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Increasing climate change makes vegetation dynamic. At the same time, dynamic

changes in vegetation not only have a feedback effect on climate change, but also

affect the hydrological cycle process. Therefore, understanding the vegetation

change and its response to climate change is a priority for predicting future

climate change and studying the impact of vegetation change on the hydrological

cycle. In this study, the Yellow River Basin in China is the study area. Based on the

analysis of the evolution characteristics of meteorological elements and fractional

vegetation cover (FVC), the delta downscaling Coupled Model Intercomparison

Project Phase 6 (CMIP6) models are optimized. The empirical orthogonal function

(EOF) and singular value decomposition (SVD) methods are used to investigate

the impact of climate change on vegetation in the Yellow River Basin. The results

show that: (1) in the four scenarios (SSP126, SSP245, SSP370, and SSP585), FVC

in the Yellow River Basin from 2022 to 2100 shows an increasing trend, SSP370

(0.017 10a−1) > SSP126 (0.014 10a−1) > SSP245 (0.0087 10a−1) > SSP585 (0.0086

10a−1). Spatially, FVC in most regions of the Yellow River Basin show an increasing

trend under the four scenarios, and the degraded areas are concentrated in

a small part of the Yellow River headwaters. (2) There is a significant positive

correlation between FVC and precipitation (Pre) and temperature (Tem) under

four scenarios in the Yellow River Basin from 2022 to 2100. Under the same

scenario, the annual average temperature can be considered as the dominant

factor of FVC change in the Yellow River Basin. Under different scenarios, the

impact of climate change on FVC under the high emission scenarios is greater

than that under the low emission scenarios. This study will help to better

understand the response of vegetation to climate change and provide a scientific

basis for formulating ecological protection measures to cope with future climate

change in the Yellow River Basin.

KEYWORDS

CMIP6, Yellow River Basin, fractional vegetation cover, climate change, delta
downscaling

1. Introduction

Vegetation is an important part of the terrestrial ecosystem. It interacts with the
atmosphere, soil, and water to achieve the exchange of matter and energy. It plays an
important role in maintaining the structure, function and environment of the Earth system
(Qian et al., 2019). Vegetation is highly sensitive to environmental conditions. Climate
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change and human activities put vegetation in a long-term
dynamic evolution by changing the heat and water received by
plants. From a long time series and a large spatial scale, the
dynamic evolution of vegetation is mainly controlled by climate
conditions (Piao et al., 2020). Accordingly, vegetation dynamics
can also feed back to climate by influencing surface energy
balance, evapotranspiration and surface roughness (Duveiller
et al., 2018). Thus, terrestrial ecosystems and climate systems are
tightly coupled. According to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, the upward trend
in global temperature has accelerated significantly in recent years.
Along with rising temperatures, average annual precipitation over
the world’s land surface will gradually increase, and more areas will
experience significant increases or decreases in precipitation. It is
widely accepted that this series of climate changes, characterized
by rapid warming, may pose a threat to current and future
vegetation diversity and productivity (Hay et al., 2011). Therefore,
understanding vegetation responses to climate change is very
important for maintaining vegetation diversity and productivity in
the future.

Previous studies mainly focused on vegetation responses to
climate change in China and suggested that precipitation played a
dominant role in vegetation changes in arid and semi-arid regions,
while temperature was essential for alpine vegetation (Ge et al.,
2021). Since the end of the last century, the effect of climate change
on vegetation activity has become more evident in most areas
of China (Liu et al., 2022). In particular, climate change leads to
unstable vegetation growth in humid areas such as southwest and
central China (Jiang et al., 2022). In the northwestern arid region,
vegetation activity decreases with climate warming (Gao et al.,
2017). However, these studies usually only cover nearly 30 years
and cannot well predict the impact of future climate change on
vegetation.

The CMIP global climate models (GCMs) provide valuable
information for long-term climate prediction from global to sub-
continental scales (Iqbal et al., 2020). Building on the previous
CMIP5, CMIP6 is the latest and most advanced multi-model
dataset (Eyring et al., 2016; Bagcaci et al., 2021). CMIP6 fills the gap
left by CMIP5 and can better represent physical processes at smaller
scales. At the same time, CMIP6 provides a set of future scenarios
based on the most recent emissions trends and land use: the shared
socio-economic pathways (SSPs) (O’Neill et al., 2016). SSPs cover
a wider range of forces and take into account broader socio-
economic conditions in the future. At this stage, many researchers
mainly use statistical models to predict future vegetation. These
statistical models typically use precipitation and temperature as
driving data in CMIP6 (Li et al., 2022a). Zhou et al. (2020)
established an NDVI prediction model based on precipitation and
evapotranspiration data to predict the future dynamic changes
of vegetation NDVI in China. Yuan et al. (2021) established an
LAI prediction model based on precipitation and temperature
data to predict the future trend of vegetation change in Northeast
China. These statistical models for predicting future vegetation are
based on the relationship between observed vegetation and climate
drivers. Statistical models can reveal detailed local relationships,
but they do not take into account the mechanisms of vegetation
change (Wang et al., 2022). Now CMIP6 has provided the most
recent prediction of future vegetation, allowing us to use vegetation
data directly for prediction (Eyring et al., 2016). The advantage

of using vegetation prediction data directly from CMIP6 is that
GCMs have incorporated biophysical, biogeochemical and carbon
cycle processes to account for the mechanisms of vegetation
change under global warming (Wang et al., 2022). However, GCMs
have low spatial resolution, which leads to greater uncertainty
in GCMs. To improve the application of GCMs at the regional
scale, it is necessary to obtain more high-resolution climate
information. For this reason, many downscaling methods are
widely used in GCMs and have been proven to effectively improve
the simulation results of regional climate change (Zhou et al.,
2019). Commonly used downscaling methods include statistical
downscaling and dynamic downscaling. Based on mathematical
and physical mechanisms, dynamic downscaling requires a lot
of computational resources. Compared to dynamic downscaling,
statistical downscaling requires less computation and is simpler.
Therefore, it is often used to develop climate change predictions
with high spatial resolution (Gebrechorkos et al., 2019). The use of
downscaling methods can reduce the bias in GCMs to some extent,
allowing us to apply GCMs at the regional scale.

