height from the

point cloud (m).

Affected by adjacent crowns, the actual crown size of a DR

tree would shrink to a certain degree, and the corresponding

AGB would be slightly reduced. Therefore, the final Ac
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FIGURE 7

Segmented individual DR trees in the test site: (A) Hs extracted from UAV LiDAR data; (B) Accs calculated on maximum Ac and initial Ac; (C) the AGBs

estimated on H and Acc.

TABLE 2 Hs and initial Acs of sample DR trees extracted from UAV LiDAR data.

Tree ID H (m) Ac (m
2) Tree ID H (m) Ac (m

2) Tree ID H (m) Ac (m
2) Tree ID H (m) Ac (m

2)

1 15.56 17.22 16 14.65 24.42 31 12.38 9.73 46 15.18 13.53

2 15.05 18.67 17 14.68 18.63 32 12.89 17.81 47 13.65 15.01

3 12.96 11.56 18 14.79 19.19 33 11.48 12.50 48 14.87 20.92

4 16.58 27.07 19 15.38 19.55 34 10.39 14.57 49 14.39 19.73

5 13.51 17.28 20 13.03 14.57 35 13.09 16.51 50 12.58 13.36

6 15.07 19.68 21 13.14 17.28 36 12.89 16.08 51 11.98 16.74

7 15.20 17.07 22 15.21 18.35 37 13.09 18.50 52 12.79 14.59

8 11.57 15.62 23 15.66 21.43 38 10.85 9.33 53 12.53 12.03

9 10.32 9.13 24 14.66 26.85 39 12.86 17.08 54 13.16 15.87

10 15.26 21.46 25 15.75 21.83 40 11.31 11.80 55 12.51 17.12

11 14.42 20.47 26 11.98 15.37 41 12.94 24.41 56 15.70 19.96

12 10.66 11.99 27 13.70 23.94 42 11.18 11.21 57 11.23 12.37

13 13.83 24.03 28 13.09 20.56 43 12.11 17.36 58 13.29 15.19

14 14.42 16.33 29 14.04 19.83 44 10.88 16.06 59 12.54 12.29

15 12.49 14.82 30 12.87 15.37 45 13.89 17.58 60 15.52 13.81

Tree ID 1–15 were sample trees for crown area correction, 16–45 for model fitting, and 46–60 for accuracy evaluation.

that was used to estimate the tree AGB should be a value

between the maximum Ac and the initial Ac. Through

repeated experiments, Eq. (3) was proposed as the empirical

equation for crown area correction and demonstrated sound

performance in estimating the AGBs of single DR trees in the

test site.

Acc = Acmax · exp
( Ac
Acmax

)−1 (3)

where Ac is the crown area of an individual tree initially

extracted from a point cloud (m2), Acc is the corrected Ac of

the tree (m2), and Acmax is the potential maximum Ac of the

tree (m2).

3.5. Allometric model for tree AGB
estimation

According to the biomass models for China’s tree species (Luo

et al., 2020), the allometric model on DBH and H suitable for

calculating the AGB of individual DR trees in the test site is

as follows:

W = 0.05488 · (D2H)
0.8583

(4)

where W is single tree AGB (kg), D is trunk DBH (cm), and H is

trunk height (m).
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TABLE 3 R, S, Acs, Acmax, and Ac of sample DR trees (ID: 1–15) on the riverside for crown area correction.

Tree ID R (m) S (m2) Acs (m
2) Acmax (m

2) Ac (m
2) Tree ID R (m) S (m2) Acs (m

2) Acmax (m
2) Ac (m

2)

1 3.5 2.99 2.39 30.74 19.80 9 2.50 2.18 1.71 15.36 10.24

2 3.5 4.81 3.47 27.78 20.02 10 3.50 7.38 6.18 32.21 23.07

3 3.0 3.69 2.84 21.73 13.61 11 3.50 7.17 5.03 27.00 21.20

4 4.0 12.29 8.80 35.98 28.09 12 2.50 2.62 2.31 17.35 12.74

5 3.0 3.77 3.46 25.95 18.58 13 3.50 4.92 3.62 28.29 24.33

6 3.5 6.30 5.01 30.63 21.42 14 3.50 2.99 2.20 28.31 18.54

7 3.5 5.24 4.01 29.48 19.35 15 3.50 4.17 2.69 24.81 16.59

8 3.0 4.79 3.41 20.13 16.09

R was the radius of the circumcircle, S was the area of the matching sector, Acs was the Ac contained in the matching sector, Acmax was the potential maximum Ac , and Acc was the corrected Ac .