Located in the arid and semi-arid regions of China, the Yellow
River Basin is an important ecological barrier and economic zone
in northern China, and plays an important strategic role in China’s
ecological protection and construction (Chen et al., 2021a). At
the same time, the ecological environment of the Yellow River
Basin is fragile and sensitive to climate change, and there are
serious problems such as soil erosion and desertification (Liu et al.,
2022). In order to formulate appropriate strategies to effectively
mitigate future climate warming and cope with the challenges
posed by future climate change to the ecosystem, it is necessary to
understand future climate change models and vegetation responses
to future climate change on the basis of understanding the historical
climate change model and vegetation responses to historical climate
change. However, research on vegetation responses to climate
change in this region mainly focuses on historical periods, and
research on future climate change is less. In this study, the Yellow
River Basin is the study area. And in the Yellow River Basin, the
downscaling performance of 39 kinds of precipitation, temperature
and three kinds of FVC CMIP6 climate model data under five
interpolation methods are evaluated by multiple indicators. Then,
the interpolation methods suitable for the downscaling process
of the Yellow River Basin and the climate models with strong
simulation ability for the Yellow River Basin are selected. Then,
EOF was used to analyze the future change trend of FVC in the
Yellow River Basin, and SVD was used to analyze the response
of vegetation to precipitation and temperature. The results of this
study are helpful in understanding the response of vegetation
dynamics to climate change, and provide a scientific basis for
formulating ecological protection measures to cope with future
climate change in the Yellow River Basin.

2. Materials and methods

2.1. Study area

The Yellow River (32◦–42◦N, 96◦–119◦E), the second largest
river in China, has a total length of 5464 km (3,395 miles), and
its basin area is 795,000 square kilometers. It is an important
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ecological barrier and economic zone in China. The terrain in the
basin covers the four major geomorphic units. The vegetation types
in the basin are mainly deciduous broadleaf forest belt, grassland
belt, desert belt and Qinghai Tibet Plateau vegetation belt. The soil
types mainly include meadow soil, cinnamon soil, chestnut soil,
brown calcareous soil, gray calcareous soil, black loessial soil, yellow
cotton soil, and aeolian sand soil. Influenced by the continental
monsoon, the climate in the basin is complex (arid, semi-arid, and
semi humid), and the climate in different regions is significantly
different. The annual precipitation in the basin is about 200–
650 mm, mainly showing a decreasing trend from southeast to
northwest; The annual average temperature is about 4◦C, mainly
showing a decreasing trend from east to west. At the same time,
the water resources in the Yellow River basin are generally strained.
Most of the areas are located in arid and semi-arid regions, which
are vulnerable to the effects of climate and human activities. The
ecological environment is fragile, and the overall landscape pattern
tends to be complex, fragmented, and decentralized. In this paper,
the Yellow River basin is divided into 22 sub-basins, named after
the mainstream or tributaries of the Yellow River (Figure 1).

2.2. Datasets

2.2.1. NDVI
Advanced very high resolution radiometer (AVHRR) NDVI

derived from GIMMS NDVI3g, a semi-monthly maximum
composite product released by Global Inventor Modeling and
Mapping Studies (GIMMS) of NASA, with a spatial resolution of
0.083◦ and a time span of 1982–2015.

2.2.2. Precipitation and temperature
The measured data of 93 hydrological stations in the Yellow

River Basin from 1991 to 2014 were obtained from the National
Data Center for Meteorological Sciences1 the spatial resolution is
1 km, including the datasets of daily precipitation and daily mean
temperature. Some missing data were reasonably interpolated by
hydrological analogy method and linear interpolation method.

The dataset of cumulative precipitation and mean temperature
in China over the past 30 years with a spatial resolution of 1 km
during 1971–2000. The data was obtained from the National
Ecosystem Science Data Center (NESDC).2

2.2.3. CMIP6 climate model data
In this study, CMIP6 climate model data were obtained from

ESGF3 including four different Shared SSPs in four future time
periods (2021–2040, 2041–2060, 2061–2080, and 2081–2100), low
emission scenario SSP126, medium emission scenario SSP245,
relatively high emission scenario SSP370 and highest emission
scenario SSP585. The CMIP6 data contains the following datasets:

1) Precipitation and temperature simulation datasets of monthly
average temperature (Tem) and monthly precipitation (Pre)
from 39 climate models (Table 1).

1 http://data.cma.cn/

2 http://www.nesdc.org.cn/

3 https://esgf-node.llnl.gov/projects/cmip6/

2) Fractional vegetation cover (FVC) simulation datasets from
three climate models (Table 1).