FIGURE 8

Fitted curves of individual DR trees: (A) potential maximum Ac derived on H; (B) AGB estimated on Acc and H.

Accordingly, the AGB of DR trees (ID: 16–45) for model fitting

could be obtained by putting their measured Hs and DBHs into

Eq. (4).

As theH could be conveniently obtained fromUAVLiDAR data

and the Acc could be calculated using Eqs. (2, 3) the quantitative

relation between Acc, H, and AGB was required to be established.

The power function (Eq. 5) was determined to be the novel

allometric model for AGB estimation in the study (see section 5.2

for comparison with other allometric models).

W = α · (H · ln (Acc))
β (5)

where W is the individual tree AGB (kg), α and β are model

coefficients, H is trunk height (m), and Acc is the corrected Ac of

the tree (m2).

By fitting the extracted Hs, corrected Acs, and estimated AGBs

of sample trees (ID: 16–45) with Eq. (5), model coefficients α and

β could be ascertained, and the allometric model with predictors

of Acc and H for AGB estimation would be constructed. Hence, the

AGB of each DR tree in the test site could be achieved by putting

the corrected Ac and extracted H into the new allometric model.

4. Results

4.1. Generated seed points

The noise points were first cleaned from the point cloud of

the test site using the software LiDAR360 (https://www.lidar360.

com/). Then, the cleaned point cloud was normalized as Figure 6A,

which represented the surface characteristics of tree crowns.

The two key factors affecting seed point generation were the

resolution of CHM and the size of the moving window for

filtering the local maxima. Through repeated experiments, the

CHM with a resolution of 0.3m was appropriate for this purpose.

With consideration of approximately round crown outlines and

the maximum radius of DR tree crowns in the test site, a

circle with a radius of 3m was utilized to detect the local

maxima of the CHM and generate seed points. According to

the field survey, there were 154 DR trees in the test site.

However, in order to avoid over-segmentation (e.g., crown

overlap) and under-segmentation (e.g., no gap between trees

due to lower vegetation occlusion), 192 local maximum pixels

were finally marked as seed points (Figure 6B) to improve the

segmentation accuracy.
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TABLE 4 Acmax and Acc of sample DR trees for model fitting (ID: 16–45) and accuracy evaluation (ID: 46–60).

Tree ID Acmax (m
2) Acc (m

2) Tree ID Acmax (m
2) Acc(m

2) Tree ID Acmax (m
2) Acc (m

2) Tree ID Acmax (m
2) Acc (m

2)

16 31.18 25.10 28 23.52 20.74 40 18.74 12.94 52 22.35 15.79

17 29.27 20.35 29 27.01 20.70 41 23.56 24.42 53 23.14 14.32

18 28.63 20.59 30 20.76 16.01 42 17.88 12.31 54 24.70 17.28

19 31.56 21.57 31 22.26 12.68 43 21.13 17.67 55 23.49 17.91

20 23.45 16.06 32 20.76 18.01 44 18.20 16.18 56 31.66 21.88

21 24.46 18.24 33 17.72 13.20 45 27.59 19.20 57 18.77 13.35

22 30.12 20.38 34 15.76 14.62 46 30.81 17.59 58 24.53 16.76

23 32.23 23.05 35 23.44 17.44 47 25.57 16.92 59 22.83 14.38

24 29.56 26.97 36 23.55 17.15 48 29.63 22.08 60 32.22 18.20

25 33.32 23.60 37 24.10 19.10 49 26.70 20.57

26 19.14 15.72 38 17.25 10.90 50 22.37 14.95

27 26.08 24.03 39 22.87 17.75 51 21.20 17.18

Acmax was the potential maximum Ac , and Acc was the corrected Ac .

4.2. Segmented individual trees

According to field observation and measurement, the Hs,

HCBs, and crown radiuses of DR trees in the test site were no

<5m, no <2.5m, and no more than 3m, respectively. Therefore,

the normalized point cloud was used to segment individual trees

based on seed points, with a minimum trunk height of 5m, an

aboveground height of 2.5m, and a spacing threshold of 3m. As

a result, 154 DR trees in the test site were correctly identified

(Figure 6B), and their Hs and initial Acs were also obtained. The

extracted Hs ranged from 8.14m to 16.58m (Figure 7A), with an

average value of 12.74m. The extracted initial Acs and Hs of DR

trees in the test site are listed in Table 2.

4.3. Corrected crown areas

To obtain the potential maximum Acs of sample DR trees (ID:

1–15) on the riverside for crown area correction, the radiuses of

their crown circumcircles, the areas of thematching sectors, and the

parts of crown areas contained in the matching sectors were input

into Eq. (1). The three parameters and the resulting maximum

Acs were listed in columns R, S, Acs, and Acmax of Table 3. Then,

the calculated maximum Acs and the measured Hs in Table 1

were utilized to fit Eq. (2). The model coefficients a and b were

ascertained as 0.2962 and 1.6863, respectively. Thus, the allometric

model for retrieving the potential maximum Ac of a DR tree under

undisturbed growth conditions based on H was as follows:

Acmax = 0.2962 ·H1.6863 (6)

where Acmax is the potential maximum Ac of a single tree (m
2), and

H is the trunk height (m).

As indicated in Figure 8A, the coefficient of determination (R2)

of individual tree Acmaxs derived by Eq. (6) was 0.9572, and root

mean square error (RMSE) was 1.22 m2. Since R2 was so close to

1.0 and RMSE was far below the mean Ac of 26.37 m
2, the potential

maximum Ac and the measured H were soundly fitted.

The extracted Hs of other DR trees in the test site were input

into Eq. (6) to obtain the corresponding maximum Acs. Then the

calculated maximumAcs and the initial Acs extracted by individual

tree segmentation were input into Eq. (3) to obtain the finally

corrected Acs of all DR trees in the test site (Figure 7B). The

corrected Acs varied from 7.58 m2 to 33.11 m2, with a mean value

of about 17.32 m2. The maximum Acs and corrected Acs of sample

trees (ID: 16–60) were listed in columns Acmax and Acc of Table 4,

respectively. Comparedwith the initially extracted Ac, the corrected

Ac increased by 1.29 m2 on average.

4.4. Estimated AGBs

The AGBs of DR trees in Table 5 for model fitting were first

calculated with Eq. (4) based on the measured DBHs and Hs

in Table 1. Then, the estimated AGBs and their corresponding

measured Hs in Table 1 and the corrected Ac in Table 4 were

utilized to fit Eq. (5). The model coefficients α and β were

ascertained as 0.0511 and 1.9486, respectively. Thus, the allometric

model for estimating the DR tree AGB according to corrected Ac

and H was as follows:

W = 0.0511 · (H · ln (Acc))
1.9486 (7)

whereW is the tree AGB (kg), H is the trunk height (m), and Acc is

the corrected Ac of the tree (m
2).

As indicated in Figure 8B, R2 and RMSE of individual tree

AGBs calculated by Eq. (7) were 0.9477 and 6.04 kg, respectively.

Since R2 was so close to 1.0 and RMSE was far below the

mean AGB of 68.36 kg, the calculated AGB and the product of

H and logarithmic Acc were soundly fitted. Then, the extracted

Hs and corrected Acs of other DR trees were input into Eq.

(7) to obtain their AGBs. The resulting AGBs varied from
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12.03 kg to 131.45 kg (Figure 7C) with a mean value of 58.06 kg,

and the AGB of DR trees in the test site was nearly 8.9 t

in total.

4.5. Accuracy evaluation

In this study, the accuracy of trunk Hs extracted from

the point cloud scanned by UAV-borne LiDAR was first

evaluated. The Hs of sample DR trees (Figure 3C) are

shown in Table 2, and the corresponding measured Hs

are shown in Table 1. As indicated in Figure 9A, R2 and

RMSE of the resulting Hs were 0.9688 and 0.51m, implying

that the Hs extracted from UAV LiDAR data had sound

accuracy. The Acs of sample DR trees that were initially

extracted and subsequently corrected are listed in Tables 2, 4,

respectively.

For the purpose of evaluating the accuracy of calculated AGBs

by the newly constructed allometric model on corrected Ac and H,

the AGBs of sample DR trees (ID: 46–60) were calculated using Eqs.

TABLE 5 Calculated AGBs of sample DR trees using Eq. (4) for model

fitting.