2.3. Methods

2.3.1. Dimidiate pixel model
The dimidiate pixel model (Carlson and Ripley, 1997; Gutman

and Ignatov, 1998; Zeng et al., 2000) is a commonly used linear
model. The model assumes that the surface information of each
pixel includes two types of data, vegetation, and non-vegetation.
FVC of this pixel is equal to the weight of the vegetation covered
surface in the pixel surface. The commonly used dimidiate pixel
model for retrieval of FVC from NDVI is described in Gutman and
Ignatov (1998), as follows:

f =
(NDVI − NDVIsoil)(
NDVIveg − NDVIsoil

) (1)

where, f is the fractional vegetation coverage of the pixel, NDVI is
the normalized vegetation index of the pixel, NDVIveg is the NDVI
of the vegetation endmember, and NDVIsoil is the NDVI of the
bare soil endmember. Some scholars use the method described by
Zeng et al. (2000) to calculate NDVIveg (Wu et al., 2014; Ding et al.,
2016a,b). In theory, this method can accurately calculate NDVIveg ,
but it is not easy in practical application, because it depends on
accurate vegetation type classification. Similarly, the same problem
arises with the NDVIsoil calculation process, which relies on an
accurate and continuous classification of soil types. However,
accurate and continuous vegetation type classification and soil type
classification are not easy to obtain, and the calculation is complex.
Therefore, at present, the maximum and minimum values of NDVI
in the confidence interval are usually used as NDVIveg and NDVIsoil.
In this study, NDVI with cumulative frequency of 5 and 95% is
taken as NDVIsoil and NDVIveg to eliminate the error caused by
remote sensing image noise to some extent (Carlson and Ripley,
1997; Rundquist, 2002). In this study, this model is used to estimate
the observed values of FVC (FVCobs), based on GIMMS NDVI3g.

2.3.2. Delta downscaling
Delta downscaling is a statistical downscaling method. Based

on the measured sequence of a variable in the reference period and
the characteristic value of the corresponding variable observation
sequence (such as the absolute increase of temperature, the relative
change rate of precipitation), high-resolution GCM data can
be obtained. This method is relatively simple and requires less
computation. It can reduce the simulated values of GCMs data to
specific observation stations. The formula is as follows:

Temf = Temobs_ref +
(
TemGCMs_f − TemGCMs_ref

)
(2)

Pref = Preobs_ref ×
PreGCMs_f

PreGCMs_ref
(3)

FVCf = FVCobs_ref ×
FVCGCMs_f

FVCGCMs_ref
(4)

where, Temf represents Tem after downscaling, Temobs_ref
represents the measured data of Tem in the reference period,
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FIGURE 1

Study area.

TemGCMs_f represents GCMs data of Tem in the prediction period,
TemGCMs_ref represents GCMs data of Tem in the reference period.
Other symbols have similar meanings.

After downscaling, the spatial resolution of Temf and Pref is
1 km, and the spatial resolution of FVCf is 0.083◦. Then Temf , Pref ,
and FVCf are resampled to the same spatial resolution, 0.083◦, and
used for later research.

2.3.3. Optimization of GCMs
Different GCMs have different abilities to simulate climate

change in the basin. At the same time, different interpolation
methods in the downscaling process also affect the results. In this
study, five interpolation methods are used in the downscaling
process, namely Spline, Kriging, Inverse Distance Weighted,
Natural Neighbor Interpolation, and Bilinear Interpolation. In
order to select an appropriate GCM to reduce the uncertainty
brought by the GCMs, four evaluation indicators, mean absolute
error (MAE), time skill score (TS), Taylor chart based evaluation
method (S) and spatial skill score (SS), are used to evaluate
the simulation ability of high-resolution GCMs data obtained by
different interpolation methods on Pre, Tem, and FVC in the Yellow
River basin. Then, the error rank under each index is calculated
and the comprehensive rank is performed with equal weight. This
comprehensive rank is used as the basis for selecting interpolation
methods and GCMs to reduce the uncertainty caused by GCMs and
interpolation methods. The smaller the value of MAE and TS, the
better the simulation skill; the closer the value of S and SS to 1, the
better the simulation skill.

Based on the monthly mean annual precipitation (temperature)
from 1971 to 2000, the delta downscaling was applied to regional
downscaling of 39 GCMs, and the validity of the monthly
precipitation (temperature) simulation data was verified in 1995–
2014. Based on the monthly multi-year average FVC from 1995 to
2014, delta downscaling is used to conduct regional downscaling
for three GCMs. The technology roadmap is as follows (Figure 2).

Coupled Model Intercomparison Project Phase 6 was officially
approved in 2014, with the future period of the climate model set
at 2015–2100 and divided into several scenarios for prediction.

Therefore, when using remote sensing observation data to verify
climate model data, it is impossible to select a specific climate model
data and remote sensing observation data from 2015 to 2021 for
verification. At the same time, the study uses climate model data
to capture vegetation cover in a long time series. However, 2015–
2022 has actually occurred. Therefore, in order to be consistent
with the historical and future period division of CMIP6, and for
the sake of rationality, the climate model data of 2015–2021 are not
added in this study.

2.3.4. Space field analysis
2.3.4.1. Empirical orthogonal function

Empirical orthogonal function (EOF), through linear
decomposition, decomposes the spatio-temporal dataset into
multiple spatial feature vectors (spatial modes) and corresponding
time series (time coefficients), thereby reflecting the spatial
characteristics of the original variables and their changes with time,
and is widely used to identify spatio-temporal patterns of climate
change (Xu et al., 2002).

The multiple modes obtained by EOF are mutually orthogonal
in space and converge quickly. The higher the modal contribution,
the more important it is to characterize the properties represented
by the mode. In this study, North is used to test the significance of
each mode, and the first n modes that pass the North test and whose
cumulative variance contribution rate reaches 85% are selected
to analyze the temporal and spatial change trend of FVC in the
Yellow River basin.

2.3.4.2. Singular value decomposition
Singular value decomposition (SVD) is an important tool to

extract the coupling signals of two element space fields (Li et al.,
2014). The SVD method is used to analyze the correlation between
two element field sequences. It can obtain the spatial mode and time
change information of the correlation field between pairs of variable
fields, and its results reflect the spatial correlation degree of the two
variable fields.

The same and different correlation coefficients of the left
and right fields can be obtained by SVD. This study mainly
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TABLE 1 Summary of 39 GCMs for temperature and precipitation and 3
GCMs for fractional vegetation cover (FVC) from CMIP6.