Tree ID AGB (kg) Tree ID AGB (kg) Tree ID AGB (kg)

16 94.16 26 47.27 36 62.94

17 91.19 27 95.20 37 61.61

18 96.13 28 71.88 38 34.14

19 109.21 29 79.02 39 51.56

20 57.71 30 40.91 40 36.49

21 78.55 31 51.42 41 73.70

22 89.91 32 52.19 42 37.15

23 98.22 33 41.62 43 53.79

24 113.41 34 31.73 44 40.64

25 117.55 35 63.84 45 81.81

(4) and (7), respectively (Table 6). As indicated in Figure 9B, R2

and RMSE were 0.9432 and 10.91 kg, implying a high correlation

between the AGB calculated on Acc and H and that on DBH

and H.

5. Discussion

5.1. Relationship between trunk height and
crown area

In the study, the maximum Ac of a tree referred to the crown

area of the tree that grew under undisturbed conditions and was

used to correct the initial Ac to mitigate the impacts from adjacent

trees. As the potential maximum Acs of most trees could not be

directly obtained, the power function with trunk height (H) as

the base (Eq. 6) was suggested to retrieve them in section 3.4. It

was based on the fact that the crown area of a tree exhibited a

certain allometric relationship with H under undisturbed growth

conditions (Enquist and Niklas, 2001; Hulshof et al., 2015; Shi

and Liu, 2017). The fitting data for the maximum Ac retrieval

model were frequently collected from the trees at the edge or in

sparsely distributed parts of the plantation forest. Actually, the

other three possible retrieval models for the maximum Ac with

the variable of “H” had also been tested, comprising exponential

function, linear function, and logarithmic function. The measured

Hs in Table 1 and the derived maximum Acs in Table 3 of sample

trees (ID: 1–15) were utilized to fit them separately. The fitting

degree has a positive correlation with the value of R2. The fitted

curves are indicated in Figures 10A–C, and the resulting R2 were

0.9433, 0.954, and 0.9545. R2 of all models demonstrated a good

positive relationship between potential maximum Ac and H, which

was in accordance with other studies (Liu et al., 2019; Zhao

et al., 2021). With the highest R2, the power function model

adopted in this study (Eq. 6) was optimal for expressing the

allometric growth relationship between the potential maximum Ac

and H.

FIGURE 9

Accuracy evaluation of sample DR trees: (A) Hs extracted from UAV LiDAR data; (B) AGBs estimated on H and Acc.
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5.2. Comparison of various allometric
models for tree AGB estimation

To achieve a precise AGB calculation of plantation trees, it is

significant to construct a suitable allometric model with predictors

that could be obtained by UAV-borne LiDAR. According to section

3.5, the power function with “H · ln(Acc)” as the base was suggested

as the allometric model. In fact, nine other potential allometric

models were also experimented. The field-measured Hs in Table 1,

initial Acs in Table 2 or corrected Acs in Table 4, and calculated

AGBs in Table 5 of sample DR trees (ID: 16–45) (Figure 3C) were

utilized to fit them separately. The allometric equation with the

single predictor of H was suggested by Lin et al. (2018). The

fitted curve is illustrated in Figure 11A with the R2 of 0.928. As

shown in Figure 11B, the initial Ac was replaced by the corrected

Ac to fit Eq. (5), and the R2 of the fitted curve was 0.9184.

With regard to the power functions that depended on Acc and

H, a few more compositions were tried as the bases comprising

“H·Acc”, “H+Acc”, “H+ln(Acc)”, and “H·(ln(Acc))
2”. The fitted

curves are indicated in Figures 11C–F, and the resulting R2 were

0.9063, 0.8903, 0.9451, and 0.922. In addition, we fitted several

other classical function models with the same base of “H·ln(Acc)”

comprising exponential function, linear function, and logarithmic

TABLE 6 Resulting AGBs of sample DR trees for accuracy evaluation.

Tree ID AGB1 (kg) AGB2 (kg) Tree ID AGB1 (kg) AGB2 (kg)

46 79.47 85.25 54 56.21 65.23

47 62.42 66.94 55 48.11 63.07

48 78.97 94.55 56 89.31 101.48

49 70.68 80.13 57 32.73 39.47

50 42.15 52.57 58 50.33 63.38

51 39.68 54.45 59 50.76 52.32

52 45.12 54.61 60 75.30 91.85

53 46.83 52.95

AGB1 was calculated using Eq. (4), and AGB2 using Eq. (7).

function. The fitted curves are indicated in Figures 11G–I, and

the resulting R2 were 0.9449, 0.9364, and 0.9133. Since the R2 of

the fitted curve in Figure 8B was 0.9477, the applied allometric

model (Eq. 7) had the highest degree of model fitting. Compared

with Figure 11B, the corrected Ac exhibited better performance in

estimating AGBs of plantation forest trees than the uncorrected

Ac. Additionally, three other allometric models in Figures 11E, G,

H had a larger R2 than the allometric model in Figure 11A. They

demonstrated again that the AGB calculation of plantation trees on

Acc and H outperformed that depending solely on H.