Model acronym Spatial
resolution

Country

GCMs for
Tem and Pre

1 ACCESS-CM2 1.9◦ × 1.3◦ Australia

2 ACCESS-ESM1-5 1.9◦ × 1.3◦ Australia

3 AWI-CM-1-1-MR 0.9◦ × 0.9◦ Germany

4 AWI-ESM-1-1-LR 1.9◦ × 1.9◦ Germany

5 BCC-CSM2-MR 1.125◦ × 1.125◦ China

6 BCC-ESM1 2.8◦ × 2.8◦ China

7 CAMS-CSM1-0 1. 112◦ × 1. 125◦ China

8 CanESM5 2.8125◦ × 2.8125◦ Canada

9 CAS-ESM2-0 1.40625◦ × 1.40625◦ China

10 CESM2 1.25◦ × 0.9375◦ America

11 CESM2-FV2 2.5◦ × 1.875◦ America

12 CESM2-WACCM 1.25◦ × 0.9375◦ America

13 CMCC-CM2-HR4 1.25◦ × 0.9375◦ Germany

14 CMCC-ESM2 1.25◦ × 0.9375◦ Italy

15 CNRM-CM6-1 1.4063◦ × 1.4063◦ France

16 CNRM-ESM2-1 1.4063◦ × 1.4063◦ France

17 E3SM-1-0 1◦ × 1◦ America

18 EC-Earth3 0.7◦ × 0.7◦ Britain

19 EC-Earth3-Veg 0.703◦ × 0.703◦ Sweden

20 FGOALS-f3-L 1◦ × 1. 25◦ China

21 FIO-ESM-2-0 0. 9424◦ × 1. 25◦ China

22 GFDL-ESM4 1◦ × 1. 25◦ America

23 GISS-E2-1-G 1◦ × 1. 25◦ America

24 HadGEM3-GC31-LL 1.875◦ × 2.5◦ Britain

25 HadGEM3-GC31-MM 0.833◦ × 0.833◦ Britain

26 INM-CM5-0 2◦ × 1.5◦ Russia

27 IPSL-CM6A-LR 1. 2676◦ × 2. 5◦ France

28 KACE-1-0-G 1. 25◦ × 1. 875◦ Korea

29 MIROC6 1. 389◦ × 1. 406◦ Japan

30 MIROC-ES2L 2.8125◦ × 2.8125◦ Japan

31 MPI-ESM-1-2-HAM 1. 865◦ × 1. 875◦ Germany

32 MPI-ESM1-2-HR 0.9375◦ × 0.9375◦ Germany

33 MPI-ESM1-2-LR 1.875◦ × 1.875◦ Germany

34 MRI-ESM2-0 1. 124◦ × 1. 125◦ Japan

35 NESM3 1. 865◦ × 1. 875◦ China

36 NorCPM1 2.5◦ × 1.875◦ Norway

37 NorESM2-LM 2.5◦ × 1.875◦ Norway

38 TaiESM1 1.25◦ × 0.9375◦ China

39 UKESM1-0-LL 1.875◦ × 1.25◦ Britain

GCMs for
FVC

1 EC-Earth3-Veg 0.703◦ × 0.703◦ Sweden

2 GFDL-ESM4 1◦ × 1. 25◦ America

3 EC-Earth3-Veg-LR 0.703◦ × 0.703◦ Sweden

analyzes the different correlation coefficients (referred to as
correlation coefficients in the analysis). The different correlation
coefficients refer to the correlation between the left field (right
field) anomaly sequence and the right field (left field) modal time
coefficients. A higher value means a stronger correlation. In this
study, the T-test is used to judge whether the SVD results are
statistically significant. The first n modes that pass the T-test
and whose cumulative variance contribution rate reaches 90% are
selected for analysis.

3. Results

3.1. Model optimization

3.1.1. Climatic factor
For precipitation, the Kriging interpolation method has the

smallest error in four different evaluation indicators, so the
Kriging interpolation method for precipitation can significantly
reduce the interpolation error of GCMs. CanESM5, NESM3,
CESM2-WACCM, FIO-ESM-2-0, INM-CM5-0, CESM2-WACCM,
NorESM2-LM, ACCESS-CM2, ACCESS-ESM1-5, IPSL-CM6A-LR,
and other climate models rank highly. Taking into account of
the data integrity and the actual simulation performance of the
GCMs, and in order to further reduce the error caused by
outliers, ACCESS-ESM1-5, CESM2-WACCM and IPSL-CM6A-
LR, which are the top three in the comprehensive ranking, are
used to construct the MME dataset (Figure 3). The correlation
between the Pre data observed on the ground and the Pre data
from ACCESS-ESM1-5, IPSL-CM6A-LR, and CESM2-WACCM is
relatively consistent. Overall, the GCM Pre data are smaller than the
ground observation data and there are some outliers. The ground
observation and the MME dataset are more concentrated than the
three independent GCMs (Figure 4).

For temperature, the BILINEAR interpolation method has
the smallest error in four different evaluation indicators, so
this interpolation method is used to further evaluate the Tem
simulation effect of all GCMs. The evaluation indicators of several
GCMs, such as ACCESS-CM2, ACCESS-ESM1-5, CASMS-CSM1-
0, CESM2, CESM2-FV, E3SM-1-0, INM-CM-5-0, CanESM5,
CESM2-WACCM, FIO-ESM-2-0, INM-CM5-0, NorESM2-LM,
rank higher. CESM2-WACCM, NorESM2-LM, and ACCESS-
CM2 are used to construct the MME dataset (Figure 5). The
R2 of the ground observation and simulated Tem of CESM2-
WACCM, NorESM2-LM and ACCESS-CM2 are 0.93, 0.93, and
0.92, respectively, and the regression coefficients are 0.97, 0.97, and
0.96, while the MME dataset is more concentrated (Figure 6).

3.1.2. FVC
Among the delta downscaling, BILINEAR interpolation has

the best simulation effect on the FVC of the Yellow River basin.
Therefore, BILINEAR interpolation is used to obtain three high-
resolution GCM data. From the three evaluation indicators of
MAE, SS and S, the simulation performance of EC-Earth3-Veg and
GFDL-ESM4 on the FVC of the Yellow River basin is better than
EC-Earth3-Veg-LR. From the perspective of TS, GFDL-ESM4 is
the closest to 0 among the three GCMs, indicating that GFDL-
ESM4 is the best GCM for simulating the FVC of the Yellow River
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FIGURE 2

The downscaling and optimization of GCMs.

basin among the three selected GCMs (Table 2). The regression
analysis between FVCobs and FVCGFDL−ESM4 in 1982–1997 shows
that the regression coefficient is 1.00 and R2 is 0.83, indicating that
the overall agreement between FVCGFDL−ESM and FVCobs is high.
Therefore, the GFDL-ESM4 is selected for the next analysis in this
paper (Figure 7).

3.2. Temporal and spatial variation
characteristics of FVC

The FVC of the Yellow River basin experienced three periods: a
natural growth period from 1901 to 1961, a significant degradation
period from 1962 to 1996, and a significant recovery period from
1997 to 2014. In 1901–1961, there was less human intervention
during this period, and the vegetation grew naturally at the
rate of 0.0076/10a (P < 0.01); from 1962 to 1996, the process
of urbanization and industrialization accelerated, the population
continued to grow, and the intensive human activities made
the vegetation significantly degraded at the rate of −0.027/10a
(P < 0.01); from 1997 to 2014, influenced by the ecological
protection project of the Chinese government, the vegetation
recovered rapidly at the rate of 0.0137/10a (P < 0.01) (Figure 8).
The FVC under the four scenarios in 2022–2100 shows an
increasing trend. Under the SSP126 and SSP370, the overall rate
of increase of FVC is relatively fast, with the rates of 0.0141/10a
(P < 0.01) and 0.0168/10a (P < 0.01), respectively. For the SSP245
and SSP585, the rate of increase in FVC is relatively slow, with

the rates of 0.0087/10a (P < 0.01) and 0.0086/10a (P < 0.01),
respectively.

The contribution rate of the first mode of the four scenarios
is more than 60%, which reflects the main spatial distribution
characteristics of the vegetation in the Yellow River basin. Although
the first mode of the four scenarios is different, it generally reflects
the similar characteristics. Jimai, Maqu, and Tangnaihai are in the
opposite trend of vegetation growth in other areas of the Yellow
River basin, and the high value areas of the four scenarios are
concentrated in the Huangshui River basin, Maqu, Wuding River
basin and Longmen. The second mode under each scenario is
quite different. Although the high value centers of FVC change
reflected by the second mode and the first mode under the SSP126
and SSP585 scenarios are different, the distribution characteristics
are very similar, i.e., the vegetation growth in the Yellow River
headwaters area is opposite to that in other regions. The second
mode under the SSP245 and SSP370 scenarios shows that the
vegetation growth in the southeastern and northwestern areas of
the Yellow River basin shows the opposite trend. The contribution
rate of the third mode under the four scenarios is low, so only
the change center reflected by the mode, namely, the headwaters
area of the Yellow River and Wuding River basin, needs to be
concerned. In general, the headwaters of the Yellow River, the
Wuding River basin, the Huangshui basin and the Longmen basin
are high-value areas of vegetation change, and the FVC changes
strongly (Figure 9).

The time coefficient PC1 corresponding to the first mode of the
four climate scenarios is very similar, with slopes greater than 0,
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FIGURE 3

The fitting performance ranking of the monthly Pre series of the Yellow River basin simulated by 39 GCMs and measured at the stations from 1995 to
2014 under different interpolation and evaluation indicators; under each evaluation method is the evaluation ranking of five interpolation methods:
Kriging, Idw, BILINEAR, Natural, and Spline.

and the time coefficient changes positively and negatively around
2060. Combined with its contribution rate of about 70%, it shows
that the vegetation in the negative EOF1 area of each scenario
will continue to deteriorate in 2022–2100, while the opposite will
occur in the eastern region. Therefore, the continuous recovery
of vegetation in the eastern region is the main reason for the
significant increase of FVC in the four scenarios in 2022–2100.
The time coefficient PC2 corresponding to the second mode of

the four climate scenarios is very similar. The slope of the time
coefficient changes positively and negatively between 2060 and
2070, indicating that the vegetation in the positive area of the
second mode of each scenario is in a recovery state in the year
2022–2070, and in the negative area of the second mode of each
scenario in the year 2070–2100, the vegetation is in a degradation
state. The time coefficient PC3 corresponding to the third mode of
the four climate scenarios fluctuates strongly without a clear trend,
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FIGURE 4

Scatter plot of monthly Pre series in the Yellow River basin simulated by station observation and GCMs from 1995 to 2014 under Kriging
interpolation; (A–D) represent ACCESS-ESM1-5, IPSL-CM6A-LR, and CESM2-WACCM, respectively.

and the contribution of the third mode of each scenario is less than
1% (Figure 10).

3.3. Influence of climatic factor on FVC

Singular value decomposition is carried out for the FVC, Pre,
and Tem fields of the Yellow River basin in 2022–2100 under four
scenarios. Since the contribution rate of the first mode is more than
90%, only the first mode is used to analyze the impact of Pre and
Tem on FVC (Table 3).