5.3. Error analysis and possible
enhancements

Though UAV-borne LiDAR was employed to obtain precise

AGB estimation of DR trees in a plantation forest, certain factors

may have affected the accuracy. For example, due to the fear

of hitting high buildings near the test site (see Figure 2C), the

aboveground flight altitude of the UAVwas preset to 80m. It would

inevitably reduce the elevation accuracy of the point cloud scanned

by LiDAR, ultimately affecting the accuracy of tree segmentation

and height extraction. The measured DBHs and Hs of sample

DR trees, which were taken as the truths for model fitting and

verification, possibly had some systematic errors owing to the

instrument quality and usage procedure. According to section 3.4,

the crowns of those trees on the riverside were used to derive

the potential maximum Acs under undisturbed growth conditions.

However, the unrestricted part of the crowns accounted for only

a small part of the entire crowns, inevitably bringing certain

errors to the resulting data. The AGBs of the sample DR trees

were possibly not precisely achieved since we directly applied the

allometric model and the corresponding coefficient values from

the reference.

Despite all this, certain steps can be adopted to enhance

the AGB estimation precision of plantation trees in specific

application scenarios. For instance, the UAV flight altitude

can be lowered to 40m through fine operations on the

premise of safety, thus improving the elevation precision

FIGURE 10

Fitted curves (A–C) of three other allometric models for retrieving the potential maximum Ac (Acmax) based on H.
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FIGURE 11

Fitted curves (A–I) of nine other allometric models for estimating AGBs of plantation trees.

of the resulting point cloud. The errors of field-measured

data can be minimized by using standardized procedures and

using the average value of multiple measurements. If possible,

the sample trees whose entire crowns or the majority of

crowns grew unrestricted should be selected to calculate the

potential maximum Acs. The coefficient values of the adopted

allometric model on DBH and H can be ascertained via

practical tests, rather than straightforward empirical ones for the

DR species.

6. Conclusion

In this article, the UAV LiDAR data were utilized to extract

and correct crown area for the precise AGB estimation of trees in

a plantation forest. The following were the principal conclusions

we drew:

• The approach of extracting and correcting Ac extracted from

the UAV LiDAR data to precisely estimate the AGBs of

plantation forest trees proved effective. The R2 and RMSE

of resulting AGBs of DR trees in the test site were 0.9432

and 10.91 kg.

• The unrestricted growth parts of the tree crowns at the edge

of a plantation forest could be used to derive the potential

maximum Ac. The power function model demonstrated

the highest fitting degree between the potential maximum

Ac and H, and the R2 and RMSE were 0.9572 and 1.22

m2, respectively.

• Compared with the allometric models for AGB estimation

depending only on trunk H or on initial Ac and H, the novel

allometric model proposed in this study was based on the

predictor variables of corrected Ac and H and demonstrated

superior performance in estimating the AGBs of trees in a

plantation forest.
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Though this study offers the applicable methodology

to calculate the AGBs of individual DR trees in a

plantation forest using UAV-borne LiDAR, certain reasons

still impacted the precision, including excessive UAV

flight altitude, systematic measurement errors, a lack of

undisturbed crowns, and non-localized coefficients of the

allometric model. Hence, it is always a real challenge to

precisely achieve the AGBs of plantation trees with UAV

LiDAR data.

Additionally, the crown area of a single tree in a plantation

forest is mainly determined by tree spacing, species, and age.

Therefore, the suitable spacing between trees should be kept

while planting trees, and the crown overlap will be reduced

and the trees will grow lusher. It also prevents the underneath

branches and leaves from withering due to the lack of sunlight.

Thus, the total AGBs of plantation forest trees will increase,

and more carbon will be stored. Hence, it is very meaningful

to study how to plan suitable spacing for the plantation forest

trees to maximize the AGB and carbon sequestration. Meanwhile,

the allometric relationship between DBH and the potential

maximum Ac and the allometric models for AGB calculation

of different tree species at various ages also need to be studied

in future.
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