In the first coupling mode of FVC and annual Pre
(Figures 11A–D), the four scenarios have the trend of shifting
from the Yellow River headwater area and the southern area of
the Yellow River basin to the east with the increase of emission
scenario, while the inner flow area, Wuding River basin and
Shizuishan are not significant in any scenario. Although the
response of vegetation to Pre in different regions is different
under different scenarios, the heterotypic correlation coefficient
of the right field of Pre is negative, and the heterotypic correlation
coefficient of the left field of FVC is also basically negative,
indicating that the FVC and Pre in these regions are mainly
positively correlated, and only in Maqu under SSP126 and SSP370,
the FVC and Pre show negative correlation. In contrast to Pre,
almost all regions in the first coupling mode of FVC and Tem
are significant under the four scenarios (Figures 11E–H). The
heterotypic correlation coefficients of the right field of Tem
under the four scenarios are all negative, and the heterotypic

correlation coefficients of the left field of FVC are basically
negative, indicating that the FVC and Tem in these areas are
mainly positive correlation, only in the areas of Jimai and Maqu
under the SSP126 and in the areas of Maqu, Xiaochuan and
Tangnaihai under the SSP585 have positive values, showing
negative correlation.

From the perspective of FVC and Pre time coefficient in four
climate scenarios (Figures 12A–D), the fluctuation range of Pre
time coefficient is larger than that of FVC, and there is no obvious
change in the same direction between Pre and FVC. The correlation
between FVC and Pre time coefficient in the four scenarios is poor
(Table 3), which indicates that the FVC and Pre do not change
synchronously on an annual basis in each scenario. Under the
SSP585, the FVC and Pre are clearly lagged, with a lag period of
about 3 years. The correlation coefficient between FVC and Pre
time coefficient under the SSP585 is the largest among the four
scenarios, indicating that the vegetation in this scenario is the most
sensitive to Pre among the four scenarios. According to the time
coefficients of FVC and Pre in the four scenarios (Figures 12E–H),
there are very obvious changes in the same direction, indicating
that the FVC and Tem in each scenario are mainly synchronous
changes in the inter-annual. According to the correlation of time
coefficient (Table 3), the correlation between FVC and Tem time
coefficient is high under the four scenarios, while the correlation
coefficient under SSP126 scenario is the lowest, indicating that
SSP126 is the least sensitive scenario of vegetation to Tem among
the four scenarios.
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FIGURE 5

The fitting performance ranking of the monthly Tem series of the Yellow River basin simulated by 39 GCMs and measured at the stations from 1995
to 2014 under different interpolation and evaluation indicators; under each evaluation method is the evaluation ranking of five interpolation
methods: Kriging, Idw, BILINEAR, Natural and Spline.

4. Discussions

4.1. Temporal and spatial change
characteristics of FVC

The FVC of the Yellow River basin shows an increasing trend
under the four scenarios from 2022 to 2100, which is basically
consistent with the researches of other scholars (Ouyang et al.,

2020; Li et al., 2022a). The rate of change of FVC in the Yellow
River basin is different under the four scenarios (Figure 8),
and SSP126 and SSP370 increase the fastest, and the spatial
distribution characteristics of FVC are also different (Figure 9),
which may be caused by different hydrothermal conditions and
CO2 concentrations under different scenarios. PC2 in Figure 8
shows that the trend of FVC in some areas of the Yellow River
basin first increased and then decreased. We believe that this is

Frontiers in Forests and Global Change 09 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1157285
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1157285 April 10, 2023 Time: 15:43 # 10

Jian et al. 10.3389/ffgc.2023.1157285

FIGURE 6

Scatter plot of monthly Tem series of the Yellow River basin simulated by the station observation and GCMs from 1995 to 2014 under BILINEAR
interpolation; (A–D) represent CESM2-WACCM, NorESM2-LM, ACCESS-CM2, respectively.

TABLE 2 Score of FVCGFDL-ESM4, FVCEC-Earth3-Veg, and
FVCEC-Earth3-Veg-LR in the validation period under different indicators.

Model
acronym

Interpolation
method

MAE SS S TS

EC-Earth3-Veg BILINEAR 0.0836 0.7572 0.9257 0.0428

GFDL-ESM4 BILINEAR 0.0836 0.7590 0.9999 0.0002

EC-Earth3-Veg-LR BILINEAR 0.1133 0.5684 0.7927 0.1232

due to the scarcity of water resources in the Yellow River basin,
and the rising Tem in the future will increase evaporation, which
will aggravate the water scarcity in these areas of the basin, thus
playing a negative role in the growth of vegetation in these areas.
Although this feature shown by PC2 is not the main feature in the
future, it is still worth noting, because if the Tem rises faster or
longer in the future, this feature is likely to become the main feature
of arid and semi-arid areas. Under the four scenarios, the change
in FVC in the Yellow River basin is basically positively correlated
with Pre and Tem, except for some areas in the headwaters of
the Yellow River (Figure 11). The correlation between FVC and
Pre and Tem in the Yellow River basin increases with increasing
emission concentration, which is basically consistent with the
research of other scholars (Li et al., 2022a), indicating that the
response of vegetation to climate change is stronger under higher
emission scenarios. However, the same type of correlation can be
interpreted differently in different regions. For example, future
vegetation and temperature are positively correlated in most areas
of the Yellow River headwaters and the Gaocun area. However,
the Yellow River headwaters are located in the southeast of the

FIGURE 7

Scatter distribution of FVCobs and FVCGFDL-ESM4 from 1982 to
1997.

Qinghai-Tibet Plateau, and temperature is the main limiting factor
for local vegetation activity. Compared with Pre, the increase in
Tem can alleviate the local cold climate, which is conducive to
the growth of most local vegetation. The Gaocun area is located
in the North China Plain, with high background temperature, so
the impact of Pre on the vegetation in this area is more significant.
Therefore, the spatio-temporal distribution of background climate,
water conditions, and Tem conditions is an important reason for
the heterogeneity of vegetation activities.
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FIGURE 8

Time variation trend of annual FVC in the Yellow River basin from 1901 to 2100; the historical period is divided into three sections: T1 (1901–1961),
T2 (1962–1996), T3 (1997–2014).

FIGURE 9

The first three modes (EOF1–EOF3) of the FVC of the Yellow River basin from 2022 to 2100 under the four scenarios SSP126 (A–C), SSP245 (D–F),
SSP370 (G–I) and SSP585 (J–L); the contribution rate of this mode is shown in brackets.

4.2. Uncertainty and impact

In previous studies on predicting future vegetation changes,
most of them have established vegetation prediction statistical
models on precipitation, temperature and other meteorological
factors. These vegetation prediction statistical models are based
on the relationship between observed variables. In general, the
relationship between vegetation and climate factors is linear by
default. However, many studies have shown that the relationship
between vegetation and climate is non-linear. Piao et al. (2014)
showed that the relationship between interannual temperature
change and vegetation activity was weaker in the northern
hemisphere. Fu et al. (2015) analyzed the impact of global
warming on the phenology of tree leaf expansion in the temperate
zone of Europe over the past 30 years, and found that the
sensitivity of vegetation leaf expansion phenology to climate
warming is significantly reduced. This is due to the complex
response mechanism of vegetation to climate change and its

non-linear characteristics. For example, before reaching the
optimal temperature for photosynthesis, increasing temperature
increases the vegetation activity by accelerating nutrient release
and improving soil availability (Michaletz et al., 2014). Above
this temperature, respiration promotes the acceleration of nutrient
use (Brohan et al., 2006). However, the linear vegetation
prediction model cannot capture the non-linear relationship
between vegetation and climate. This situation can be avoided
to some extent by directly using the vegetation data output by
GCMs, as GCMs can objectively simulate the interactions and
feedbacks between the Earth’s various systems, and are an effective
tool for exploring their influence on climate change and its impacts
(Taylor et al., 2012). CMIP6 is the most involved model, with
the most complete scientific experimental design, and the most
simulated data in more than 20 years (Zhou et al., 2019). However,
different GCMs have different simulation capabilities for different
regions. Currently, most GCMs have too coarse a resolution to fully
represent the regional characteristics of terrain and land and sea
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FIGURE 10

The time coefficient PC1–PC3 of the first three modes EOF1–EOF3 of FVC in the Yellow River basin from 2022 to 2100 under four scenarios: SSP126
(A–C), SSP245 (D–F), SSP370 (G–I) and SSP585 (J–L).

TABLE 3 FVC, Pre and Tem in the Yellow River basin from 2022 to 2100
under four scenarios after SVD (**Indicates that the correlation passed
0.01 significance test).

Scenario Left
field

Right
field

Variance
contribution

rate

Time
coefficient
correlation

2022–2100 SSP126 FVC Pre 97.7% 0.38**

SSP245 FVC Pre 93.1% 0.40**

SSP370 FVC Pre 98.1% 0.37**

SSP585 FVC Pre 97.9% 0.49**

SSP126 FVC Tem 99.7% 0.65**

SSP245 FVC Tem 99.9% 0.90**

SSP370 FVC Tem 99.9% 0.93**

SSP585 FVC Tem 99.9% 0.95**

distribution. There are large uncertainties in studying the regional
scale. Downscaling technology can reduce these uncertainties, but
the downscaling process itself increases uncertainty. In this paper,
several climate models and interpolation methods are optimized in
the process of delta downscaling, and the climate model suitable
for the Yellow River basin and the interpolation method in the
process of delta downscaling are selected, but this is not enough to
completely eliminate the uncertainty introduced by the GCMs and
the downscaling process.

In addition to precipitation and temperature, vegetation is
also affected by other uncertain factors. In recent decades, climate
change has exacerbated the instability of the climate system, and the
frequency and intensity of extreme weather events have increased
in China (Piao et al., 2010). A large amount of evidence from
crop yield, tree ring and manipulation experiments shows that
the occurrence of extreme high temperature events is followed
by higher water stress and evaporation demand, which can have
significant impacts on terrestrial ecosystems (Kang et al., 2016;
Klesse et al., 2018; Lou et al., 2021; Yan et al., 2021). The prediction
of FVC due to human activities will also bring uncertainty. In the

historical period, with China’s rapid urbanization and population
growth, overgrazing, deforestation and overcultivation have caused
serious impacts on the ecological environment (Ma et al., 2021),
the Chinese government has successively implemented a series of
ecological restoration projects, such as the Three-North Shelter
Forest Program (TNSFP) The Grain to Green Program (GGP)
and the Natural Forest Protection Program (NFPP), launched in
1999 have become the main factors for vegetation restoration in
southern, northeastern, northwestern and central China (Gang
et al., 2019; Chen et al., 2021b). As a result, human activities can
greatly affect the growth of vegetation in local areas. At the recent
climate summit in April 2021, in response to climate warming,
the Chinese government proposed to achieve “carbon peak” by
2030 and “carbon neutral” by 2060. To achieve this goal, ecological
restoration projects similar to the GGP may be implemented in the
future. However, future human activities and extreme events have
introduced many uncertainties into the estimation of vegetation
that GCMs cannot account for. Therefore, this study only analyses
the spatio-temporal change characteristics of FVC under different
scenarios and the response relationship between vegetation and
climate factors, without considering the impact of human activities
and extreme climate events on vegetation.

Vegetation is linked to the carbon and water cycles.
Vegetation converts carbon dioxide into organic matter through
photosynthesis and evaporates it through stomata. This process
helps to cool the surface air, so it is also seen as an ecological way
to mitigate climate warming (Seneviratne et al., 2010; Denissen
et al., 2021). The effect of water availability on ecosystem function
is therefore very important. The ecosystem response depends on
whether the vegetation in the area is energy or water limited
(Ciais et al., 2005; Flach et al., 2018; Denissen et al., 2020; Kroll
et al., 2022). Currently, research on ecosystem water availability of
can be divided into two categories. Some studies analyzed water
supply through soil moisture (Jung et al., 2010; Berg and McColl,
2021; Jiao et al., 2021; Zhou et al., 2021), while others focused
on water demand by considering precipitation and evaporation
(Feng and Fu, 2013; Huang et al., 2016; Berg and McColl, 2021).
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FIGURE 11

The first coupling mode obtained by SVD of FVC, Pre and Tem fields in the Yellow River basin from 2022 to 2100 under four scenarios: SSP126 (A,E),
SSP245 (B,F), SSP370 (C,G), and SSP585 (D,H); (A–D) are the first coupling modes of FVC and Pre, and (E–H) are the first coupling modes of FVC and
Tem; The bottom map of panels (A–D) is Pre, the bottom map of panels (E–H) is Tem, and the contour line is FVC, where the dotted line is positive
and the solid line is negative; Point represents the area where the FVC and Pre (Tem) field are significant at the same time.

FIGURE 12

The time coefficients corresponding to the first coupling mode of the FVC and Pre and Tem fields in the Yellow River basin from 2022 to 2100 under
the four scenarios of SSP126 (A,E), SSP245 (B,F), SSP370 (C,G), and SSP585 (D,H), where (A–D) are the time coefficients of FVC and Pre, and (E–H)
are the time coefficients of FVC and Tem.

Some studies suggested that, soil moisture is more important in
driving vegetation growth (Jiao et al., 2021; Li et al., 2021, 2022b).
However, the global extensive vegetation greening in recent decades
does not seem to support this conclusion (Donohue et al., 2013;
Zhu et al., 2016; Berg and Sheffield, 2019). At the same time,
some studies have shown that temperature as an energy proxy,
is more important for vegetation growth and carbon uptake than
water use efficiency (Wang et al., 2013; Piao et al., 2017; Green
et al., 2019; Yuan et al., 2019; Lu et al., 2022). For example, by
decoupling air temperature and soil moisture, Dang et al. (2022)
suggested that temperature played a more important role in most
parts of the world. There is no unified conclusion on whether the
current ecosystem energy has changed from energy limitation to
water limitation, mainly due to different research methods (Greve
et al., 2019). Certainly, the continued rise in temperature and
the large increase in net radiation will reduce the energy limit
of the ecosystem on the one hand, and increase the demand for
atmospheric evaporation on the other hand, thus increasing the
water limit of the ecosystem (Humphrey et al., 2021). We believe
that the ecosystem should be in the process of transitioning from

energy limitation to water limitation, and it is only a matter of time
before it fully manifests itself as water limitation. The trend of the
ecosystem from energy limitation to water limitation is mainly due
to increases in net radiation and temperature. Denissen et al. (2022)
found net radiation to be the most important predictor of water
limitation. In our study, the factors affecting vegetation growth are
analyzed from the perspective of precipitation and temperature,
and it is concluded that temperature is the dominant factor of
vegetation growth in the Yellow River basin. Some studies have
shown that the Qinghai-Tibet Plateau is at a high altitude, where
the headwaters of the Yellow River is located, but it has warmed
significantly in the past few decades (Li et al., 2010; Yang et al., 2014;
Kuang and Jiao, 2016), and it is possible that the energy limitation
in this area will be transformed into water limitation. However,
Zhao et al. (2023) showed that the headwaters of the Yellow River
are still an energy-restricted area with increasing temperature. This
research is generally consistent with our research conclusion, but
there are differences in the spatial distribution, which may be
caused by the poor simulation effect of the method and CMIP6
precipitation data. Because it is difficult to obtain high-precision

Frontiers in Forests and Global Change 13 frontiersin.org

https://doi.org/10.3389/ffgc.2023.1157285
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


ffgc-06-1157285 April 10, 2023 Time: 15:43 # 14

Jian et al. 10.3389/ffgc.2023.1157285

soil moisture data, this study only analyses the effect of temperature
and precipitation on vegetation growth. Next, we will also try to
analyze the main factors of vegetation growth in the Yellow River
basin from the perspective of water demand and energy.

5. Conclusion

This paper takes the Yellow River basin as the research area.
Based on EOF and SVD, the temporal and spatial distribution of
vegetation and its response to climate factors are investigated using
the downscaled GCMs data, and the following main conclusion are
drawn:

Among the five interpolation methods, Spline, Kriging, Inverse
Distance Weighted, Natural Neighbor Interpolation and Bilinear
Interpolation, Bilinear Interpolation is the most suitable to reduce
the error of FVC in the Yellow River basin. GFDL-ESM4 has a
strong ability to simulate the FVC of the Yellow River basin.

In terms of time, the fractional vegetation coverage of the
Yellow River basin under four scenarios from 2022 to 2100 showed
an increasing trend. In terms of space, under the four scenarios, the
FVC of almost all areas of the Yellow River basin will increase from
2022 to 2100, and the degraded areas will be concentrated in a small
part of the headwaters of the Yellow River.

In the same scenario, the correlation between FVC and mean
annual Tem is greater than that of mean annual Pre, indicating that
mean annual Tem is the dominant factor of vegetation in the Yellow
River basin from 2022 to 2100. In different scenarios, the impact of
climate change on FVC is greater in the high emission scenario than
in the low emission scenario.
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